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Abstract
This paper describes the collaborative effort between privacy and security researchers at nine different institutions along
with researchers at the Naval Information Warfare Center to deploy, test, and demonstrate privacy-preserving technol-
ogies in creating sensor-based awareness using the Internet of Things (IoT) aboard naval vessels in the context of the US
Navy’s Trident Warrior 2019 exercise. Funded by DARPA through the Brandeis program, the team built an integrated
IoT data management middleware, entitled TIPPERS, that supports privacy by design and integrates a variety of Privacy
Enhancing Technologies (PETs), including differential privacy, computation on encrypted data, and fine-grained policies.
We describe the architecture of TIPPERS and its use in creating a smart ship that offers IoT-enabled services such as
occupancy analysis, fall detection, detection of unauthorized access to spaces, and other situational awareness scenarios.
We describe the privacy implications of creating IoT spaces that collect data that might include individuals’ data (e.g.,
location) and analyze the tradeoff between privacy and utility of the supported PETs in this context.
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1. Introduction

Advances in sensing, networking, and communication

technologies have created a new wave of Internet of

Things (IoT) technologies that are expected to revolutio-

nize all aspects of our society. In the context of armed

forces, the ability to dynamically monitor soldiers, their

physiological health possibly using biometric wearables,

and the environment in which they operate can be used to

build a variety of military applications. IoT technologies

can potentially connect, in real time, ships, planes, tanks,

drones, personnel (both on board a ship or on land) for

creating a cohesive fighting force with improved situa-

tional awareness. The overall objective is to bring about
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transformative improvements in the ability of the soldiers

to improve battlefield performance and outcomes. IoT

technologies can play a significant role in enhancing the

ability of soldiers not just by creating real-time awareness;

multimodal sensor data collected during missions from

diverse sources can also be analyzed post-facto to extract

and evaluate the operational aspects of mission goals lead-

ing to future process improvements.

While the importance of the emerging IoT technologies

and applications cannot be overemphasized, a key chal-

lenge facing their widespread adoption is that of privacy.

The continuously captured sensor data, which can leak

information about subjects, their habits, likes/dislikes,

health, mental status, etc., has been well studied. For

instance, our early deployment studies at a building at the

University of California, Irvine (UCI), clearly established

that even coarse-level monitoring of subjects using their

connectivity to WiFi Access Points (APs) in a building can

lead to personal information leakage, such as the amount

of time people are at work, the number of times they take a

break during the day, tardiness/effectiveness in performing

their tasks, etc. Another study, at the Honeywell Golden

Valley Labs,1 further corroborated such privacy-sensitive

information leakage; here, monitoring seemingly innocu-

ous sensor data from motion sensors (for energy-efficient

building operation) coupled with background knowledge

could lead to determining the personal habits of individu-

als, including smoking habits and arrival/departure times

from work.

The layman’s perspective on privacy is that it is largely

a civilian concern, since individuals who enlist in the mili-

tary relinquish privacy rights in the interest of national

security. Our experience in the context of this study

demonstrates that this is not true in day-to-day operational

circumstances. Privacy is critical at all levels of military

command and control—from senior leadership down the

chain of command to enlisted sailors/soldiers. From an

executive point of view, concerns arise about eroding the

morale of personnel who perceive that they are constantly

monitored (big brother syndrome)—this raises issues of

long-term retention of personnel. At lower ranks of the

military, there are concerns that privacy is a scarce

resource when individuals are required to stay in close

proximity to each other for elongated periods of time. Any

personal time that is afforded to them during their off-duty

hours is a cherished resource; monitoring personal activity

and behavior through sensors continuously without a com-

pelling or immediate reason during those times can be a

concern in terms of technology adoption.

There is yet another important rationale for privacy

from a tactical perspective, as studied in prior work.2 In

his research on radio frequency identification (RFID) sig-

naling specifically, Juels2 (p.5) states ‘‘privacy is not just

a consumer concern,’’ and he elaborates on the topic,

providing examples of enemy forces harvesting radio fre-

quency (RF) signals to ascertain troop movements and

logistical support activities. Furthermore, Jules states that

RFID tags detecting munitions are a plausible threat. From

this perspective in particular, it becomes apparent that pri-

vacy often equates to security, safety, and victory.

It is also worth noting that troops often purchase per-

sonal items from the same retail outlets as civilians. Along

with that, such goods routinely have RFID or other RF

assets embedded within (e.g., Bluetooth or WiFi).

According to Nayak,3 many retailers, including Walmart,

mandate their suppliers to use RFID technology.

Therefore, it is quite possible that rogue or unwanted

RFID equipment can potentially maneuver its way into the

battlespace.

The battlespace and its concomitant warriors are

becoming increasingly saturated with technology.

Provisioning and utilization of new technologies is neces-

sary in order to enhance situational awareness, support

force effectiveness, increase military efficiency, and main-

tain competitive advantage in a technology-augmented

global environment.

