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On the Complexity of Hybrid n-term Karatsuba
Multiplier for Trinomials

Yin Li, Shantanu Sharma, Yu Zhang, Xingpo Ma, and Chuanda Qi

Abstract—The n-term Karatsuba algorithm (KA) is an extension of 2-term KA, which can obtain even fewer multiplications than the
original one. The existing n-term Karatsuba hybrid GF (2m) multipliers rely on factorization of m or m− 1, so that put a confinement to
these schemes. In this contribution, we use a new decomposition m = n`+ r, such that 0 ≤ r < n and 0 ≤ r < `, and propose a novel
n-term Karatsuba hybrid GF (2m) multiplier for an arbitrary irreducible trinomial xm + xk + 1,m ≥ 2k. Combined with shifted
polynomial basis, a new approach (other than Mastrovito approach) is introduced to exploit the spatial correlations among different
subexpressions. We investigate the explicit space and time complexities, and discuss related upper and lower bounds. As a main
contribution, the flexibilities of n, ` and r make our proposal approaching optimal for any given m. The space complexity can achieve to
m2/2 +O(

√
11m3/2/2), which roughly matches the best result of current hybrid multipliers for special trinomials. Meanwhile, its time

complexity is slightly higher than the counterparts, but can be improved for a new class of trinomials. In particular, we demonstrate that
the hybrid multiplier for xm + xk + 1, where k is approaching m

2
, can achieve a better space-time trade-off than any other trinomials.

Index Terms—Hybrid multiplier, n-term Karatsuba algorithm, shifted polynomial basis, optimal, trinomials.
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1 INTRODUCTION

We assume that the readers are familiar with the finite field
GF (2m) and its arithmetic operations [1]. Such a field is
a number system containing 2m elements, where any field
element is represented using m-bits in binary forms. Thus, it
is particularly useful in coding theory and cryptography [4]
that require efficient arithmetic algorithms and their related
hardware architectures. Among the arithmetic operations
defined in GF (2m), field multiplication is one of the most
frequently desired operations, as other complex operations,
e.g., exponentiation and division can be implemented by
iterative multiplications. Therefore, it is essential to design
a suitable GF (2m) multiplier under conditions of the
different hardware resources.

Under polynomial basis (PB) representation [1], the
field multiplication consists of a polynomial multiplication
followed by a modular reduction. The PB GF (2m)
multiplier aims to perform these operations efficiently.
Typically, the multiplier efficiency is evaluated in terms
of space and time complexities. The space complexity is
expressed as the total number of required 2-input AND
gates and 2-input XOR gates. The time complexity is
defined as the total delay of the multiplier circuit, i.e.,
delays by AND and XOR gates, which is denoted by TA
and TX , respectively. Broadly, we may classify bit-parallel
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GF (2m) multipliers into three different categories, as:
(i) quadratic [13], [14], [22], [23], (ii) subquadratic
[6], [7], and (iii) hybrid bit-parallel multipliers [9],
[10], [11], [15], [21]. Quadratic multipliers normally
utilize the trivial approach to implement the polynomial
multiplication, while subquadratic or hybrid methods
usually apply a certain divide-and-conquer algorithm, e.g.,
Karatsuba algorithm (KA) [2]. The main advantage of the
sub-quadratic multipliers is that their space complexities
are generally smaller than other two types of multipliers.
Nevertheless, their time complexities are often more than
quadratic or hybrid counterparts. Conversely, the hybrid
multipliers can offer a trade-off between the time and space
complexities [11]. Some of these schemes can save about
1/4 logic gates, while the time complexities cost only one
more TX compared with the fastest quadratic multipliers
[18], [30]. In these schemes, the KA is applied only once to
compute the product of two m-degree polynomials.

Karatsuba algorithm is a classic divide-and-conquer
algorithm, which can optimize polynomial multiplication
by partitioning each polynomial into two halves and
utilizing three sub-multiplications instead of four ones. This
algorithm is usually denoted as 2-term Karatsuba algorithm.
Besides the 2-term KA, there are several variations, e.g.
generalized n-term KA (n ≥ 3) introduced by Toom
[3], Weimerskirch and Paar [7] and 4, 5 and 6-term of
Karatsuba-like formulae introduced by Montgomery [5].
The former algorithm splits each polynomial into n parts
and applies KA strategy for every two sub-polynomials.
The latter ones introduced new formulae to minimize the
number of sub-multiplications. Based on Montgomery’s
work, several combinations of these formulae resulted in
remarkable improvements for higher degree polynomial
multiplications [8]. Compared with 2-term KA, all these
variations can obtain even fewer coefficient multiplications.
However, these Karatsuba-like formulae usually contain
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complicated linear combinations of the split parts, which
will yield extra gates delay for the bit-parallel multiplier.
Conversely, Weimerskirch and Paar’s approach [7] is more
fit for constructing hybrid GF (2m) multipliers, as all the
intermediate inputs can be obtained in one TX delay [31].
We call this algorithm as n-term KA and use this notion
thereafter.

Recently, Li et al. applied the n-term KA to a special
class of trinomial xm + xk + 1,m = nk, and developed
an efficient hybrid multiplier [30]. The optimal space
complexity of the proposed multiplier is approximately
m2/2 + O(m3/2), while its time delay matches the
fastest Karatsuba-based multipliers known to date [18].
Nevertheless, such irreducible trinomials are not abundant,
thereby puts a confinement to the application of this scheme.
For example, the irreducible trinomials recommended by
NIST [20] do not satisfy the previous precondition, so that
the aforementioned multiplier is unapplicable. Park et al.
[32] generalized above scheme and investigated the n-term
Karatsuba hybrid multipliers for xm + xk + 1, where m
satisfies m = n` or m = n` + 1. A natural question is:
can we loose the limitation for m, and develop an n-term
KA based multiplier for an arbitrary irreducible trinomial?

This paper shows that, for a general irreducible trinomial
xm + xk + 1,m ≥ 2k, a hybrid n-term Karatsuba multiplier
can be constructed by partitioning m as m = n` + r with
0 ≤ r < n, 0 ≤ r < `. Since the polynomial multiplication
here is partitioned into several independent parts and
computed in parallel, constructing Mastrovito matrices for
all these parts becomes more complicated. Thus, we utilize
an alternative approach to perform modular reduction and
exploit spatial correlation among different subexpressions.
We also use shifted polynomial basis (SPB) to optimize
the modular reduction. The main architecture is described
in detail, and the explicit space and time complexities are
studied under different parameters n, ` and r.

Our contribution. We demonstrate that, the flexible choice
of n, ` and r can make the n-term KA applicable to more
general trinomials, especially for these recommended by
NIST. The upper and lower bounds with respect to space
and time complexities are evaluated. The optimal space
complexity of our proposal is m2/2 + O(

√
11m3/2/2),

which roughly matches the best result of [30], [32]. The
time complexity is slightly higher, but it can be improved
for some special types of trinomials. Moreover, it is
demonstrated that the hybrid multiplier for xm + xm/2 + 1
can achieve a better space and time trade-off than any other
trinomials.

Outline of the paper. Section 2 provides an overview
of an n-term KA formula and relevant notions. Section 3
investigates the application of n-term KA for polynomial
multiplication of arbitrary degrees and proposes a new
bit-parallel multiplier architecture. Section 4 presents an
analysis of our proposal and an study of the optimal
parameters of n-term KA and irreducible trinomials.

Appendix. For easy reading, we put an small example,
the detailed proofs of Lemma 1, Observation 1, and
Propositions 1 and 3 in the Appendix.

2 PRELIMINARY

In this section, we briefly review some related notations and
algorithms used throughout this paper.

2.1 Shifted Polynomial Basis

The shifted polynomial basis (SPB) was originally proposed
by Fan and Dai [12] and it is a variation of the polynomial
basis. Consider a binary extension field GF (2m) generated
by an irreducible trinomial f(x) = xm + xk + 1. Let x be a
root of f(x), and the set M = {xm−1, · · · , x, 1} constitute
a polynomial basis (PB). Then, the SPB can be obtained by
multiplying the set M by a certain exponentiation of x:

Definition 1 [12] Let v be an integer and the ordered set M =
{xm−1, · · · , x, 1} be a polynomial basis ofGF (2m) over F2. The
ordered set x−vM := {xi−v|0 ≤ i ≤ m−1} is called the shifted
polynomial basis(SPB) with respect to M .

Under SPB representation, the field multiplication can be
performed as: C(x)x−v = A(x)x−v · B(x)x−v mod f(x).
Please notice that the modular reduction under SPB is a little
different with that under PB, where the range [−v,m−v−1]
is the rational term degree range. To distinguish with PB
reduction, we call this operation as SPB reduction.

If the parameter v is properly selected, the SPB reduction
is simpler than that PB reduction, especially, for irreducible
trinomial or some special types of pentanomials [13].
Particularly, for trinomial xm + xk + 1, it is proved that
the optimal value of v is k or k − 1 [12]. In this paper, we
choose that v = k and use this denotation thereafter. Also,
we utilize both SPB and PB reduction to our scheme, and
the default modular reduction refers the SPB one without
specification.

2.2 n-term Karatsuba Algorithm

Consider the simplest version of 2-term Karatsuba
algorithm, where we assume two polynomials A(x) and
B(x) of degree one, i.e., A(x) = a1x + a0, B(x) = b1x +
b0. Then the polynomial multiplication A(x)B(x) can be
obtained in the following way:

AB = a1b1x
2 + ((a0 + a1)(b0 + b1)− a1b1 − a0b0)x+ a0b0.

Above calculation requires only three multiplications,
while the schoolbook method requires four multiplications.
Besides 2-term KA, Weimerskirch and Paar [7] gave a
generalized Karatsuba formulae, say an n-term KA, that
is applicable for the polynomial multiplication of arbitrary
degree. Assume that there are two n-term polynomials with
n− 1 degree over F2:

A(x) =
n−1∑
i=0

aix
i, B(x) =

n−1∑
i=0

bix
i.

Then, we calculate intermediate values based on the
coefficients. Compute for each i = 0, · · · , n− 1,

Di = aibi

Compute for each i = 1, · · · , 2n − 3 and for all s, t with
s+ t = i and n > s > t ≥ 0,

Ds,t = (as + at)(bs + bt)
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Thus, the coefficients of A(x)B(x) =
∑2n−2
i=0 cix

i can be
computed as
c0 = D0,
c2n−2 = Dn−1,

ci =



∑
s+t=i,
n>s>t≥0

Ds,t +
∑
s+t=i,
n>s>t≥0

(Ds +Dt) (odd i),

∑
s+t=i,
n>s>t≥0

Ds,t +
∑
s+t=i,
n>s>t≥0

(Ds +Dt) +Di/2 (even i),

where i = 1, 2, · · · , 2n − 3. Merging the similar items for
Di, i = 0, 1, · · · , n− 1, AB is rewritten as:

AB =Dn−1(x2n−2 + · · ·+ xn−1) +Dn−2(x2n−3 + · · ·+ xn−2)

+ · · ·+D0(xn−1 + · · ·+ 1) +

2n−3∑
i=1

(
∑
s+t=i,
n>s>t≥0

Ds,t)x
i.

One can easily check that this formula costs about O(n2/2)
coefficient multiplications and O(5n2/2) additions. Please
note that the addition and subtraction are the same in
GF (2m). Compared with the classic KA, the n-term KA
saves more partial multiplications but costs more partial
additions. It is noteworthy that the inputs of Ds,t can be
calculated using one addition, which make the computation
of Ds,t having only one more TX in comparison with Di.
This characteristic is similar with 2-term KA; therefore, such
an algorithm can be easily applied in developing bit-parallel
multipliers. Besides this algorithm, Montgomery [5] and
Fan [8] proposed more Karatsuba-like formulae. These
formulae aim to decrease as many coefficient multiplications
as possible. Nevertheless, their formulae contain more
complicated linear combinations of subexpressions that
require more gate delay for parallel implementation.

In the following section, we study the application of
n-term KA in developing efficient bit-parallel multiplier for
general irreducible trinomials.

3 BIT-PARALLEL MULTIPLIER USING n-TERM
KARATSUBA ALGORITHM

In this section, we describe the bit-parallel GF (2m)
multiplier architecture using n-term KA for general
irreducible trinomials. We now give the explicit definition
of the field GF (2m) and its element representation used
in our multiplier. Provide that f(x) = xm + xk + 1 be an
irreducible trinomial that defines the finite field GF (2m).
Because the reciprocal polynomial xm + xm−k + 1 is also
irreducible whenever xm + xk + 1 is irreducible, without
loss of generality, we only consider the case of m ≥ 2k.
Let A,B ∈ GF (2m) are two arbitrary elements in PB
representation, namely,

A =
m−1∑
i=0

aix
i, B =

m−1∑
i=0

bix
i.

Their SPB representation can be recognized as the PB
representations multiplying x−k. Analogous with PB
multiplication, the SPB field multiplication consists of

performing polynomial multiplication with parameter x−k

and then reducing the product modulo f(x), i.e.,

Cx−k =x−k
m−1∑
i=0

cix
i = Ax−k ·Bx−k mod f(x)

=x−2k ·
(
m−1∑
i=0

aix
i

)
·
(
m−1∑
i=0

bix
i

)
mod f(x).

To construct efficient bit-parallel multiplier for above
expression, in the following, we first investigate the
multiplication of two m-term polynomials using n-term
KA (m ≥ n). Then, the modular reductions for related
results are considered. Accordingly, an efficient bit-parallel
multiplier architecture is developed.

3.1 Polynomial multiplication using n-term Karatsuba
algorithm
In order to apply n-term KA to the multiplication of
two m-term polynomials A · B, as presented in previous
expression, we have to partition each polynomial into n
parts. Notice that m is not always divisible by n. Therefore,
we first decompose m as m = n`+ r, where 0 ≤ r < n and
0 ≤ r < `. Then, A,B can be partitioned into n parts with
the former n − r parts consisting of ` and the later r ones
consisting of `+ 1 bits. More explicitly,
A = An−1x

(n−1)`+r−1 + · · ·+An−r+1x
(n−r+1)`+1 +An−rx

(n−r)`

+An−r−1x
(n−r−1)` + · · ·+A1x

` +A0,

and
B = Bn−1x

(n−1)`+r−1 + · · ·+Bn−r+1x
(n−r+1)`+1 +Bn−rx

(n−r)`

+Bn−r−1x
(n−r−1)` + · · ·+B1x

` +B0,

where Ai =
∑ −̀1
j=0 aj+i`x

j , Bi =
∑ −̀1
j=0 bj+i`x

j , for i =

0, 1, · · · , n− r−1, and Ai =
∑`
j=0 aj+(`+1)i−n+rx

j , Bi =∑`
j=0 bj+(`+1)i−n+rx

j , for i = n− r, · · · , n− 1. Applying
n-term KA stated in previous section to A · B, we have
the following proposition to illustrate the expansion of this
polynomial multiplication.

Proposition 1 Assume that A,B are defined as above, then the
expansion of AB using n-term KA can be written as:

AB =
(
An−1Bn−1x

(n−1)`+r−1 +An−2Bn−2x
(n−2)`+r−2+

· · ·+An−rBn−rx
(n−r)` + · · ·+A1B1x

` +A0B0

)
· h(x)

+

2n−3∑
i=1

( ∑
s+t=i,
n>s>t≥0

Ds,tx
δs,t
)
xi`

(1)
where h(x) = x(n−1)`+r−1 + x(n−2)`+r−2 + · · · + x(n−r)` +
· · ·+ x` + 1 and Ds,t = (As +At)(Bs +Bt) as well as

δs,t =

 s+ t− 2(n− r), if s > t > n− r,
s− (n− r), if s > n− r, t ≤ n− r,
0, if 0 < t < s ≤ n− r.

(2)

The proof of this proposition can be found in Appendix B.1
Analogous to the approach present in [18], we can divide

(1) into two parts and compute them independently, i.e.,

S1 =

(
n−1∑

i=n−r+1

AiBix
i(`+1)−n+r +

n−r∑
i=0

AiBix
i`

)
h(x),

S2 =

2n−3∑
i=1

( ∑
s+t=i,
n>s>t≥0

Ds,tx
δs,t
)
xi`.
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Therefore, the SPB field multiplication is given by

Cx−k = (S1x
−2k + S2x

−2k) mod xm + xk + 1

Next, in Section 3.2, we discuss the computation of S1x
−2k

and then S2x
−2k, which is presented in Section 3.3.

3.2 Computation of S1x
−2k mod xm + xk + 1

We note that the computation of S1x
−2k mod f(x) includes

n sub-polynomial multiplications, the multiplication with
h(x) and the modular reductions. A straightforward way
for this computation is utilizing Mastrivito approach,
analogous to the authors did in [30], [32]. Nevertheless,
we found that if the irreducible trinomial f(x) = xm +
xk + 1 is not a specific one, e.g., m = nk, the associated
Mastrovito matrix is far more complicated than that of
xnk+xk+1, which make it difficult to reuse logic gates and
increase the overall space complexity. Therefore, we prefer
an alternative approach that first computes the reduction of
its subexpressions and then S1x

−2k. Let

E(x) =
n−1∑

i=n−r+1

AiBix
i(`+1)−n+r +

n−r∑
i=0

AiBix
i`

So, S1x
−2k = E(x)h(x)x−2k. We first calculate E(x) and

then S1x
−2k modulo f(x). Based on the degrees of Ai, Bi,

let AiBi = (
∑`−1
j=0 aj+i`x

j) · (
∑`−1
j=0 bj+i`x

j) =
∑2`−2
j=0 c

(i)
j xj ,

for i = 0, 1, · · · , n− r − 1, and

AiBi= (
∑̀
j=0

aj+( +̀1)i−n+rx
j)·(
∑̀
j=0

bj+( +̀1)i−n+rx
j)=

2∑̀
j=0

c
(i)
j xj ,

for i = n − r, · · · , n − 1. It is easy to check that E(x) is of
the degree (n − 1)` + r − 1 + 2` = m + ` − 1. Then, the
coefficients of E(x) =

∑m+`−1
i=0 eix

i are given by

ei =

c
(0)
i 0 ≤ i ≤ `− 1,

c
(0)
i + c

(1)
i−` ` ≤ i ≤ 2`− 2,

c
(1)
i−` i = 2`− 1,

c
(1)
i−` + c

(2)
i−2` 2` ≤ i ≤ 3`− 2,

...
c
(n−r−1)

i−(n−r−1)` + c
(n−r)
i−(n−r)` (n−r)` ≤ i ≤ (n−r+1)`−2,

c
(n−r)
i−(n−r)` i = (n−r+1)`−1, (n−r+1)`

...
c
(n−2)

i−(n−2) −̀r+2+c
(n−1)

i−(n−1) −̀r+1 (n− 1)`+ r − 1 ≤ i ≤ m− 2,

c
(n−1)

i−(n−1)`−r+1 m− 1 ≤ i ≤ m+ `− 1.
(3)

Recall that deg(E) = m + ` − 1. Obviously, there are only
` terms of E(x) that needs to be reduced, if we perform
the PB reduction with it. We partition E(x) into p1x

m + p0,
where p1(x) =

∑`−1
i=0 ei+mx

i and p0(x) =
∑m−1
i=0 eix

i. Then,
we have

E(x) mod f(x) = p1x
k + (p1 + p0).

Let E′(x) =
∑m−1
i=0 e′ix

i denote p1 + p0. The coefficients e′is
can be obtained by adding the `most significant bits ofE(x)

... ...

p1x(i-1)l+єi-1p1xil+єi

Fig. 1. Bit positions for p1xi`+εi , i = 1, 2, · · · , n− 1.

to its ` least significant bits, i.e.,

e′i =

c
(0)
i + c

(n−1)
i+`+1 0 ≤ i ≤ `− 1,

c
(0)
i + c

(1)
i−` ` ≤ i ≤ 2`− 2,

c
(1)
i−` i = 2`− 1,

c
(1)
i−` + c

(2)
i−2` 2` ≤ i ≤ 3`− 2,

...
c
(n−r−1)

i−(n−r−1)` + c
(n−r)
i−(n−r)` (n−r)` ≤ i ≤ (n−r+1)`−2,

c
(n−r)
i−(n−r)` i = (n−r+1)`−1, (n−r+1)`,

...
c
(n−2)

i−(n−2) −̀r+2+c
(n−1)

i−(n−1) −̀r+1 (n− 1)`+ r − 1 ≤ i ≤ m− 2,

c
(n−1)

i−(n−1)`−r+1 i = m− 1.
(4)

In fact, one can calculate (4) instead of (3), and the
computation of p0 can be combined with that of (4). We
give the details in Section 4.1.

After that, we then consider the SPB modular reduction
of S1x

−2k. Note that
S1x

−2k mod f(x) = E(x)h(x)x−2k mod f(x)

= [p1x
k + (p1 + p0)]h(x)x−2k mod f(x)

= E′(x)h(x)x−2k + p1(x)h(x)x−k mod f(x).

In order to facilitate analysis, denoted by εi the extra term
degrees in h(x) except i`, i = 0, 1, · · · , n − 1, where εi =
i− n+ r if i ≥ n− r and 0 otherwise. Then,

E′(x)h(x)x−2k =
n−1∑
i=0

E′(x)x−k · xi`+εi−k,

p1(x)h(x)x−k =
n−1∑
i=0

p1(x)x−k · xi`+εi .

On one hand, since p1 consists of ` terms and εi ≥ εi−1,
there is no overlap between p1x

i`+εi and p1x
(i−1)`+εi−1 , for

i = 1, 2, · · · , n−1. Thus, the computation of p1(x)h(x) does
not require any logic gates.Figure 1 depicts bit positions
for these subexpressions. The axle parts represent the
coefficients of p1(x), while the blank parts represent zeros.

Also, one can check that deg(p1hx
−k) = (n − 1)` + r −

1 + `− 1− k = m− k− 2, and all its term degrees are in the
range [−k,m− k− 1]. Therefore, under SPB representation,
p1(x)h(x)x−k mod f(x) = p1(x)h(x)x−k and no XOR gate
is needed to compute this expression.

On the other hand, as E′(x) is of degree m − 1,
E′(x)x−k can be viewed as an element of GF (2m) in SPB
representation. The reduction ofE′(x)x−k ·xi`+εi−k modulo
f(x) is equal to shifting E′(x)x−k by i` + εi − k bits in
such a field. These operations depend on the magnitude
relations between k and `. Recall that k ≤ m/2, and
m = n`+ r, n > r, ` > r. Two cases are considered:

1) k ≥ (n− 1)`
2) k < (n− 1)`;
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Particularly, if n ≥ 3, we have
n` ≥ 3` > 2`+ r ⇒ (n− 1)` > `+ r
⇒ 2(n− 1)` > n`+ r = m⇒ (n− 1)` > m/2 ≥ k.

Therefore, the case of k ≥ (n − 1)` happens only if n = 2.
It is noteworthy that similar multiplier scheme using 2-term
KA has already been studied in [18]. Thus, we only analyze
the case of k < (n − 1)` in this study. The SPB reduction
relies on the following formula:{

xi = xm+i + xi+k, for i = −2k, · · · ,−k − 1;

xi = xi−m + xi−m+k, for i = m−k, · · · ,2m−2k−2.
(5)

On top of that, we give a useful lemma.

Lemma 1 Let A(x) =
∑m−1
i=0 aix

i−k be an element of GF (2m)
in SPB representation. Then, for an integer −k ≤ ∆ ≤ m− k−
1,∆ 6= 0, A(x) · x∆ mod xm + xk + 1 can be expressed as
m−1∑
i=0

aix
−k+(i+∆) mod m +

m−1∑
i=m−∆

aix
i+∆−m, if 1 ≤ ∆ ≤ m−k−1,

m−1∑
i=0

aix
−k+(i+∆) mod m +

−∆−1∑
i=0

aix
i+∆, if − k ≤ ∆ < 0.

The proof of above lemma can be found in Appendix B.2.
This lemma indicates that if we shift a GF (2m) element by
∆ bits, the result equals a ∆-bit cyclic shift of its coefficients
plus an extra expression of ∆ bits.