Considering this need for data privacy, DARPA initi-

ated four years ago the Brandeis program,4 which seeks to

develop the technical means to protect the private and pro-

prietary information of individuals and enterprises. The

main goal of the program is to develop tools and tech-

niques that enable systems to be built with privacy in

mind. The Testbed for IoT-based Privacy-preserving

Pervasive Spaces (TIPPERS) system is part of this pro-

gram. TIPPERS addresses the program’s goal by exploring

a new generation of emerging privacy technologies,

including encryption, multi-party computation (MPC), dif-

ferential privacy (DP), and privacy policies, as a basis for

building an IoT data collection and management system

that supports privacy by design. TIPPERS was initially

designed and tested at the University of California Irvine,

where it has been used to create a smart campus environ-

ment with a variety of applications, such as space occu-

pancy monitoring, ability to locate friends, etc.

Over the past year, this research team has worked

toward transforming TIPPERS to be deployed in tactical

naval settings. In particular, TIPPERS was deployed on a

Navy ship as part of the annual Trident Warrior exercise

in 2019. According to the US Navy, ‘‘Trident Warrior is

an annual large-scale, at-sea field experiment where the

Navy selects potential initiatives that address capability

gaps and provide inventive solutions in an operational

environment’’ (Military News website,5 (para.2)).

This paper highlights the team’s research experience in

deploying TIPPERS during the Trident Warrior 2019 (TW

19) exercise. The potential benefits of the IoT technologies

for naval use cases, the concerns related to privacy that

emerged, and possible approaches to address those
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concerns are presented. Our results indicate that warfigh-

ters that are outfitted with these often-invasive technolo-

gies tend to experience a lack of privacy. Such

infringement can result in adverse effects on morale, qual-

ity of life, and personnel retention. However, these same

technologies bring efficiencies to command and control

efforts, enhance situational awareness, and make warfigh-

ters more safe and secure.

The rest of the paper is organized as follows. Section 2

provides a brief overview of the TIPPERS system and

underlying privacy technologies. Section 3 discusses the

TIPPERS deployment on the ship, modeling, and simula-

tion of sailor activity, as well as the instrumentation of

both the ship and the individuals. Section 4 outlines spe-

cific aspects of the use cases/scenarios designed for the

Trident Warrior exercise and experiments, focusing on pri-

vacy studies in Section 5. Finally, a discussion of lessons

learned and experiences working with the US Navy con-

cludes the paper in Section 6.

2. TIPPERS

TIPPERS is a novel sensor data collection and manage-

ment system for smart spaces that incorporates a variety of

smart space applications.6–8 A key design feature of the

TIPPERS architecture is that it is space, sensor, and task

agnostic, allowing it to be used as plug-and-play technol-

ogy to create smart spaces. In addition, TIPPERS embo-

dies a privacy-by-design architecture, which enables the

integration of different Privacy Enhancing Technologies

(PETs). In particular, and in the context of the DARPA

Brandeis Project, a variety of PETs have been integrated,

including secure computing, privacy policies, and DP (see

Appendix 1 (supplementary material) for more informa-

tion about such PETs).

2.1 TIPPERS design

As depicted in Figure 1, the TIPPERS architecture includes

several decisions to support the goal of privacy by design.

Firstly, TIPPERS provides an abstraction of the underlying

sensor infrastructure by translating between the IoT

devices’ world (i.e., sensors, actuators, raw observations,

etc.) and the people’s world (i.e., interactions of people,

spaces, phenomena, etc.). The system is based on a domain

model that represents both worlds and enables users/devel-

opers to interact with high-level semantically meaningful

concepts. It also includes ontology-based translation algo-

rithms to convert user requests at the high level (e.g.,

‘‘decrease the temperature of rooms where the occupancy

is greater than 75% of their capacity’’) into actions on the

specific underlying device infrastructure.7 The main

Figure 1. Architecture of TIPPERS. API: application programming interface.
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advantage is that it simplifies the development of smart

applications and facilitates their portability in between

spaces as they are built on high-level concepts instead of

on IoT devices. Secondly, it simplifies the definition of pri-

vacy policies as users can focus on what they want to pro-

tect (e.g., ‘‘do not capture my location when I am with

John in a private space during working hours’’). TIPPERS

uses such privacy policies to guide its data collection, stor-

age, and sharing practices.8

As a mechanism to implement such translation of raw

data into higher-level semantically meaningful interpreta-

tions, TIPPERS supports virtual sensors wherein streams

of sensor data can be used to create streams of such infer-

ences.9 For instance, a virtual sensor can translate connec-

tivity data (e.g., logs from WiFi APs containing

information about which devices are connected to them)

into occupancy of different spaces along time. This

enables TIPPERS to incorporate further PETs. For exam-

ple, a stream of sensor data can be scrubbed of personally

identifiable information (PII) when passed to operators.

Finally, the TIPPERS architecture contains a mediation

module to appropriately store sensor data in the corre-

sponding database/storage technology (e.g., allowing the

usage of different underlying database systems). This med-

iation consists of three parts regarding the specific map-

ping task between the TIPPERS schema, data, and queries

and those of the database system. This enables TIPPERS

to store data in different systems based on the characteris-

tics of the data, its security requirements, and the type of

queries that need to be run on the data. Using this func-

tionality, the TIPPERS system further includes secure data

storage technologies that can maintain encrypted data and

perform computations on such encrypted data.