Based on Lemma 1, we can perform the modular
reduction with respect to E′(x)x−k · xi`+εi−k. Please notice
that i`+ εi−k here is equivalent to the integer ∆ in Lemma
1. Let an integer t satisfy that (t− 1)`+ εt−1 ≤ k < t`+ εt.
Then, we have i` + εi − k ≤ 0, for i = 0, 1, · · · , t − 1
and i` + εi − k > 0 for i = t, · · · , n − 1. The results of
E′(x)xi`+εi−2k mod f(x) are given by:

E′(x)xi`+εi−2k mod f(x) =
m−1∑
j=0

e′jx
−k+(j+θi) mod m

+
−θi−1∑
j=0

e′jx
j+θi ,

(6)

for i = 0, 1, · · · , t− 1, and

E′(x)xi`+εi−2k mod f(x) =
m−1∑
j=0

e′jx
−k+(j+θi) mod m

+
m−1∑

j=m−θi

e′jx
j+θi−m,

(7)

for i = t, · · · , n − 1, where θi = i` + εi − k. Particularly, if
(t− 1)`+ εt−1 = k, the corresponding expression
E′(x)x(t−1)`+εt−1−2k mod f(x) = E′(x)x(t−1)`+εt−1−2k

does not need any reduction. But it can be recognized as a
special case of (6) with θt−1 = 0 and

∑−θt−1−1
j=0 djx

j+θt−1 =
0. For simplicity, we do not discuss this case independently.

One can easily check that (6) and (7) consist of two
subexpressions, in which the former contains m terms
and the latter contains |θi| terms. Moreover, we note
that the subexpressions

∑−θi−1
j=0 e′jx

j+θi (i = 0, 1, · · · , t −
1) have all their term degrees smaller than 0, while∑m−1
j=m−θi e

′
jx
j+θi−m (i = t, · · · , n − 1) have all their term

degrees larger than 0. That is to say, there are no overlapped
terms between these two kinds of subexpressions. We can
add them without any logic gates.

......

p0, p1,......, pn-1, p0
', p1

',..., p't-1, p't, p't+1,···, p'n-1

-k
.
.
.

-1
0
.
.
.
.
.

m-k-1

...

...

Fig. 2. Bit positions for all the subexpressions.

Figure 2 demonstrates the bit positions for these
subexpressions. In this figure, the vectors Pi,P

′
i represent

the coefficients vectors with respect to all the subexpressions
in (6) and (7) and the axle parts express their nonzero
coefficients. Recall that p1(x)h(x)x−k is also needed to be
added. In parallel implementation, it only needs dlog2(n +
1 + max{t, n − t})eTX to add all these subexpressions
together using a binary XOR tree. Moreover, as t ≥ 1, we
have dlog2(n + 1 + max{t, n− t})e ≤ dlog2 2ne. Therefore,
no more than (1 + dlog2 ne)TX gates delays are needed for
the modular reduction pertaining to S1x

−2k, after we finish
computing p1 + p0 and p1.

3.3 Computation of S2x
−2k mod xm + xk + 1

The computation of S2x
−2k modulo f(x) is different from

that of S1x
−2k, as such an expression consists of

(n
2

)
different subexpressions Ds,tx

δ, (0 ≤ t < s < n), each of
which can be computed independently. One can see that
Ai, Bi, for i = 0, 1, · · · , n − r − 1, are of degrees ` − 1
and the rest of Ai, Bi are of degrees `. Let As + At =∑`
i=0 u

(s,t)
i xi, Bs + Bt =

∑`
i=0 v

(s,t)
i xi, for 0 ≤ t < s, s ≥

n−r, andAs+At =
∑`−1
i=0 u

(s,t)
i xi, Bs+Bt =

∑`−1
i=0 v

(s,t)
i xi,

for 0≤ t<s<n− r. Then, we have

Ds,t = (
`−1∑
i=0

u
(s,t)
i ) · (

`−1∑
i=0

v
(s,t)
i ) =

2`−2∑
i=0

d
(s,t)
i xi, (8)

if 0≤ t<s<n− r, and

Ds,t = (
∑̀
i=0

u
(s,t)
i ) · (

∑̀
i=0

v
(s,t)
i ) =

2∑̀
i=0

d
(s,t)
i xi, (9)

if 0 ≤ t < s, s ≥ n − r. In order to perform modular
reduction for S2x

−2k efficiently, we apply a trick established
in [29] to categorize all the Ds,ts, where the Ds,ts from the
same category can be recognized as an integral to perform
modular reduction. We first have the following proposition.

Proposition 2 S2 can be expressed as the plus of g1x
(2λ−1)`,

g2x
(2λ−3)`, · · · , gλx` for λ = n

2 (n is even) or λ = n−1
2 (n is

odd), where

g1 =Cn−1,n−2x
(n−2)`+Cn−1,n−3x

(n−3)`+· · ·+Cn−1,1x
`+Cn−1,0,

g2 =Cn−2,n−3x
(n−2)`+Cn−2,n−4x

(n−3)`+· · ·+Cn−2,0x
`+Cn

2
−1,n

2
−2,

g3 =Cn−3,n−4x
(n−2)`+Cn−3,n−5x

(n−3)`+· · ·+Cn
2
−1,n

2
−3x

`+Cn
2
−1,n

2
−4,

...

gn
2

=Cn
2
,n
2
−1x

(n−2)`+Cn
2
,n
2
−2x

(n−3)`+· · ·+C2,0x
`+C1,0,
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or

g1 =Cn−1,n−2x
(n−1)`+Cn−1,n−3x

(n−2)`+· · ·+Cn−1,0x
`+Cn−1

2
,n−3

2
,

g2 =Cn−2,n−3x
(n−1)`+Cn−2,n−4x

(n−2)`+· · ·+Cn−1
2
,n−5

2
x`+Cn−1

2
,n−7

2
,

g3 =Cn−3,n−4x
(n−1)`+Cn−3,n−5x

(n−2)`+· · ·+Cn
2
−1,n

2
−3x

`+Cn
2
−1,n

2
−4,

...

gn−1
2

=Cn+1
2
,n−1

2
x(n−1)`+Cn+1

2
,n−3

2
x(n−2)`+· · ·+C2,0x

`+C1,0.

Here, Cs,t = Ds,t · xδs,t , for n > s > t ≥ 0.

The proof of this proposition can be built using
mathematical induction, which is nearly the same as the
Proposition 1 in [29]. One just replaces Ds,t by Ds,t · xδs,t in
that proof and obtains the conclusion directly.

Based on Proposition 2,
S2x

−2k = g1x
(2λ−1)`−2k + g2x

(2λ−3)`−2k + · · ·+ gλx
`−2k

Accordingly, its SPB reduction can also be expressed as
a plus of these λ sub-expressions modulo f(x). We can
perform these modular reductions in parallel and then
add the results together. The detailed computation for
S2x

−2k mod f(x) is presented as following steps:
(i) Perform bitwise addition As + At, Bs + Bt, (n > s >

t ≥ 0) in parallel.
(ii) Classify the sub-expressions Ds,t into λ parts according

to Proposition 2 and compute these λ bigger
expressions, i.e., g1, g2, · · · , gλ.

(iii) Perform reductions of g1x
(2λ−1)`−2k, g2x

(2λ−3)`−2k,
· · · , gλx`−2k modulo f(x).

(iv) Add all these results using binary XOR tree to obtain
the S2x

−2k mod f(x).
Remark. In Step (i), there are 2 ·

(n
2

)
= n(n− 1) polynomial

additions in all that need to be computed. All these
additions can be performed in parallel, which costs one
TX delay. In Step (ii), we do not compute Ds,t directly but
λ integral expressions g1, · · · , gλ. These computations are
analogous to that of E(x) in Section 3.2. The reduction of
S2x

−2k are performed in Step (iii) and Step (iv). Note that
these steps can be computed jointly.

As polynomial additions in Step (i) are easy to
implement, in the following, we mainly consider the
computation of Step (ii)-(iv).

3.3.1 Step (ii)
Step (ii) consists of the computation of g1, g2, · · · , gλ,
which are composed of Ds,ts. As mentioned in previous
paragraphs, Ds,ts have different degrees. More explicitly,
there are

(n−r
2

)
such Ds,ts of degrees 2`− 2 and

(n
2

)
−
(n−r

2

)
Ds,ts of degrees 2`. Therefore, according to Proposition
2, if n is even, λ = n

2 , the degrees of g1, g2, · · · , gn2 are
at most (n − 2)` + 2` + 2r − 3 = m + r − 3, if n is
odd, λ = n−1

2 , the degrees of g1, g2, · · · , gn−1
2

are at most
(n − 1)` + 2` + 2r − 3 = m + ` + r − 3. We assume that
gi =

∑m+r−3
j=0 h

(i)
j xj if n is even, and gi =

∑m+`+r−3
j=0 h

(i)
j xj

if n is odd.
On top of that, g1, g2, · · · , gλ have slightly different

formulations as the Ds,ts in the same category may have
different degrees and δs,t may also be different. We rewrite
Ds,t in a unified form: Ds,t =

∑2`
i=0 d

(s,t)
i xi, with d2` =

d2`−1 = 0 if 0 ≤ t < s < n − r. According to the explicit
formulation of gi presented in Proposition 2, gi consists of n

(n is odd) or n− 1 (n is even) subexpressions Ds,tx
δs,t and

three arbitrary contiguous subexpressions in a same gi have
the following characteristic:
Ds1,t1x

δs1,t1+s` +Ds2,t2x
δs2,t2+(s−1)` +Ds3,t3x

δs3,t3+(s−2)`

where s1 ≥ s2 ≥ s3 and s1 + t1 = s2 + t2 + 1 = s2 + t2 + 2.
From (2), it is easy to obtain that δs1,t1 ≥ δs2,t2 ≥ δs3,t3 .

One can check that only if δs1,t1 = δs2,t2 = δs3,t3 , the
corresponding coefficients of gi are overlapped by these
three subexpressions. Part of its coefficients are given by:

h
(i)
j =

...
...

d
(s3,t3)

j−(s−3)`−δ + d
(s2,t2)

j−(s−2)`−δ, (s− 2)`+ δ ≤ j ≤
(s− 1)`+ δ − 1,

d
(s3,t3)
2` + d

(s2,t2)
` + d

(s1,t1)
0 , j = (s− 1)`+ δ,

d
(s2,t2)

j−(s−2)`−δ + d
(s1,t1)

j−(s−1)`−δ, (s− 1)`+ δ + 1 ≤ j
≤ s`+ δ − 1,

...
...

where δ = δs1,t1 = δs2,t2 = δs3,t3 .We note that in this case,
only when d

(s3,t3)
2` 6= 0, h(i)

(s−1)`+δ is a plus of three terms.
Otherwise, there is no coefficient of gi obtained by a plus of
three terms. Plug (8) and (9) into above formula, it is easy
to check that h(i)

(s−1)`+δ contains `+ 3 terms of u(s,t)
i · v(s,t)

i ,
which leads to at most dlog2(`+ 3)eTX delays using binary
XOR tree. Also notice that one TA is needed to calculate the
coefficient multiplication related to Ds,t. We immediately
obtain that all gis can be implemented in parallel using TA+
dlog2(`+ 3)eTX gates delay.

3.3.2 Step (iii) and (iv)

Now, we consider the computations of Step (iii) and (iv).
Firstly, we have the following observation.
Observation 1 The modular reduction of g1x

(2λ−1)`−2k,
g2x

(2λ−3)`−2k, · · · , gλx`−2k by f(x) only require one
reduction step.

The proof of this observation is given in Appendix
B.3. We then investigate the computation of Step (iii). For
simplicity, let ∆i = (2λ− 2i+ 1)`− k, i = 1, 2, · · · , λ, then
g1x

(2λ−1)`−2k, g2x
(2λ−3)`−2k, · · · , gλx`−2k can be rewritten

in a unified form, i.e.,
gix

∆i−k, i = 1, 2, · · · , λ
Please notice that the explicit reduction formulations of
gix

∆i−k modulo f(x) depend on the choice of n, ` and k.
According to the previous statement, it is clear that n ≥ 2
and thus ` ≤ m/2. We also have 0 < k ≤ m/2. But,
the magnitude relations of these parameters are uncertain,
which highly influence the application of the reduction rule.
For example, if ` > k, we have `−2k > −k. All the terms of
gix

∆i−k have their degrees larger than −k. We only need to
reduce the terms whose degrees are greater than m− k− 1.
Therefore, to investigate the modular reduction details, six
cases are considered:

1) n is even, ` < k, (n− 1)` ≤ k;
2) n is even, ` < k, (n− 1)` > k;
3) n is even, ` ≥ k;
4) n is odd, ` < k, (n− 2)` ≤ k;
5) n is odd, ` < k, (n− 2)` > k;
6) n is odd, ` ≥ k.
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As described in Section 3.2, Case 1 happens only if n =
2, which has already been studied in [18]; thus, we only
analyze the rest of the cases, separately.