2.2 Privacy Enhancing Technologies

Below we describe several PETs that were part of the

TIPPERS system deployed in the US Navy ship (more

information about the PETs is included in Appendix 1

(supplementary material)).

2.2.1 PULSAR. PULSAR is a novel secure data manage-

ment system based on function secret sharing

(FSS)10,11,18–22 and MPC12,13 to support real-time privacy-

preserving data aggregation and retrieval that has been

applied to sensors and mobile devices in TIPPERS. A

standard secret-sharing scheme allows a dealer to ran-

domly split a secret into two or more shares, such that cer-

tain subsets of the shares can be used to reconstruct the

secret and others reveal nothing about it. Secret sharing is

additively homomorphic, that is, if many secrets are

shared, the two parties can individually compute shares of

the sum of the secrets by locally adding their shares, with-

out any communication.

The notion of FSS can be viewed as a natural generali-

zation of additive secret sharing to functions. A special

case of interest is the class of point functions f, which have

a nonzero output on at most one input. A FSS for this class

is called a distributed point function (DPF). One exemp-

lary application for such a special case is secure distribu-

ted histograms, or ‘‘distograms,’’ that allow for the ability

to privately aggregate information into histogram buckets.

Stealth (the makers of PULSAR) incorporates these disto-

grams into the PULSAR solution as a means of real-time

privacy-preserving data aggregation and retrieval.

2.2.2 Jana. Jana technology implements the paradigm of

Private Data as a Service (PDaaS). Using a combination

of advanced cryptographic techniques and a commercially

reliable database, such technology provides a full-featured,

robust, relational database management system (RDBMS).

The RDBMS cryptographically secures data from before it

leaves the platform of a data contributor, until after it

reaches the platform of an analyst authorized to see the

query results. Data does not need to be decrypted during

query processing in Jana. Results of queries are addition-

ally protected using DP mechanisms (where appropriate)

to prevent rediscovery of sensitive data from those results.

Jana is also intended as an operational environment to

study the trade-space between security and performance

scalability for real-world data and queries. In contrast, typ-

ical cryptographic research platforms fix a level of secu-

rity, argue on standard assumptions, and offer no trade-

space in which to conduct such research. In addition, Jana

allows for the study of implications on performance of full,

end-to-end security, while typical cryptography research

fails to address the security of all steps in the information

flow from data provider to query result.

The data within Jana remains encrypted at all times,

unless explicitly chosen by the database administrator

(DBA) (and agreed to by data contributors) for storage in

plaintext form. Ephemeral public key encryption protects

data in transit from contributors’ platforms into each Jana

instance, as well as results in transit from the Jana instance

to analyst platforms. Depending on choices made by the

DBA, public key encryptions or order revealing encryp-

tions are used to protect data at rest in Jana’s relational

data store (deterministic encryption is also supported as a

research capability, although it is not recommended for

the obvious security concerns).

2.2.3 PeGaSus. PeGaSus (PGS) is a specific algorithm for

analyzing streaming data under DP.14 The technology of

DP is appropriate in contexts where data about individuals

has been curated for the purpose of analysis. The goal is to
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release the outcome of the analysis while disclosing as little

information as possible about individual records in the data.

The conventional technologies for this problem fall under

the broad category of disclosure limitation and include

approaches such as data de-identification and suppression.

Unfortunately, these techniques are known to be brittle. For

instance, so-called ‘‘anonymous’’ records can often be re-

identified. In contrast, DP offers a rigorous mathematical

guarantee: to an individual whose data has been collected,

whatever can be learned about the individual when her data

is included is essentially no greater than what can be learned

where her data is omitted from the collection.

DP is distinct from adjacent technologies, such as

secure multi-party computation (SMC). With SMC, the

goal is to compute the exact answer to a function where

each party contributes one private input, with the goal that

during the execution of the computation, no party is able

to extract information about the inputs supplied by other

parties. DP, on the other hand, aims to prevent the output

of the function from leaking information. For instance, if

the function computed a vote tally and it was unanimous,

then the output of SMC would reveal individual votes; in

contrast, with DP, one would learn only that the vote was

approximately unanimous.

DP is a mathematical definition that can be applied to a

variety of data types and for a variety of analyses. In con-

sidering its use in a particular application, it is essential to

consider what is sensitive and private information, as well

as what kinds of analyses should be supported.

PGS is applicable in contexts where individuals are

continually observed by a collection of sensors. Each sen-

sor produces a stream of data, and the goal is to analyze

these streams in real time without disclosing sensitive per-

sonal information about specific individuals. With PGS,

the privacy guarantee is on individual events, such as a

person being observed by a particular sensor, but extends

naturally to small windows of events (observations of a

particular individual within the last hour).

2.2.4 Integration of PETs in TIPPERS. TIPPERS supports two

ways of integrating PETs into sensor data management, as

mentioned before. Firstly, virtual sensor technology sup-

ported by TIPPERS can be leveraged to modify/perturb the

sensor data stream that is shared with applications. Such

modifications could include scrubbing of sensitive data

(e.g., removing faces from images or identifiers from sensor

data), adding noise, de-linking data, etc. A good example of

the use of virtual sensors is the integration of PGS to make

occupancy data streams differentially private.23

Secondly, TIPPERS supports mediation between the

system and the underlying storage mechanism. For

instance, TIPPERS mediates with FSS and MPC technolo-

gies supported by PULSAR, as well as deterministic

encryption, order-preserving encryption, and secret-sharing-

based technologies supported by Jana. This way, TIPPERS

can be configured to store low-level sensor data (such as

WiFi connectivity) in PULSAR such that insertions can be

fast and aggregations (e.g., occupancy levels) can be deter-

mined quickly. This is crucial for real-time policy enforce-

ment when policies depend on who is in a particular space

or how many people are inside it. In contrast, data that may

require more complex operations (such as, for instance,

Structured Query Language (SQL) joins operations to com-

bine sensor data with metadata) can be stored in Jana, which

supports different techniques for encryption and supports

more complete complex SQL operations.

A sample flow of data in TIPPERS and the integrated

PETs in the deployment in the Navy destroyer is illustrated

in Figure 2, which is described in more detail in Appendix

1 (supplementary material).

2.3 TIPPERS deployment at University of California,
Irvine

In addition to the deployment of TIPPERS aboard the Navy

ship as part of the Naval Trident Warrior Exercises, the sys-

tem has also been deployed at other locations. One location

was the Golden Valley Lab at Honeywell, to create a

privacy-preserving building analytics system using motion

sensors. The primary testbed installation of TIPPERS is

located at the UCI campus and is used to create a smart

campus for UCI members. At UCI, TIPPERS is used daily

at the campus-scale (over 30+ buildings) to support a vari-

ety of location-based services, such as detection of occu-

pancy levels of buildings, building usage analysis, concierge

services (allowing people to find each other on campus and

inside buildings), and self-monitoring applications (allowing

people to monitor how, where, and with whom they use

their time). At the UCI deployment, TIPPERS determines

the location of individuals using WiFi connectivity data

from personal devices carried by individuals. Such connec-

tivity data from WiFi APs is collected by the Office of

Information Technology (OIT) in order to provide network

services. In turn, such information is shared with TIPPERS

after appropriately encrypting the MAC address of the

devices to prevent leakage of a user’s location. The OIT

changes the encryption key every 5 minutes in order to pre-

vent linkage attacks. TIPPERS computes on top of such

encrypted data to analyze, for instance, real-time occupancy

at different granularities—viz., building, floors, regions

within a floor—which is used to support a real-time heat

map of the building.

3. TIPPERS in Trident Warrior 2019

In this section, we discuss the deployment of TIPPERS in

the Navy ship as part of the US Navy’s TW 19 exercise.5
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3.1 Testing TIPPERS for Trident Warrior deployment

As part of the preparation for TW 19, the TIPPERS sys-

tem was deployed first at the Naval Information Warfare

Center (NIWC) Pacific. The objective was to enable a

demonstration of the capability of TIPPERS, including its

integrated PETs, to operational Navy personnel to explore

opportunities wherein systems such as TIPPERS can be

used within the Navy. TIPPERS was deployed in the

NIWC Mobility Center of Excellence (MCoE), which is a

lab dedicated to developing, testing, and evaluating mobile

technologies. The deployment required developing an

application specific to NIWC, referred to as the Security

Surveillance application.

3.1.1 Security Surveillance application. The Security

Surveillance application provides a bird’s eye view of the

evolving state of the NIWC facility based on the sensor

data that is captured and translated into occupancy levels

of each space. The sensor data is securely encrypted in the

underlying secure data storage TIPPERS technology. To

enforce the need to know concept, the application provides

two views of the data. The first shows only differentially

private occupancy counts (obtained using the PGS virtual

sensor) with no identifying information to preserve the pri-

vacy of individuals involved in the data. From this view, a

user of the application should not be able to make any

inferences about individuals, their locations, or their

habits. The second view shows the actual occupancy

counts after decryption (as this data is stored in the

PULSAR secure database). The latter can be used in situa-

tions where there is a requirement to access more granular

information (e.g., an emergency situation). The access to

data regardless of the level of granularity is internally

logged by TIPPERS so that attestation can be performed

at any point.

In order to simulate a building within the NIWC Pacific

campus with multiple rooms, the MCoE was divided into

five areas: meeting space, visitor area, offices, machines,

and kitchen. Each of these areas was represented as a zone.

This zoning enables the definition of granular policies for

different spaces (e.g., notify the administrator when a visi-

tor moves to an area that is not a visitor or meeting space).

The graphical user interface (GUI) of the Security

Surveillance application includes a heatmap showing the

occupancy data. The current implementation includes the

bird’s eye view of NIWC Pacific topside, with simulated

data to show the estimated occupancy of each building.