Since the degrees of gi are at most m+ r − 3 (n is even)
or m + ` + r − 3 (n is odd), we partition gi into two parts
accordingly, i.e., gi = p

(i)
1 xm+p

(i)
0 , for i = 1, 2, · · · , λ, where

the first part consists of r − 2 (or `+ r − 2) terms and latter
one consists of m terms. We directly have

gi mod f(x) = p
(i)
1 (xk + 1) + p

(i)
0

Thus, the modular reductions with respect to gix∆i−k can
be expressed as the reduction with respect to p

(i)
1 , p

(i)
0

multiplying certain exponent of x. More explicitly,

gix
∆i−k mod f(x) =

(
p

(i)
1 + p

(i)
1 x−k+

p
(i)
0 x−k

)
x∆i mod f(x),

(10)

i = 1, 2, · · · , λ. It is clear that the expressions p(i)
1 , p(i)

1 x−k

and p(i)
0 x−k have all their term degrees in the range [−k,m−

k − 1]. Therefore, the modular reductions of gix∆i−k will
also utilize Lemma 1. Take into account this lemma, we have
following proposition.

Proposition 3 Step (iii) and (iv) can be calculated jointly within
at most dlog2(n+ 2)eTX delay.

Proof Obviously, Step (iii) and (iv) actually compute∑λ
i=1 gix

(2λ−2i+1)`−2k mod f(x), which consists of
polynomial modular reductions and additions. Without loss
of generality, we only analyze Case 2 here, the proof for the
rest of cases are available in Appendix B.4.

In this case, recall that ∆i = (n − 2i + 1)` − k, i =
1, 2, · · · , n2 . Since ` < k, (n − 1)` > k, one can check that
some of ∆is are greater than 0 and others are less than 0,
which will lead to different reduction formulae according to
Lemma 1.

Let an odd integer t ≥ 1 satisfy that t` ≤ k, (t+ 2)` > k.
Then, we have ∆i > 0, for i = 1, 2, · · · , n−t−1

2 and ∆i ≤
0 for i = n−t+1

2 , · · · , n2 . Now we investigate the detailed
modular reduction of (10). Note that p(i)

1 =
∑r−3
j=0 h

(i)
m+jx

j

and p(i)
0 =

∑m−1
j=0 h

(i)
j xj here. Firstly, the modular reduction

of p(i)
0 x∆i−k can be obtained as follows:

p
(i)
0 x∆i−k mod f(x) =

m−1∑
j=0

h
(i)
j x−k+(j+∆i) mod m

+
m−1∑

j=m−∆i

h
(i)
j xj+∆i−m,

(11)

for i = 1, 2, · · · , n−t−1
2 , and

p
(i)
0 x∆i−k mod f(x) =

m−1∑
j=0

h
(i)
j x−k+(j+∆i) mod m

+
−∆i−1∑
j=0

h
(i)
j xj+∆i ,

(12)

for i = n−t+1
2 , · · · , n2 .

Then, consider the reduction of p(i)
1 x∆i + p

(i)
1 x∆i−k. We

know that the maxium degree of p(i)
1 is r− 3 and max ∆i =

(n − 1)` − k < m − k − `. Thus, it is easy to check that

the degrees of p(i)
1 x∆i (i = 1, · · · , n2 ) are all in the range

[−k,m− k − 1], which need no reduction. That is to say,
n
2∑
i=1

p
(i)
1 x∆i mod f(x) =

n
2∑
i=1

p
(i)
1 x∆i . (13)

However, as t` < k, p(i)
1 x∆i−k, i = n−t+1

2 , · · · , n2 have
some term degrees less than −k and thus need reduction

by f(x). Specifically, we note that deg(p
(n−t+1

2 )
1 ) ≤ r − 3. It

is possible that t` < k but t` + r − 3 ≥ k, which indicates

that a part of p
(n−t+1

2 )
1 xt`−2kdoes not need further reduction.

Therefore, the explicit reduction formulae are given by

p
(i)
1 x∆i−k mod f(x) = p

(i)
1 xm+∆i−k + p

(i)
1 x∆i , (14)

for i = n−t+3
2 , · · · , n2 . And,

p
(n−t+1

2 )
1 xt`−2k mod f(x)

=

(
p

(n−t+1
2 )

1,1 xk−t` + p
(n−t+1

2 )
1,2

)
xt`−2k mod f(x)

= p
(n−t+1

2 )
1,1 x−k + p

(n−t+1
2 )

1,2 (xm+t`−2k + xt`−k).

(15)

Here, p
(n−t+1

2 )
1,1 consists of at most r − 2 − (k − t`) bits and

p
(n−t+1

2 )
1,2 consists of at most k − t` bits. 1.

Moreover, note that ∆i−∆i+1 = 2` for i = 1, 2, · · · , n2 −
1 and each p(i)

1 consists of at most r − 2 terms. There are no
overlapped terms among p

(1)
1 x∆1 , p

(2)
1 x∆2 , · · · , p(n2 )

1 x
∆n

2 ,
so we can add them without any logic gates. Similar thing
also happens among p(i)

1 xm+∆i−k, (i = n−t+3
2 , · · · , n2 ), and

p
(i)
1 x∆i−k, (i = 1, 2, · · · , n−t−1

2 ). By combining the same
sub-expressions and swapping some parts of (13), (14) and
(15), the result of

∑n
2
i=1(p

(i)
1 + p

(i)
1 x−k)x∆i modulo f(x) can

be written as two independent expressions:
n
2∑
i=1

p
(i)
1 x∆i +

n
2∑

i=n−t+3
2

p
(i)
1 x∆i + p

(n−t+1
2

)

1,1 x−k + p
(n−t+1

2
)

1,2 xt`−k

=

n−t−1
2∑
i=1

p
(i)
1 x∆i + p

(n−t+1
2

)

1,1 (xt`−k + x−k), (16)

n
2∑

i=n−t+3
2

p
(i)
1 xm+∆i−k+

n−t−1
2∑
i=1

p
(i)
1 x∆i−k+p

(n−t+1
2 )

1,2 xm+t`−2k,

(17)
each of which consists of sub-expressions that have no
overlapped terms.

Finally, we add all the modular reduction results
included in (11), (12), (16) and (17) to obtain S2x

−2k mod
f(x). Specifically, we note that the subexpression∑m−1
j=m−∆i

h
(i)
j xj+∆i−m in (11) does not overlap with∑−∆i−1

j=0 h
(i)
j xj+∆i in (12), so that every two of such

expressions can be concatenated together. This case is
similar with what happened in Figure 2. As a result, we only
need to add n

2 +2+max{n−t−1
2 , t+1

2 } combined expressions
using binary XOR tree, which requires dlog2(n2 + 2 +
max{n−t−1

2 , t+1
2 })eTX ≤ dlog2(n+ 2)eTX delay in parallel.

Then, we conclude the proposition. �

1. If t`+r−3 < k, we have p
(n−t+1

2
)

1,1 = 0 and p
(n−t+1

2
)

1,2 = p
(n−t+1

2
)

1 ,
which does not influence the result.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, ACCEPTED 8

TABLE 1
Organization of S1, S2 and the computation sequence.

I: S1x
−6 mod x7 + x3 + 1

(i) U : (A2B2x
4 + A1B1x

2 + A0B0) mod x7 + x3 + 1

(ii) U · (x4 + x2 + 1) · x−6 mod x7 + x3 + 1

II: S2x
−6 mod x7 + x3 + 1

(i) A2+A1, B2+B1, A2+A0, B2+B0, A1+A0, B1+B0

(ii) (D2,1x
6 +D2,0x

4 +D1,0x
2) · x−6 mod x7 + x3 + 1

Special cases. If 0 ≤ r ≤ 2 and n is even, we can see that
the degrees of gis are less than m − 1. It is not necessary
to partition gi into two parts and gi = p

(i)
0 , p

(i)
1 = 0. In

this case, the modular reduction of gix∆i−k can be obtained
using (11) and (12), which also obeys previous proposition.

3.4 A small example of n-term Karatsuba Multiplier
We give a small example to illustrate the basic idea of
our scheme. Consider an irreducible trinomial x7 + x3 + 1
that defines a finite field GF (27) using SPB representation.
That is to say, the group {x−3, x−2, · · · , x2, x3} constitutes
the basis. Assume that A,B ∈ GF (27) are two arbitrary
elements, where

A = a6x
3 + a5x

2 + a4x+ a3 + a2x
−1 + a1x

−2 + a0x
−3

B = b6x
3 + b5x

2 + b4x+ b3 + b2x
−1 + b1x

−2 + b0x
−3

We now consider their SPB multiplication. Without loss
of generality, we apply a 3-term KA to the polynomial
multiplication. It is clear that 7 = 3 × 2 + 1, we then
have n = 3, ` = 2, r = 1 and r satisfies the condition
0 ≤ r < n, 0 ≤ r < `. Accordingly, we partition A,B into
three parts, with the first part containing three coefficients
and other parts containing two coefficients.

A = A2x+A1x
−1 +A0x

−3

= (a6x
2 + a5x+ a4)︸ ︷︷ ︸

A2

x+ (a3x+ a2)︸ ︷︷ ︸
A1

x−1 + (a1x+ a0)︸ ︷︷ ︸
A0

x−3,

B = B2x+B1x
−1 +B0x

−3

= (b6x
2 + b5x+ b4)︸ ︷︷ ︸

B2

x+ (b3x+ b2)︸ ︷︷ ︸
B1

x−1 + (b1x+ b0)︸ ︷︷ ︸
B0

x−3.

Then, the polynomial multiplication A × B can be
performed using a 3-term KA, as follows:

AB=(A2x+A1x
−1 +A0x

−3)× (B2x+B1x
−1 +B0x

−3)

= (A2B2x
8 + (A1B2 +A2B1)x6 + (A0B2 +A1B1

+A2B0)x4 + (A0B1 +A1B0)x2 +A0B0)x−6

=
[
A2B2(x8 + x6 + x4) +A1B1(x6 + x4 + x2)

+A0B0(x4 + x2 + 1)
S1

+

D2,1︷ ︸︸ ︷
(A2 +A1)(B2 +B1)x6

. . . . . . . . . . . . . . . . . . . . . . . . . .

+

D2,0︷ ︸︸ ︷
(A2+A0)(B2+B0)x4 +

D1,0︷ ︸︸ ︷
(A1+A0)(B1+B0)x2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S2

]
x−6.

Assume that Ds,t denote (As + At)(Bs + Bt), for 0 ≤ t <
s < 2. Now, we split the above expression in the square
bracket into S1 and S2 and compute them in parallel, refer
to Table 1. The computation details for the steps of Table 1
are available in the appendix A.

After obtaining the results of S1x
−6 and S2x

−6 modulo
x7 +x3 +1, we only need to add them to obtain the ultimate
result of AB mod x7 + x3 + 1 = S1x

−6 + S2x
−6.

4 COMPLEXITY ANALYSIS

Based on previous description, in this section, we analyze
the space and time complexities pertaining to S1x

−2k and
S2x

−2k modulo f(x).