Figure 2. TIPPERS data flow. AP: Access Point; DP: differential privacy.
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The devices used in the deployment of TIPPERS in the

MCoE include Bluetooth beacons, Wi-Fi APs, smart

phones, Common Access Card (CAC) readers, cameras,

microphones, and Raspberry Pis. Figure 3 shows the origi-

nal design of the MCoE room along with the deployed

sensors.

3.1.2 Demonstration use cases. Three use cases of interest

for the Navy were showcased through the Security

Surveillance application running on the TIPPERS deploy-

ment at MCoE.

• Use case 1: exploratory occupancy analysis

based on noisy and encrypted data. The purpose

is to highlight that surveillance tasks can still be

done while preserving privacy. In this use case, the

user accesses the heatmap first using noisy data

and then requests permission to access more fine-

grained data for one specific location where the

occupancy is abnormally high.
• Use case 2: automatic space policy enforcement

in encrypted domain. The purpose is to highlight

that violations of policies can be automatically

detected using the encrypted data—if a violation

occurs further information can be de-encrypted. In

this use case, the user defines a policy that says that

visitors are not allowed in any space except for the

visitor area. Then, a visitor carrying a smartphone

moves to the office area and this event is detected

by TIPPERS, which prompts the Security

Surveillance application to display an alert.
• Use case 3: breaking glass policy. The purpose is

to highlight that the Security Officer can access all

the data if required in an emergency situation. In

this case, the user gets granted access to both real

occupancy levels as well as trajectories of individu-

als. The interaction of the user with the system gets

appropriately logged so attestation can be per-

formed to analyze whether the access to such infor-

mation was justified.

3.2 Instrumenting the Navy ship

As part of the deployment of TIPPERS in the assigned

ship, the first step was to instrument the space with differ-

ent IoT sensors. This required both the physical installation

of the sensors and the deployment of a network infrastruc-

ture. With respect to sensors, the following list itemizes all

of the equipment deployed on the Navy ship during TW

19:

• Wi-Fi APs (2);
• Bluetooth beacons (32);
• power outlet meters (6);
• Raspberry Pi (4);
• smart card reader (1);
• smartphones (30).

Each sailor participating in the testing of TIPPERS dur-

ing TW 19 was issued a smartphone. WiFi APs, Bluetooth

beacons, and smart card readers were used to passively

locate people in the ship (through their assigned smart-

phones). In addition, smartphones were used to capture

information about their integrated sensors (e.g., acceler-

ometers and gyroscopes). Power outlet meters were used

to capture information about energy utilization in the ship.

All the sensors listed above exchange data with the

TIPPERS system via WiFi. The ship is equipped with a

WiFi network infrastructure, based on the Navy’s

Figure 3. Mobility Center of Excellence room design.
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Consolidated Afloat Networks and Enterprise Services

(CANES) infrastructure, which was leveraged for this

task. Our design for the interconnection of sensors and

the TIPPERS system by leveraging CANES is summar-

ized in the schematic in Figure 4. The deployment

leverages the CANES infrastructure by incorporating a

site-to-site virtual private network (VPN) network on top

of the CANES network. The purpose of this design is to

minimize sensor configuration efforts. TIPPERS needs to

collect data from various sensors for service provisioning.

However, directly connecting a large number of heteroge-

neous sensors to the CANES network is not straightfor-

ward, since the CANES network has strict access control

and firewall policies, which induce significant configura-

tion efforts. On the other hand, building a completely inde-

pendent network is also not practical. While easing the

sensor configuration effort, it also poses the challenge of

connecting the devices in different areas because the areas

are far away from each other. A hybrid method was pro-

posed, which connects sensors to the customized Wi-Fi

network in each area and leverage CANES to route the

data among these networks. In this configuration, each

assigned space was instrumented with a CANES Network

Access Gateway that was connected to the CANES net-

work (as the assigned spaces were located far away).

Then, in each space a WiFi AP router that enabled the dif-

ferent sensors to communicate with the CANES Network

Access Gateway was deployed.

A challenge that arises from the previous design is that

data captured at each smartphone can only be transmitted

to TIPPERS when the smartphone is connected to one of

the WiFi APs (located in the library and on the mess deck).

Thus, data collected when the smartphone is located in

other spaces (e.g., the gym or store) has to be stored in the

device itself until the device moves to an area with WiFi

connectivity. To this end, we developed a TIPPERS mobile

client application for smartphones (see Figure 5) that han-

dles this issue. The application continuously collected data

from the smartphone’s sensors (including information

about the Bluetooth beacons around the device). At data

collection time the application attempts to send such obser-

vations to TIPPERS through WiFi. If the smartphone is not

connected to a WiFi AP, the underlying data mule technol-

ogy in the TIPPERS client app stores those observations in

an internal database on the smartphone. Then, when WiFi

connectivity is re-established, the TIPPERS client applica-

tion sends the stored data to TIPPERS using last in, first

out (LIFO).