4.1 Space and time complexity of S1x
−2k mod f(x)

As presented in section 3.2, the computation of S1x
−2k

modulo f(x) consists of computation of p1, p1+p0 following
a modular multiplication by h(x)x−2k. We first investigate
the complexity of p1 and E′ = p1 + p0. From (3) and (4), we
can see that the coefficients of p1 and p1 + p0 are composed
of c(i)j (i = 0, 1, · · · , n− 1), where

c
(i)
j =

{ ∑j
t=0 at+i`bt−j+i` 0 ≤ t ≤ `− 1,∑`−1
t=j−`+1 at+i`bt−j+i` ` ≤ t ≤ 2`− 2,

for i = 0, 1, 2, · · · , n− r − 1, and
c
(i)
j ={ ∑j

t=0 at+(`+1)i−n+rbt−j+(`+1)i−n+r 0 ≤ t ≤ `,∑`
t=j−` at+(`+1)i−n+rbt−j+(`+1)i−n+r `+ 1 ≤ t ≤ 2`,

for i = n − r, · · · , n − 1. Combine the above expressions
with (3) and (4), it is easy to check that each coefficient ei
and e′i are composed of at most ` + 1 coefficient products
of AiBi, i = 0, 1, · · · , n − 1. We immediately conclude that
p1 + p0 and p1 can be computed in TA + dlog2(` + 1)eTX
delay. Table 2 presents the gate count and time delay for the
implementation of each coefficient of p1 + p0. Furthermore,
notice that

p1(x) =
`−1∑
i=0

ei+mx
i =

`−1∑
i=0

c
(n−1)
i+`+1x

i.

It is obvious that E′ = p1 + p0 contains all the terms that
are included in p1. Therefore, no AND gates are needed to
compute p1, and some XOR gates can also be saved using
a so-called binary tree sub-expression sharing [17], [18]. The
authors found that if two binary XOR trees share k common
items, k−W (k) XOR gates can be saved, where W (k) is the
Hamming weight of the binary representation of k. Here,
the coefficient ei+m(i = 0, 1, · · · , ` − 1) of p1 consists of
i+1 items aibj and shares i+1 items with those coefficients
ofE′, only i−(i+1−W (i+1)) = W (i+1)−1 XOR gates are
needed. Thus, it totally requires

∑`
i=1W (i) − ` XOR gates

in all to compute p1.
We then investigate the complexity of E′(x)h(x)x−2k +

p1h(x)x−k modulo f(x). As shown in Section 3.2, we only
need to add at most 2n + 1 expressions to obtain the
result. Particularly, note that vectors P0, · · · ,Pn−1 consist
of m bits, while P′0, · · · ,P′n−1 consist of |θi| bits. Also,
p1h(x)x−k contains at most n` nonzero items. Thus, the
number of required XOR gates is

n`+ (n− 1)m+
n−1∑
i=0

|i`+ εi − k|

Table 3 summarizes the space and time complexity for every
step of S1x

−2k mod f(x).



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, ACCEPTED 9

TABLE 2
The computation complexity of e′i

e′i #AND #XOR Delay

e′0 = c
(0)
0 + c

(n−1)
`+1 `+ 1 ` TA + (dlog2(`+ 1)e)TX

...
...

...
...

e′`−1 = c
(0)
`−1 + c

(n−1)
2` `+ 1 ` TA + (dlog2(`+ 1)e)TX

e′` = c
(0)
` + c

(1)
0 ` `− 1 TA + (dlog2 `e)TX

...
...

...
...

e′2`−1 = c
(1)
`−1 ` `− 1 TA + (dlog2 `e)TX

e′2` = c
(1)
` + c

(2)
0 ` `− 1 TA + (dlog2 `e)TX

...
...

...
...

e′(n−r+1)`−1 = c
(n−r)
`−1 ` `− 1 TA + (dlog2 `e)TX

e′(n−r+1)` = c
(n−r)
` `+ 1 ` TA + (dlog2(`+ 1)e)TX

...
...

...
...

e′(n−1)`+r−1 = c
(n−2)
`+1 +c

(n−1)
0 `+ 1 ` TA + (dlog2(`+ 1)e)TX

...
...

...
...

e′m−1 = c
(n−1)
` `+ 1 ` TA + (dlog2(`+ 1)e)TX

Total (n− r)`2 + r(`+ 1)2 (n− r)`(`− 1) + r`(`+ 1) TA + (dlog2(`+ 1)e)TX

TABLE 3
Space and time complexities of S1x−2k mod f(x).

Operation # AND #XOR Delay
E′=p1+p0 n`2+2`r+r n`2 + 2`r − n` TA+

p1 -
∑`
i=1W (i)− ` dlog2(`+ 1)eTX

S1 modf(x) -
n`+ (n− 1)m+ ≤ dlog2 2neTX∑n−1

i=0 |θi|
where θi = i`+ εi − k, εi = i− n+ r for i = n− r, · · · , n− 1,
εi = 0 for i = 0, 1, · · ·n− r − 1

4.2 Space and time complexity of S2x
−2k mod f(x)

Now, we discuss the complexity of S2x
−2k mod f(x) step

by step. Firstly, based on the description in Section 3.3, it
is easy to check that As + At, Bs + Bt for 0 ≤ t < n − r
requires ` XOR gates each, while each of As + At, Bs + Bt
for s > t ≥ n− r costs `+ 1 XOR gates. Since there are

(n
2

)
different such expressions, these additions totally require

2·
(
r(r−1)

2
(`+ 1)+

(
n(n−1)

2
− r(r−1)

2

)
`

)
= n2`+r2−m

XOR gates for the pre-computation of all the As +At, Bs +
Bt.

Secondly, the computation of g1, g2, · · · , gλ contains the
computation of Ds,ts and the additions among Ds,ts in
the same category. Recall that Ds,ts have different degrees.
Thus, the computation of one Ds,t costs `2 AND gates
plus (` − 1)2 XOR gates if its degree is 2` − 2, otherwise
it costs (` + 1)2 AND and `2 XOR gates.In addition,
one can check that when adding Ds,ts to obtain gi, only
the ` least significant bits and ` most significant bits of
gi do not need additions. We also note that every three
contiguous Ds,ts may overlap each other, as presented in
Section 3.3.1. In this case, the coefficient of gi, i.e., h(i)

j a
plus of three terms, which require one extra XOR gate.
Fortunately, it happens only if Ds,t is of degree `. There
are

(n
2

)
−
(n−r

2

)
= nr − (r2 + r)/2 such Ds,ts, each of which

requires one extra XOR gates. Hence, the additions among
Ds,ts in these categories totally require n

2 · (m+ r − 2− 2`)
(even n) or n−1

2 · (m + r − 2 − `) (odd n) XOR gates plus
nr − (r2 + r)/2 extra XOR gates.

TABLE 4
Number of bits in (11), (12), (16) and (17).

Formulae number of bits

(11) m+ ∆i, i = 1, 2, · · · , n−t−1
2

(12) m+ |∆i|, i = n−t+1
2 , · · · , n2

(16) n−t−1
2 · (r − 2) + 2(r − 2− (k − t`))

(17) (n2 − 1) · (r − 2) + (k − t`)

In the end, as mentioned in Section 3.3, we need to
add the modular results presented in (11), (12), (16) and
(17) to obtain the final result. The number of required XOR
gates depends on these formulations. For example, Table 4
presents the number of bits included in (11), (12), (16) and
(17) for Case 2. It requires at most m(n2 − 1) + (n− t−1

2 )(r−
2)+

∑n/2
i=1 |∆i|−(k−t`) XOR gates to add these expressions.

Specifically, recall that if 0 ≤ r ≤ 2 and n is even, we only
need to add (11), (12). As in this sub-case, all gi contains at
most m bits and no partition is needed.

Space and time complexities for each steps are given in
Table 5, when r > 2. Also, if 0 ≤ r ≤ 2, the number of
XOR gates of (iii)-(iv) in Case 2 and 3 does not include the
expressions about r − 2 and ε, as they are equal to zero,
here. Accordingly, the delays for these steps are dlog2(n2 +
max{n−t−1

2 , t+1
2 })eTX and dlog2 neTX , respectively.

4.3 Total complexity and discussion

As mentioned in previous sections, S1x
−2k mod f(x)

and S2x
−2k mod f(x) are computed in parallel and the

overall delay is equal to the larger gates delays of either
S1x

−2k mod f(x) or S2x
−2k mod f(x). From Tables 3

and 5, it is clear that the delay of S2x
−2k mod f(x) is

slightly higher. Thus, the overall time delay for parallel
implementation of S1x

−2k, S2x
−2k modulo f(x) is TA +

(1 + dlog2(`+ 3)e+ dlog2(n+ 2)e)TX . Afterwards, m more
XOR gates are needed to add these two results, which lead
to one more TX delay. To sum up, the space complexity of
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TABLE 5
Space and time complexities of S2 mod f(x).

Operation #AND #XOR Delay

(i)
As + At - (n2`+ r2 −m)/2

TX
Bs + Bt - (n2`+ r2 −m)/2

(ii)

Ds,t of ` bits
(n−r

2

)
`2

(n−r
2

)
(`− 1)2

≤ TA + dlog2(`+ 3)eTX
Ds,t of `+1 bits (

(n
2

)
−
(n−r

2

)
)(`+1)2 (

(n
2

)
−
(n−r

2

)
)`2

Ds,t additions -
n
2 · (m+ r − 2− 2`) + nr − r2+r

2 (even n)
n−1
2 · (m+ r − 2− `) + nr − r2+r

2 (odd n)

(iii)

Case 2 - m(n−2)
2 + ( 2n−t+1

2 )(r − 2) +
∑n/2
i=1 |∆i|−ε dlog2(n+4

2 +max{n−t−1
2 , t+1

2 })e
Case 3 - m(n−2)

2 + n(r − 2) +
∑n/2
i=1 |∆i| dlog2(n+ 2)e

(iv)
Case 4 (n = 3) - m+ 2`+ 2r − 4 dlog2 5e

Case 5 - m(n−3)
2 + ( 2n−t−1

2 )(r+`−2) +
∑(n−1)/2
i=1 |∆i|−ε dlog2(n+3

2 +max{n−t−2
2 , t+1

2 })e
Case 6 - m(n−3)

2 + (n− 1)(r + `− 2) +
∑(n−1)/2
i=1 |∆i| dlog2(n+ 1)e (TX)

where ∆i = (n− 2i+ 1)`− k if n is even or (n− 2i)`− k if n is odd, ε = k − t`, t ≥ 1 is an odd integer that satisfy t` ≤ k, (t+ 2)` > k.

our proposed architecture is:

# AND: m
2

2 + m`
2 + (m+ n+ `+1

2 )r − (`+ 2)r2,

# XOR: m
2

2 + (2n+ `
2 + r−2)m+ n2+3rn+`r

2 +
∑`
i=1W (i)

+
∑n−1
i=0 |θi|+

∑n/2
i=1 |∆i|− `r2 − `− 7n+r2

2 , (n even),

or
m2

2 + (2n+ r + `−3
2 )m+ n2+3rn+`r+6

2 +
∑`
i=1W (i)

+
∑n−1
i=0 |θi|+

∑(n−1)/2
i=1 |∆i|− `r2 − r2+6r+3`+7n

2 , (n odd).

The time delay (TD) is
TD ≤ TA + (2 + dlog2(`+ 3)e+ dlog2(n+ 2)e)TX .

It is noteworthy that in Table 5, there are several cases for
the number of required XOR gates. For simplicity, we only
present the maximum of required XOR gates. According
to these formulations, we directly know that no matter
which n-term KA (i.e., the choice of n, `, r) we choose, the
corresponding hybrid multiplier requires at least m2

2 AND
gates as well as m2

2 XOR gates. Thus, it is the lower bound
of the space complexity that our proposal can achieve. In
fact, since the parameters n, `, r and k all influence the
space and time complexity, we can only obtain a certain
optimal result under some preconditions. For example, if
we consider minimizing the number of required AND gates
only, ` should be equal to one. But in this case, we have
n = m. The number of required XOR gates will be greater
than 5m2

2 .
In particular, since m = n` + r (where 0 ≤ r < n, 0 ≤

r < `, and r is less than
√
m), it is reasonable to stipulate

that r is a small integer. Thus, the space complexity of
our proposal depends on the selection of n, `, k. Note that∑`
i=0W (i) can be roughly written as `

2 log2 ` [17]. If we
ignore these small parts of above complexities formulae, the
space complexity of our proposal is determined by some
quadratic subexpressions.

4.3.1 Influence of parameter k
Although the irreducible trinomial xm + xk + 1 is usually
given in advance, its term order k does have a significant
impact on the space and time complexity. As we presented
in Section 3.2, the time delay of adding these vectors Pi,P′i
and p1(x)h(x)x−k in parallel is dlog2(n+1+max{t, n−t})e,
where t satisfies (t−1)`+εt−1 ≤ k < t`+εt. It is obvious that
when t approaches n/2, we obtain the minimal time delay.

We then directly know that k is close to (n/2) · ` ≈ m/2.
Meanwhile, from Table 5, the computations of step (iii) and
(iv) in this case also have lower gates delay.

Also notice that, in the space complexity formulae
related to #XOR, the values of

∑n−1
i=0 |θi| and

∑λ
i=1 |∆i|

(λ = n/2 for even n and λ = (n − 1)/2 for odd n) are
determined by k. In fact,

n−1∑
i=0

|θi| =
n−1∑
i=0

|i`+ εi − k| = tk +
n−1∑
i=t

(i`+ εi)

−
t−1∑
i=0

(i`+ εi)− (n− t)k,

and
λ∑
i=1

|∆i| =
λ∑
i=1

|(2λ− 2i+ 1)`− k| = (t′ + 1)k

2

−
λ∑

i= 2λ−t′+1
2

(2λ− 2i+ 1)`+

2λ−t′−1
2∑
i=1

(2λ− 2i+ 1)`− (λ− t′+ 1

2
)k,

where t satisfies (t − 1)` + εt−1 ≤ k < t` + εt and t′ is an
odd integer satisfying t′` ≤ k < (t′ + 2)`. Please note that
t− 1 is not always equal to t′.

In order to inspect the variation tendency of above
expressions with respect to t and t′, we expand these
expressions by omitting the small parameter εi and
recognize them as two functions:

f1(t) = (2t− n)k + (−t2 + t+
n2 − n

2
)`

f2(t′) = (t′ + 1− λ)k +
(−t′2 − 2t′ + 2λ2 − 1)`

2
Obviously, the bigger of the parameters t and t′ are, the
smaller of two functions become. That is to say, bigger
k can lead to a lower space complexity. As a result, the
trinomial xm + xk + 1 with k approaching to m

2 is more
suitable to develop efficient hybrid Karatsuba multiplier. In
fact, the authors of [21] already show that xm + xm/2 + 1
combined with 2-term KA can develop a high efficient
hybrid multiplier, which conform to this assertion.

4.3.2 Optimal selection of n, `
From previous description, we know that k highly
influences the values of

∑n−1
i=0 |θi| and

∑λ
i=1 |∆i|. If k

is fixed, the parameters n, ` can determine the space
complexity of our proposal, so that we can obtain the
optimal n and `. Remember that r is usually chosen as a
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small number. Its influence about the overall complexity is
small. Thus, we do not consider it for simplicity.

If k = 1, then t = 1, t′ = −1,
∑n−1
i=0 |θi| and

∑λ
i=1 |∆i|

reach their maximum value, i.e.,

max
n−1∑
i=0

|θi| =
n(n− 1)`

2
+
r(r − 1)

2
− (n− 2),

max
λ∑
i=1

|∆i| = λ2`− λ, (λ =
n

2
or
n− 1

2
).

The magnitude of above subexpressions are both O(n2`).
Without loss of generality, we consider the optimal n, `
under such a condition. In order to minimize both
number of AND and XOR gates, we combine the two
formulations with respect to #AND and #XOR, omit the
small subexpressions, and define a function pertaining to
overall logic gates:

M(n, `) = m2 + (
11n

4
+ `)m

where ` ≈ m
n . Obviously, if 11n = 4`, M(n, `) achieves

its lower bound, which indicates the best asymptotic space
complexity of our proposal. Now, the space complexity is

# AND =
m2

2
+O

(√
11m3/2

4

)

# XOR =
m2

2
+O

(√
11m3/2

2

)
Therefore, the optimal n, ` vary according to k. When
k approaches to m/2, we can obtain other optimal n, `,
that result in even better space and time complexities. In
practical applications, we note that for any given m, we
cannot always select the exact optimal n, `. But the flexible
decomposition m = n` + r can provide more alternative
parameter choices. One can easily check all these possible
decompositions and find the optimal parameters.

Table 6 provides a comparison of different bit-parallel
multipliers for irreducible trinomials. All these multipliers
are using PB representations, except particular description.
It is clear that the space complexity of our scheme roughly
matches the proposals of [18] and [32], and is lower than
other previous architectures (quadratic or hybrid). The best
of our results only costs about m2 + O(3

√
11m3/2/4) logic

gates (the total number of AND and XOR gates). In contrast,
the time complexity of the proposed multiplier is slightly
higher than the fastest result utilizing the classic Karatsuba
algorithm. Also, strictly speaking, our scheme requires a
little more XOR gates compared with [18] and [32]. The main
reason is, we do not combine the polynomial multiplication
and modular reduction together as the Mastrovito approach
did, in order to obtain a relatively simpler architecture,
which requires slightly more XOR gates and leads to more
gate delays.

To illustrate the potential application of our proposal,
we consider several irreducible trinomials already presented
in [32], including the trinomials recommend by NIST
[20]. Table 7 summarized the space and time complexity
of our proposal and other schemes. Without loss of
generality, we only compare our scheme with [18] and
[32], which are also Karatsuba-based hybrid multipliers.
One can check that, by choosing more flexible parameters

n, `, r, our proposal can achieve even better space and
time trade-off for some finite fields. For instance, our
proposal requires fewer logic gates (the plus of AND and
XOR gates) compared with [18] and [32], for the fields
GF (2409), GF (2431), GF (2439), GF (2447). For the fields
GF (2415) and GF (2423), our scheme costs more logic gates
than [32] but save one TX delay. Meanwhile, the space
complexity of our scheme is still less than [18]. For the field
GF (2233), our proposal costs fewer AND gates, but costs
more XOR gates. So the total number of logic gates is greater
than [32]. From the viewpoint of space complexity, [32] is
preferred.

In the following section, we investigate possible speedup
strategy for our scheme under a special class of trinomials.

5 TIME COMPLEXITY FOR SPECIAL TRINOMIALS
xn` + xt` + 1, t > 1
As shown in previous section, the time delay of our proposal
is less than TA + (2 + dlog2(`+ 3)e+ dlog2(n+ 2)e)TX . But
we note that
dlog2(`+ 3)e+ dlog2(n+ 2)e ≤ 1 + dlog2(`+ 3)(n+ 2)e

= 1 + dlog2(m+ 2`+ 3n+ 6)e.

The upper bound of the delay of our architecture is bigger
than TA + (3 + dlog2me)TX , which at most matches the
classic hybrid Karatsuba multiplier [11]. In order to obtain
a lower time complexity, we want to apply a speedup
strategy to our architecture, which was proposed in [30].
However, the precondition to apply such a speedup strategy
is that delay of S1x

−2k mod f(x) is lower than that of
S2x

−2k mod f(x) by at least one TX . If these delays are
equal, no speedup can achieve. In [30], the authors utilized
a special type of trinomial, i.e., f(x) = xnk + xk + 1. In
this scenario, the corresponding S1x

−2k mod f(x) can be
performed by a simple matrix-vector that requires a lower
time complexity than ordinary cases. Besides above special
type of trinomial, in this section, we show that another type
of trinomial, i.e., xm +xk + 1,m = n`, k = t`, t > 1 can also
provide a better space and time complexity trade-off, and
apply speedup strategy under a certain condition.

In this case, we have r = 0. The computations of p0

and p1 are the same as those presented in (3). Nevertheless,
the subexpressions in (6) and (7) now have some common
terms, which can save certain logic gates. More explicitly,
since k = t`, we have

E′(x)xi −̀2t` mod f(x) =
n`−1∑

j=(t−i)`

e′jx
j+(i−2t)`

+

(t−i)`−1∑
j=0

e′jx
j+(i+n−2t)` +

(t−i)`−1∑
j=0

e′jx
j+(i−t)`

. . . . . . . . . . . . . . . . . . . . .

,

(18)

for i = 0, 1, · · · , t− 1, and

E′(x)xi −̀2t` mod f(x) =

(n−i+t)`−1∑
j=0

e′jx
j+(i−2t)`

. . . . . . . . . . . . . . . . . . . . . . . . .

+

n`−1∑
j=(n−i+t)`

e′jx
j+(i−2t−n)` +

n`−1∑
j=(n−i+t)`

e′jx
j+(i−n−t)`,

(19)

for i = t, t + 1, · · · , n − 1. Notice that if i = t, the
subexpression

∑n`−1
j=(n−i+t)` e

′
jx
j+(i−n−t)` =

∑n`−1
j=n` e

′
jx
j−n`
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TABLE 6
Comparison of Some Bit-Parallel Multipliers for Irreducible Trinomials xm + xk + 1,m ≥ 2k.

Multiplier # AND # XOR Time delay

Montgomery [27], school-book [26]
m2 m2 − 1 TA + (2 + dlog2me)TX

Mastrovito [22] [23] [24]

Mastrovito [25] m2 m2 − 1 TA + (dlog2(2m+ 2k − 3)e)TX

SPB Mastrovito [13]
m2 m2 − 1 TA + dlog2(2m− k − 1)eTX

Montgomery [14]

KA [11]
3m2+2m−1

4
3m2

4 + 4m+ k − 23
4 (m odd)

TA + (3 + dlog2(m− 1)e)TX
3m2

4
3m2

4 + 5m
2 + k − 4 (m even)

Modified KA [15] m2

2 + (m− k)2 m2

2 + (m− k)2 + 2k TA + (2 + dlog2(m− 1)e)TX

Modified KA [10] m2 − k2
m2 + k − k2 − 1(1 < k < m

3 )

≤ TA + (2 + dlog2me)TXm2 + 4k − k2 −m− 1(m3 ≤k<
m−1

2 )

m2 + 2k − k2(k = m−1
2 )

Montgomery squaring [17]
3m2+2m−1

4
3m2

4 +O(m log2m) (m odd) ≤ TA + (3 + dlog2me)TX
3m2

4
3m2

4 +O(m log2m) (m even) TA + (2 + dlog2me)TX

Chinese Remainder Theorem [28]
∆ ∆ + 3k −m (Type-A) TA + dlog2(Θ)eTX

∆ ∆ + 2k −m+ kW (k) (Type-B) TA + dlog2(3m− 3k − 1)eTX

SPB Mastrovito-KA [18]
3m2+2m−1

4
3m2

4 +m
2 +O(m log2m) (m odd)

TA+ (1+ dlog2(2m−k− 1)e)TX
3m2

4
3m2

4 −
m
2 +O(m log2m) (m even)

SPB Mastrovito n-term KA [30]
m2

2 + mk
2

m2

2 + mk
2 + 5mn

4 +O(m log2 k) TA + (dlog2 ke+ dlog2 3ne)TX
Trinomial of m = nk

SPB Mastrovito n-term KA [32]
m2

2 +O(m`2 ) m2

2 + m`
2 + 5mn

4 +O(m log2 `) ≤TA+ (2+ dlog2 `e+ dlog2 ne)TX
m = n`, n`+ 1

This paper
m2

2 +O(m`2 ) m2

2 + m`
2 + 11mn

4 +O(m)
≤ TA + (2 + dlog2(`+ 3)e

m = n`+ r +dlog2(n+ 2)e)TX

where ∆ = m2 +
(m−k)(m−1−3k)

2 (m−1
3 ≤ k < m

2 , 2v−1 < k ≤ 2v), Θ = max(3m−3k−1, 2m−2k+2v)

TABLE 7
Space and time complexities comparison for some trinomials.