Sensor deployment in the ship was carried out without

significant issues. The TIPPERS team was assigned four

areas of the ship to instrument for the experiments: the

mess deck, the library, the gym, and the store. The ship’s

library served as the focal point of the experiments and

demonstrations and it was instrumented with one WiFi AP,

six WeMo energy consumption monitors, four Raspberry

Pis, a smart card reader, four Bluetooth beacons, and a

MacBook Pro (where the TIPPERS system was installed

and that also served as the demonstration station). The

gym and store were both instrumented with two Bluetooth

beacons. Finally, the mess deck was instrumented with 24

Figure 4. Sensor and network deployment. VPN: virtual
private network; CANES: Consolidated Afloat Networks and
Enterprise Services.

Figure 5. TIPPERS mobile client.
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beacons (one under each table), one WiFi AP, and one

MacBook (working as a router).

Each of the Bluetooth beacons was placed and their

positioning information was loaded into TIPPERS. The

researchers used the iBeacon format with Major ID and

Minor ID. Each Minor ID was a unique placement within

the ship.

3.3 Configuration of TIPPERS

After the instrumentation of the ship, the next step was to

configure the TIPPERS system. The TIPPERS system has

been designed to be space-agnostic and to facilitate its

deployment and configuration in different spaces with dif-

ferent underlying sensor infrastructures. TIPPERS is dis-

tributed as a docker container that includes all the required

external libraries and software artifacts. To configure the

system to the existing space, the first step is to insert,

through the corresponding GUIs, geographical information

of the ship (e.g., what types of rooms are there, their

dimensions, etc.) along with information about people and

their profiles. In total, as shown in Figure 6, more than 70

spaces in the ship were defined. Notice that given that the

actual distribution of spaces in the destroyer is classified

information, the figure shows a simulation based on

declassified information for decommissioned US Navy

destroyers. Also, the figure shows the adjacency of the

spaces with red arrows. This information was used to

simulate synthetic trajectories of people on the ship, which

is explained in the following section.

In addition, we configured and registered the devices to

be used during the exercise. TIPPERS provides a GUI,

which we call Portal, through which the administrator of

the space (in this case the ship) can configure the system

and register devices. The Portal is also the mechanism that

users of the system use to register themselves along with

their personal devices (e.g., their smartphones). Through

the Portal, the users can access applications deployed in

the space (e.g., to communicate with others or to see oth-

ers’ locations if allowed by individuals’ privacy policies).

During the exercise, sailors using the system register their

smartphones (in this case provided by us) into the system.

In a real deployment, users would access the system

through the Portal and register themselves and their

devices. This way, any device detected by the system that

has not been registered (either by the administrator or the

users) can be flagged as a potential threat.

Sensor wrappers were developed to enable TIPPERS to

communicate with the specific sensors in the space. These

wrappers encapsulate the low-level communication details

(e.g., protocols, data formats) and send information to

TIPPERS using its RESTful application programming

interfaces (APIs) and JavaScript Object Notation (JSON)

specification. Similarly, other software artifacts were cre-

ated called virtual sensors, which translate low-level sen-

sor data into higher-level semantically meaningful

information that applications can leverage. For instance,

one of the virtual sensors developed uses connectivity data

from WiFi APs and beacons to create a notion of location

of people in the space (i.e., it uses information about the

coverage of the WiFi AP and the owner of the detected

device to associate that person with the covered area at the

time the connectivity event was captured). Other virtual

sensors were also developed that use such location infor-

mation to infer the occupancy of the different spaces.

3.4 Synthetic data generation/simulation

Given the limitation in the number of sensors that were

deployed in the ship in the context of the Trident Warrior

exercise, as well as the number of spaces available, a simu-

lator tool was constructed to generate synthetic trajectories

of people within the ship. In addition, the simulator is also

used in the evaluation of the TIPPERS system, along with

the different technologies included (such as secure storage

or DP) prior to the deployment of TIPPERS in the ship.

Along with that, given a description of a scenario, the

simulator generates as output the trajectories of people as

well as the connectivity events that WiFi APs would cap-

ture in such scenario. The description of a scenario that the

simulator takes as input consists of the following.

Figure 6. Definition of the ship’s geographic information.
(Color online only.)
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• Space definition: the names and types of the differ-

ent rooms in the space along with a directed graph.

The vertices of the graph represent spaces in a sce-

nario and the edges represent adjacency between

spaces.
• Event definition: describes the events (e.g., cooking

service hours) that occur in a space and are used as

drivers of the simulation as people move in the

space with the goal of attending events. Notice that

some events are labeled periodic, meaning that they

will occur on a periodic basis (e.g., every Monday).
• People definition: includes a template of the vari-

ous individual profiles (e.g., sailors) in the scenario,

including the events that each profile is likely to

attend.

The information used to define the space, events, and

people involved in the Trident Warrior exercise was pro-

vided by US Navy personnel. This included different pro-

files (e.g., Commanding Officer, Executive Officer,

Command Master Chief, Officer of the Deck, Combat

Information Officers, Main Propulsion personnel, etc.) as

well as information about their schedules.

To generate the trajectories of people, the tool first uses

the profiles input to generate the number of people per

profile, which was included as a parameter and represents

the expected numbers in a Navy destroyer. Then, for each

individual, the tool assigns events that they can attend with

some probability p (which is also part of the event defini-

tion and in this case was set up to 95% to represent in this

context a sailor will most likely attend his/her daily

duties).

For the events labeled periodic, a person attends an

event when considered appropriate; this periodicity allows

the simulator to project the patterns that arise in the per-

son’s day. For additional noise in the simulation, people

were given leisure breaks when they are not assigned to

attend any event, and take restroom breaks throughout the

day.

Synthetic trajectories were generated of the different

personnel in the ship for the two weeks of the Trident

Warrior exercise using the simulator tool. In total, more

than 2.3 million connectivity data were created. These

events were used to generate occupancy levels of the dif-

ferent spaces in the ship every 10 minutes. With this occu-

pancy data, the Command Control application (explained

in the next section) displayed occupancy at different tem-

poral granularity (i.e., 10 minutes, 6 hours, 24 hours). In

addition, the PGS virtual sensor was used to generate a

stream of differentially private occupancy counts for those

spaces. The goal was to evaluate how the noise included

in the differentially private count would affect the utility

of the data.

As differential private algorithms in general do not pro-

vide high utility when the counts are low (as adding noise,

even if low, to small numbers decreases the utility further

than to higher numbers), the focus was on the 6-hour and

24-hour cases. In addition, this data is also preloaded in

the secure databases (see Appendix 1 (supplementary

material)).

3.5 TIPPERS applications

Several applications were set up to showcase the benefits

of the TIPPERS technology in the context of the Navy. All

of the mobile applications were designed to run on both

Android and iOS platforms. The Microsoft Visual Studio

framework was utilized to develop the mobile

Figure 7. Command Board application.
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applications. The C# programming language and Xamarin

were used as the language and application platform. Also,

the main demonstration application (Command Board

(CB)) was developed as a Web application that could be

run on different computers used in the demonstration. All

the developed software communicates with the TIPPERS

system using RESTful API calls.

3.5.1 Command Board. The CB application provides situa-

tional awareness about the location of sailors and occu-

pancy at different parts of the ship over time. Using the

CB, the user (e.g., shipboard administrators) can monitor

events and activities. In particular, Figure 7 shows a use

case wherein an analyst uses the CB to visualize a heatmap

of occupancy levels in the ship to explore anomalies, such

as crowd formation or unexpected egress of people from

certain regions. CB retrieves this data from TIPPERS that

is internally generated by the PGS virtual sensor (see

Figure 2) to ensure privacy of individuals. Detection of an

anomaly over differentially private data can trigger further

exploration in which the privacy might be traded off for

improved accuracy of anomaly detection.

The CB also serves as a mechanism to inform the user

about alerts such as unauthorized access of sensitive loca-

tions (by devices or users) and fall detection alerts (see

Section 3.4.2). For the former, the CB can be used to

denote certain regions as sensitive and the profiles of peo-

ple who are authorized to visited them. This, along with

the information that TIPPERS stores of devices registered

to each user and people’s location, can be used to trigger

alerts when an unauthorized device/person enters a sensi-

tive space. These alerts can result in decryption and dis-

play of trajectories of an individual, which by default is

stored encrypted and inaccessible. Finally, the CB serves

as an interface for messaging using the TIPPERS system

as a backend and interacting with the TIPPERS messaging

app (see Section 3.4.3).

3.5.2 Fall detection. As shown in Figure 8, the fall detection

sensor application works in conjunction with other sensors

and virtual sensors in TIPPERS to perform fall detection

and verify fall conditions. If a fall is detected and verified,

an alert is then generated by TIPPERS and sent to the CB

for immediate action.

The fall detection application uses the popular root sum

vector (SV) and threshold algorithm incorporated into

many accelerometer-based fall detection systems.15 The

software verifies falls detected by the client by cross-

examination of other TIPPERS sensors, such as the WiFi

AP, to confirm a fall has occurred and continues to provide

more granular location information (i.e., sensor fusion). If

the fall is detected near weather deck railings along with

large, sustained accelerometer changes, a possible man

overboard condition is computed.

3.5.3 Messaging application. The TIPPERS messaging

application supports point-to-point messaging, as well as

point-to-multipoint (broadcast) messaging. Point-to-point

messaging provides secure communications from the sen-

der to the receiver. The point-to-multipoint broadcast

functions as an intercom system. Such an ability could

lead to replacement of the intercom in tactical environ-

ments where silence is required.

Users can compose messages both through the CB and

the TIPPERS client application (see Figure 9). Each mes-

sage is sent to TIPPERS, which stores it (encrypted) and

then delivers it to the recipient’s messaging application.

4. TIPPERS Trident Warrior 2019 use
cases and experiments

In this section, we present the use case scenarios as they

were designed and demonstrated during the TW 19 exer-

cises and experiments.