m, k Multiplier n, `, r #AND #XOR Delay #AND+#XOR Description

233, 74

[18] - 40833 44036 TA + 10TX 84869 -
[32](k=159) (8, 29, 1) 30741 33983 TA + 11TX 64724 -

Proposal (21, 11, 2) 28894 38090 TA + 11TX 66984 fewer #AND

409, 87

[18] - 125665 131822 TA + 11TX 257487 -
[32](k=322) (51, 8, 1) 85681 117268 TA + 11TX 202949 -

Proposal (15, 27, 4) 90450 109812 TA + 11TX 200262 fewer gates

415, 163

[18] - 129376 135150 TA + 11TX 264526 -
[32] (k=252) (18, 23, 1) 91288 103175 TA + 12TX 194463 -

Proposal (18, 23, 1) 91305 110510 TA + 11TX 201815 less delay

423, 25

[18] - 134408 141543 TA + 11TX 275951 -
[32] (9, 47, 0) 99405 104212 TA + 12TX 203617 -

Proposal (15, 28, 3) 96474 117918 TA + 11TX 214392 less delay

431, 200

[18] - 139536 145752 TA + 11TX 296542 -
[32] (k=231) (215, 2, 1) 93741 224114 TA + 11TX 317855 -

Proposal (39, 11, 2) 96151 123857 TA + 11TX 220008 fewer gates

439, 171

[18] - 144760 151782 TA + 11TX 296542 -
[32](k=294) (6, 73, 1) 112786 117249 TA + 12TX 230035 -

Proposal (23, 19, 2) 101391 123086 TA + 12TX 224477 fewer gates

447, 83

[18] - 150080 157817 TA + 11TX 307897 -
[32] (3, 149, 0) 133206 134530 TA + 12TX 267736 -

Proposal (26, 17, 5) 105639 130198 TA + 12TX 235837 fewer gates
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does not exist. To find the common terms among above
expressions, we let i ∈ {0, 1, · · · , t − 1} and i′ ∈ {t, t +
1, · · · , n−1}. Also note that m ≥ 2k ⇒ n ≥ 2t⇒ n− t ≥ t.
The former group has fewer items than the latter. When
comparing the subexpressions in (18) and (19), we found
that if i′ − i = t, subexpressions

∑(t−i)`−1
j=0 e′jx

j+(i−t)` have

common terms with
∑(n−i′+t)`−1
j=0 e′jx

j+(i′−2t)`. In this case,
(t−i)`−1∑
j=0

e′jx
j+(i−t)` +

(n−i′+t)`−1∑
j=0

e′jx
j+(i′−2t)`

=

(n−i′+t)`−1∑
j=(2t−i′)`

e′jx
j+(i′−2t)`.

for i′ = n−t, n−t+1, · · · , n−1. Similarly, if i′−i = n−t, the
subexpressions

∑n`−1
j=(t−i)` e

′
jx
j+(i−2t)` have common terms

with
∑n`−1
j=(n−i′+t)` e

′
jx
j+(i′−n−t)` as well:

n`−1∑
j=(t−i)`

e′jx
j+(i−2t)` +

n`−1∑
j=(n−i′+t)`

e′jx
j+(i′−n−t)`

=

(2t−i)`−1∑
j=(t−i)`

e′jx
j+(i−2t)`.

for i = 0, 1, · · · , t − 1. Particularly, we add different
styles of underlines to these subexpressions in order to
indicate the overlapped parts. One can check that all the
dotted underlined subexpressions in (18) can be eliminated
by offsetting related expressions in (19), but only t solid
underlined subexpressions in (19) can be eliminated. After
combining the overlapped parts between (18) and (19), the
rest of subexpressions can be rewritten as n+n− t = 2n− t
coordinate vectors p0,p1, · · · ,p2n−2t−1, where

pi =

(2t−i)`−1∑
j=(t−i)`

e′jx
j+(i−2t)` +

(t−i)`−1∑
j=0

e′jx
j+(i+n−2t)`,

for i = 0, 1, · · · , t− 1,

pi =

(n−i+t)`−1∑
j=0

e′jx
j+(i−2t)` +

n`−1∑
j=(n−i+t)`

e′jx
j+(i−2t−n)`,

for i = t, · · · , n− t− 1,

pi =

(n−i+t)`−1∑
j=(2t−i)`

e′jx
j+(i−2t)` +

n`−1∑
j=(n−i+t)`

e′jx
j+(i−2t−n)`,

i = n− t, · · · , n− 1, and

pi =
n`−1∑

j=(2n−i)`

e′jx
j+(i−2n)`,

for i = n, · · · , 2n − 2t − 1. Specifically, one can easily
check that pi, (i = 0, 1, · · · , t − 1) have no overlap with
pn, · · · ,p2n−2t−1. Please notice that n ≥ 2t⇒ 2n−2t−1 ≥
2t− 1 ≥ t− 1. Thus, some of these vectors as above can be
combined and rewritten as 2n− 3t independent vectors

p0 + pn,p1 + pn+1, · · · ,pt−1 + pn+t−1,

pt, · · · ,pn−1,pn+t, · · · ,p2n−2t−1,

without any logic gates. As a result, the addition between
(18) and (19) can be implemented by adding 2n − 3t
subexpressions in parallel. Also note that p1(x)h(x)x−k

As+At 
Bs+Bt

p1+p0,  p1  

g1, g2, ... , gλ 

TX

 TA+          TX l2log

TA+          TX

q0
 .
.
.

qn-(t-1)/2

p0+pn, ... , 
pt-1+pn+t-1,
pt, ... ,pn-1, 
pn+t, ... ,p2n-2t-1,
p'=p1hx-k

Final addition 
for at most

2n-2t+2vectors 

                       TX )222(log2  tn

S2:

S1:

n-(t-3)/2 vectors

 2/)13(  tn                            vectors

 l2log

[p0+pn]+[p1+pn+1],
.
.
.

p2n-2t-2+p2n-2t-1
p'

TX

Fig. 3. Speedup Strategy for xn` + xt` + 1.

needs to be added. Plus the delay of the computation of p1,
p0+p1 presented in Table 3, the computation of S1x

−2k mod
f(x) here requires TA + (dlog2 `e+ dlog2(2n− 3t+ 1)e)TX
delays.

Conversely, when we consider the delay of S2x
−2k mod

f(x) here, it is easy to check that the computations of Step
(i)-(iv) are the same as that shown in Section 4.2. Please
note that m = n`, k = t`, n ≥ 2t, t > 1. The magnitude
relations of n, `, k only satisfy Case 2 and 5. Then, one
can check that the time delay of S2x

−2k mod f(x) is
TA+(1+dlog2 `e+dlog2(n− t−3

2 )e)TX . Clearly, 1+dlog2(n−
t−3

2 )e ≥ dlog2(2n− 3t+ 1)e. Therefore, the implementation
of S1x

−2k mod f(x) is faster than S2x
−2k mod f(x). But it

is especially interesting if

1 + dlog2(n− t+ 3

2
)e > dlog2(2n− 3t+ 1)e

We have checked all the n in the range [3, 100] and found
that if n ≥ 6, n 6= 7, there exists at least one t to make the
above inequation hold. In this case, the delay of S1x

−2k mod
f(x) is one TX lower that of S2x

−2k mod f(x), which can
apply the same speedup strategy presented in [30]. The
key idea of such a strategy is adding the intermediate
values in advance during the computation process of S1

and S2. More explicitly, let q0,q1, · · · ,qn−(t−1)/2 denote
coordinate vectors corresponding to the subexpressions in
(11), (12), (16), (17). Instead of adding S1x

−2k mod f(x) and
S2x

−2k mod f(x) to obtain the final result, we can add qi
and pi directly.

From Figure 3, the elements in the dot line box do
not cost any logic gates as all the vectors are obtained by
reorganizing the intermediate values of former steps. After
applying speedup strategy, the logic gates delay for the
whole multiplier is

TA + (2 + dlog2 `e+ dlog2(n− t+ 1)e)TX
which matches the results of [32]. Also, since some
subexpresssions in (18) and (19) can offset, certain numbers
of XOR gates can be saved. But this number is small, which
has little impact on the overall space complexity. The study
of optimal n, ` can follow the same line, as in Section 4.3.2.

6 CONCLUSION
In this paper, we extend the application of an n-term
Karatsuba algorithm for general trinomials xm + xk + 1,
by decomposing m into m = n` + r. Under such a
decompositifon, the m-term polynomial multiplication is
reorganized in order to apply n-term KA. Then, a new
type of hybrid Karatsuba GF (2m) multiplier architecture is
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proposed. We give the explicit space and time complexity
formulations and evaluate the upper and lower bounds.
The optimal choices of the KA parameters as well as
the irreducible trinomial are investigated. Consequently,
the space complexity of our proposal can achieve to
m2/2 + O(

√
11m3/2/2), which matches the best result of

current hybrid multipliers. Meanwhile, its time complexity
is slightly higher than the counterparts. In addition, we
also investigated possible speedup strategy for special
trinomials. A new type of trinomials is considered to
simplify the modular reduction and further speed up
related multipliers. The corresponding time complexity now
matches the results of [30], [32]. To find more special
types of polynomial that can lead to better space and time
complexity trade-off would be the future work.
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APPENDIX A
A SMALL EXAMPLES OF n-TERM KARATSUBA
MULTIPLIER

In the following, we give the computation details presented
in Table 1.

A.1 Computation of I of Table 1

I.(i): Instead of computing A2B2x
4 + A1B1x

2 + A0B0

directly, we partition this formula into two parts, i.e.,
p1x

7 + p0:

A2B2x
4 +A1B1x

2 +A0B0 =

p0 :

p1 :



a0 0 0 0 0 0 0
a1 a0 0 0 0 0 0
0 a1 a2 0 0 0 0
0 0 a3 a2 0 0 0
0 0 0 a3 a4 0 0
0 0 0 0 a5 a4 0
0 0 0 0 a6 a5 a4

0 0 0 0 0 a6 a5

0 0 0 0 0 0 a6


×



b0
b1
b2
b3
b4
b5
b6


.

Then,A2B2x
4+A1B1x

2+A0B0 mod x7 + x3 + 1 = p1x
7+

p0 mod x7 + x3 + 1 = p1x
3 + (p0 + p1). Obviously, the
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computation of p0 + p1 is equivalent to the matrix-vector
multiplication as follows:

p0 + p1 =

e0

e1

e2

e3

e4

e5

e6


=



a0 0 0 0 0 a6 a5

a1 a0 0 0 0 0 a6

0 a1 a2 0 0 0 0
0 0 a3 a2 0 0 0
0 0 0 a3 a4 0 0
0 0 0 0 a5 a4 0
0 0 0 0 a6 a5 a4


×



b0
b1
b2
b3
b4
b5
b6


.

Meanwhile, the computation of p1 is equivalent to

p1 =

[
e7

e8

]
=

[
a6 a5

0 a6

]
×
[
b5
b6

]
.

We can check that p0 + p1 includes all the entries of p1, and
no AND and XOR gates are required using sub-expression
sharing trick.
I.(ii): The modular multiplication of p0 +p1, p1x

3 with (x4 +
x2 + 1) · x−6 can be recognized shifts of p0 + p1,p1 and
additions among them. We immediately have

(p0 + p1) · (x4 + x2 + 1) · x−6 =

e6

e0

e1

e2

e3

e4

e5


+



e1

e2

e3

e4

e5

e6

e0


+



e3

e4

e5

e6

e0

e1

e2


+



0
0
0
e6

0
0
0


+



0
0
e0

0
0
0
0


+



e0

e1

e2

0
0
0
0


,

and

(p1x
3) · (x4 + x2 + 1) · x−6 =



e7

e8

e7

e8

e7

e8

0


.

Therefore, the computation of I.(ii) can be implemented
by the additions of seven vectors.

A.2 Computation of II of Table 1

I.(ii): Let
∑2
i=0 u

(s,t)
i xi denote the results of A2 +A1, A2 +

A0, A1 +A0 and
∑2
i=0 v

(s,t)
i xi denote the results of B2 +

B1, B2+B0, B1+B0. So,

u
(2,1)
0 = a4 + a2

u
(2,1)
1 = a5 + a3,

u
(2,1)
2 = a6

u
(2,0)
0 = a4 + a1

u
(2,0)
1 = a5 + a0,

u
(2,0)
2 = a6

u
(1,0)
0 = a2 + a1

u
(1,0)
1 = a3 + a0,

u
(1,0)
2 = 0

and

v
(2,1)
0 = b4 + b2

v
(2,1)
1 = b5 + b3,

v
(2,1)
2 = b6

v
(2,0)
0 = b4 + b1

v
(2,0)
1 = b5 + b0,

v
(2,0)
2 = b6

v
(1,0)
0 = b2 + b1

v
(1,0)
1 = b3 + b0,

v
(1,0)
2 = 0

All these operations can be implemented in parallel using
XOR gates and finished in one TX delay.
I.(ii): Analogous to the computation of Step I, D2,1x

4 +
D2,0x

2 + D1,0 can also be computed as a matrix-vector

multiplication. We also split this expression into two parts
and deal with their reduction, independently.

D2,1x4 +D2,0x2 +D1,0 = p
(1)
1 x7 + p

(1)
0

u
(1,0)
0 0 0 0 0 0 0 0

u
(1,0)
1 u

(1,0)
0 0 0 0 0 0 0

0 u
(1,0)
1 u

(2,0)
0 0 0 0 0 0

0 0 u
(2,0)
1 u

(2,0)
0 0 0 0 0

0 0 u
(2,0)
2 u

(2,0)
1 u

(2,0)
0 u

(2,1)
0 0 0

0 0 0 u
(2,0)
2 u

(2,0)
1 u

(2,1)
1 u

(2,1)
0 0

0 0 0 0 u
(2,0)
2 u

(2,1)
2 u

(2,1)
1 u

(2,1)
0

0 0 0 0 0 0 u
(2,1)
2 u

(2,1)
1

0 0 0 0 0 0 0 u
(2,1)
2



×



v
(1,0)
0

v
(1,0)
1

v
(2,0)
0

v
(2,0)
1

v
(2,0)
2

v
(2,1)
0

v
(2,1)
1

v
(2,1)
2


.

Then we have (D2,1x
6 + D2,0x

4 + D1,0x
2) · x−6 mod

x7 + x3 + 1 = (p
(1)
1 x3 + p

(1)
0 + p

(1)
1 )x−4 mod x7 + x3 + 1).

Such a expression can also be obtained using the additions
of three vectors, i.e.,

(p
(1)
1 x3 + p

(1)
0 + p

(1)
1 )x−4 mod x7 + x3 + 1

=



h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(1)
5

h
(1)
6

h
(1)
0


+



0
0

h
(1)
0

0
0
0
0


+



0

h
(1)
7

h
(1)
8

0
0

h
(1)
7

h
(1)
8


,

where h
(1)
i , i = 0, 1, · · · , 8 denote the coefficients of

D2,1x
4 +D2,0x

2 +D1,0.
In parallel implementation, it is easy to check that both

of Step I and II cost TA + 6TX delay, thus the whole circuit
is TA + 6TX , where TA and TX denote the delay of AND
and XOR gate, respectively. This result meets the delay
assertions presented in section 3.2 and Proposition 3 of the
main paper. Finally, another TX delay is required to add the
results of S1x

−6 and S2x
−6.

APPENDIX B
PROOFS

B.1 Proof of Proposition 1

Proof For simplicity, we rewrite the formulae of A,B as
follows:

A = An−1x
n−1 +An−2x

n−2 + · · ·+A1x
1 +A0x

0,

B = Bn−1x
n−1 +Bn−2x

n−2 + · · ·+B1x
1 +B0x

0,
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where i = (`+1)i−n+r for i= n−r+1, · · · , n−1 and i = `i
for i = 0, 1, · · · , n− r. The expansion of AB is

AB =

n−1∑
i=0

AiBn−1x
i+n−1 + · · ·+

n−1∑
i=0

AiB0x
i+0

=

n−1∑
i=0

AiBix
2i +

∑
0≤i<j<n

(AiBj +AjBi)x
i+j

(20)

Applying (1) in the paper, we know that (AiBj +

AjBi)x
i+j = ((Ai+Aj)(Bi+Bj)+AiBi+AjBj)x

i+j . Plug
these formulae into above expression, (20) can be rewritten
as:

AB =An−1Bn−1x
n−1(xn−1 + xn−2 + · · ·+ x1 + 1)

+An−2Bn−2x
n−2(xn−1 + xn−2 + · · ·+ x1 + 1)

+ · · ·+A1B1x
1(xn−1 + xn−2 + · · ·+ x1 + 1)

+A0B0x
0(xn−1 + xn−2 + · · ·+ x1 + 1)

+

2n−3∑
i=1

( ∑
s+t=i,
n>s>t≥0

Ds,t
)
xs+t.

When we substitute the symbol i with the original degree,
the conclusion is direct. �

B.2 Proof of Lemma 1
Proof The proof of this lemma mainly utilizes the reduction
formulation (7). If the parameter 1 ≤ ∆ ≤ m − k − 1, we
have

A(x) · x∆ =

m−1∑
i=0

aix
i+∆−k

=

m−∆−1∑
i=0

aix
i+∆−k +

m−1∑
m−∆

aix
i+∆−k

=

m−∆−1∑
i=0

aix
i+∆−k +

m−1∑
m−∆

(aix
i+∆−m + aix

i+∆−m−k)

=

m−1∑
i=0

aix
−k+(i+∆) mod m +

m−1∑
i=m−∆

aix
i+∆−m.

Similarly, if −k ≤ ∆ < 0, then 0 < −∆ ≤ k, we have

A(x) · x∆ =

m−1∑
i=0

aix
i+∆−k

=

m−1∑
i=−∆

aix
i+∆−k +

−∆−1∑
i=0

aix
i+∆−k

=

m−1∑
i=−∆

aix
i+∆−k +

−∆−1∑
i=0

(aix
i+∆+m−k + aix

i+∆)

=

m−1∑
i=0

aix
−k+(i+∆) mod m +

−∆−1∑
i=0

aix
i+∆.

We then directly conclude this lemma. �

B.3 Proof of Observation 1
Proof Apparently, the modular reductions of g1x

(2λ−1)`−2k,
g2x

(2λ−3)`−2k, · · · , gλx`−2k rely on their maximum and
minimum term degrees.

Firstly, according to the explicit form of g1, g2, · · · , gλ,
one can check that the degrees of the subexpressions Ds,t ·

xδs,t are in the range [2`−2, 2`+2r−3], as deg(Ds,t) = 2`−2
(for 0 ≤ t < s < n− r) or 2` (for 0 < t < s, s ≥ n− r) and
max δs,t = (n−1)+(n−2)−2(n−r) = 2r−3. Then, it is easy
to see that the term degrees of g1x

(2λ−1)`−2k, · · · , gλx`−2k

are all in the range [`−2k, 2m− `−2k−3]. Apply reducing
formulae of (7) to these expressions, we have

x`−2k = xm+`−2k + x`−k,
...

x−k−1 = xm−2k−1 + x−1,
xm−k = x0 + x−k,

xm−k+1 = x1 + x−k+1,
...

x2m−`−2k−3 = xm−`−k−3 + xm−`−2k−3.

The exponents of x in the right side now are all in the range
[−k,m− k − 1], no further reduction is needed. �

B.4 Proof of Proposition 3

Proof For simplicity, we combine the proof of case 3 and 6
together.
Case 3 and 6: In these cases, as ` ≥ k and ∆i = (n − 2i +
1)`−k (n even), ∆i = (n− 2i)`−k (n odd), we have all the
∆is are greater than 0. Therefore, the modular reduction of
p

(i)
0 x∆i−k is given by:

p
(i)
0 x∆i−k mod f(x) =

m−1∑
j=0

h
(i)
j x−k+(j+∆i) mod m

+
m−1∑

j=m−∆i

h
(i)
j xj+∆i−m,

(21)

for i = 1, 2, · · · , λ, λ = n
2 if n is even, and λ = n−1

2 if n odd.
Meanwhile, it is easy to check that p(i)

1 x∆i , p
(i)
1 x∆i−k

needs no reduction any more. We also note that ∆i−∆i+1 =

2` for i = 1, 2, · · · , λ − 1 and p
(i)
1 s consist of at most

`+ r− 2 terms. Thus, there are no overlapped terms among
p

(i)
1 x∆i and p

(j)
1 x∆j if i 6= j. Two independent expressions∑λ

i=1 p
(i)
1 x∆i and

∑λ
i=1 p

(i)
1 x∆i−k can be implemented

in parallel. Plus n expressions in (21), we immediately
conclude the proposition.

Furthermore, if 0 ≤ r ≤ 2, n is even and ` ≥ k, we have
gi = p

(i)
0 , p

(i)
0 . In this case, the modular reduction of gix∆i−k

can be obtained using only (21). Obviously, this case also
obeys this proposition.
Case 4: In this case, we note that ` < k, (n−2)` ≤ k. In fact,
one can check that

(n+ 1)` > m = n`+ r ≥ 2k

⇒ (n+1)`
2 > k.

But if n ≥ 5, we have (n−2)` ≥ (n+1)`
2 > k. Therefore, Case

4 only happens if n = 3. In this case, all the Ds,ts constitute
to an integral g1. Now, we have

S2x
−2k mod f(x) = g1x

`−2k mod f(x)

= (p
(1)
1 + p

(1)
1 x−k + p

(1)
0 x−k)x`−k.
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Obviously, the modular reduction of above subexpressions
are given by:

p
(1)
0 x`−2k mod f(x) =

m−1∑
j=0

h
(1)
j x−k+(j+`−k) mod m

+
k−`−1∑
j=0

h
(1)
j xj+`−k,

(22)

and
p

(1)
1 x`−2k mod f(x)

=
(
p

(1)
1,1x

k−` + p
(1)
1,2

)
x`−2k mod f(x)

= p
(1)
1,1x

−k + p
(1)
1,2(xm+`−2k + x`−k).

(23)

Specifically, no reduction is needed for p(1)
1 x`−k, as all its

term degrees are in the range [−k,m− k− 1]. Combining it
with (23), we have

p
(1)
1 x`−k + p

(1)
1,1x

−k + p
(1)
1,2(xm+`−2k + x`−k)

= p
(1)
1,2x

m+`−2k + p
(1)
1,1(x`−k + x−k). (24)

We directly know that (24) and (22) contains five
subexpressions, which cost at most dlog2(3 + 2)e =
dlog2 5eTX in parallel.
Case 5: The proof of this case is analogous with that
of Case 2. Recall that in this case ∆i = (n − 2i)` −
k, i = 1, 2, · · · , n−1

2 . Let an odd integer t ≥ 1 satisfy
that t` ≤ k, (t + 2)` > k. Then, we have ∆i > 0, for
i = 1, 2, · · · , n−t2 − 1 and ∆i ≤ 0 for i = n−t

2 , · · · , n−1
2 .

Thus, if i = 1, 2, · · · , n−t2 − 1, the modular reduction of
p

(i)
0 x∆i−k is the same as (13), while if i = n−t

2 , · · · , n−1
2 , its

modular reduction is the same as (14).
Note that p(i)

1 =
∑`+r−3
j=0 h

(i)
m+jx

j . It is clear that the
degrees of p(i)

1 x∆i are all in the range [−k,m−k−1], which
need no reduction. On top of that, the explicit reduction of
p

(i)
1 x∆i−k are given by

p
(i)
1 x∆i−k mod f(x) = p

(i)
1 xm+∆i−k + p

(i)
1 x∆i ,

for i = n−t
2 + 1, · · · , n−1

2 . Meanwhile,

p
(n−t2 )
1 xt`−2k mod f(x)

=

(
p

(n−t2 )
1,1 xk−t` + p

(n−t2 )
1,2

)
xt`−2k mod f(x)

= p
(n−t2 )
1,1 x−k + p

(n−t2 )
1,2 (xm+t`−2k + xt`−k).

Here, p
(n−t2 )
1,1 consists of at most `+ r− 2− (k− t`) bits and

p
(n−t+1

2 )
1,2 consists of at most k − t` bits.

As a result, the modular reduction related to∑n−1
2

i=1 (p
(i)
1 + p

(i)
1 x−k)x∆i can be rewritten as two parts:

n−1
2∑
i=1

p
(i)
1 x∆i +

n−1
2∑

i=n−t
2 +1

p
(i)
1 x∆i + p

(n−t2 )
1,1 x−k + p

(n−t2 )
1,2 xt`−k

=

n−t
2 −1∑
i=1

p
(i)
1 x∆i + p

(n−t2 )
1,1 (xt`−k + x−k),

(25)

n−1
2∑

i=n−t
2 +1

p
(i)
1 xm+∆i−k+

n−t
2 −1∑
i=1

p
(i)
1 x∆i−k+p

(n−t2 )
1,2 xm+t`−2k,

(26)
Similar with Case 2, one can easily check that the
subexpressions in (25) and (26) have no overlapped terms
with each other. So that they can be concatenated together

without any logic gates. Meanwhile,
∑n−1

2
i=1 p

(i)
0 x∆i−k mod

f(x) consists of at most 2 · n−1
2 = n− 1 subexpressions, and

some of these subexpressions have no overlapped term with
each other. It totally requires dlog2(n−1

2 + 2 + max{n−t2 −
1, t+1

2 })e ≤ dlog(n+ 2)eTX delay in parallel. �
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