4.1 Use case scenario descriptions

In order to test the various TIPPERS technologies and to

provide real-world data for the simulations, 10 scenarios

were tested. These scenarios came from several rounds of

Figure 8. Fall detection application.

Archer et al. 11



discussions with high-ranking Navy officers, a psycholo-

gist familiar with working with military members, and ex-

military project members. The use cases were vetted and

refined several times with the Navy before adoption by the

project team. These scenarios (grounded in real-world

Navy actuality) guided the technology testing as well as

the technology testing during the TW 19 exercises.

The researchers divided these scenarios into two aggre-

gates: mission critical and non-mission critical. Mission

critical scenarios require immediate alerting and response.

The non-mission critical scenarios provide planning and

performance metrics that can be used for training and

evaluation.

Scenario 1: privacy-preserving activity monitoring.

This scenario was used to understand sailor activity

and movement within the ship and specifically focused

on the mess deck. Reference points for time spent in

line, time spent eating, and time moving in space were

collected. Data for space utilization by the individual

was collected as well. In addition, data on movement

through the ship (e.g., store, mess deck, gym, and

library) was collected for simulation purposes.

Scenario 2: command support. This scenario involved

tasking sailors to carry out orders (e.g., movement from

location to location) and provide command-level feed-

back on progress. This scenario also provided hands-on

exposure to the commanders and sailors of the

TIPPERS technologies.

Scenario 3: fall detection. This scenario was used to

test the fall detection capabilities of the TIPPERS

mobile client application (Figure 8) as well as the fall

verification and alerting capabilities of the larger

TIPPERS. While this scenario started as a man over-

board scenario, it soon evolved into a more generalized

fall detection use case based on feedback (e.g., stair-

well dangers, shaft allies) from Navy personnel.

Scenario 4: physical security. In this scenario, the

TIPPERS team tests physical security applications to

see whether the CAC reader triggers the expected

alerts. This scenario was tested in the ship’s library.

Scenario 5: space aggregation. This tests the ability of

TIPPERS to provide aggregation and counts of sailors

on the mess decks. The results show how many people

use the mess deck, when they use it, where they sit,

and their trajectories during usage.

Scenario 6: device management. This tests the ability

of TIPPERS to capture specific characteristics of the

supplied phones, both registered and non-registered.

All phones used in this scenario are TIPPERS-supplied

smartphones. Selected phones are unregistered and

categorized as ‘‘rogue’’ cell phones.

Scenario 7: energy management. This monitors the

energy consumption of TIPPERS equipment via the

power outlet meter devices. Such devices, deployed in

the ship’s library, feed the TIPPERS system with data

regarding energy consumption on individual electrical

circuits.

Scenario 8: messaging and meeting scheduling. This

scenario tests the TIPPERS secure messaging capabil-

ity to the ship’s company. The point-to-point (sailor to

sailor) and the point-to-multipoint (intercom) features

were tested (see Figure 9).

Scenario 9: activity self-awareness. This scenario has

sailors carrying the TIPPERS mobile client while

onboard. Then, sailors can use the CB application to

monitor how many times they visited a specific area

and/or how much time they spent there (e.g., how many

hours they spent in the gym in the last month).

Scenario 10: SysAdmin and privacy. In this scenario,

the TIPPERS team walks through the privacy leakage

evaluation with Radio/IT personnel. The team solicits

feedback on privacy as it relates to systems administra-

tion of TIPPERS.

Figure 9. Secure messaging application.

Figure 10. Experiment times1_2019-08-19. (Color online
only.)
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4.2 Onboard data collection and experiments

The ship’s crew participated in the data collection and

experiments. Crew members were briefed on the nature of

the data collection and provided informed consent (no indi-

viduals or individual identifiers were to be collected).

Those that chose to participate were provided with a smart-

phone and were assigned a team member (observer) to

visually verify the accuracy of the collected data. Each sce-

nario (see Section 4.1) was tested within experiments and

verified with an observer or demonstrated to Navy leader-

ship (e.g., Scenarios 2 and 8). However, the mess deck

space experiments (Scenarios 1 and 5) were by far the

most time consuming and complex.

For the mess deck data collection, each sailor was

approached for participation while they were in the mess

line. If the sailor provided informed consent, they were

instrumented with a phone and an observer logged their

corroborative data. As the sailor moved through the mess

line and the mess deck the data was observed and noted in

a paper log while the TIPPERS mobile client application

on their phones was sending sensor data back to TIPPERS.

An interesting point was voiced by many sailors with

regard to the mess deck observations and data collection:

privacy concerns. Almost every enlisted sailor (and many

officers) voiced individual privacy concerns such as ‘‘are

you tracking me?’’ or ‘‘how are you using this data?’’ to

the TIPPERS team. The TIPPERS personnel explained that

the data will be utilized to seed the system’s simulators

and provide space utilization metrics: no individual’s iden-

tity will be attached to any movement data. This serves as

a reminder that privacy within the military is a valued

commodity and points out a fascinating dichotomy: data

collection of individuals to study individual privacy.

5. Trident Warrior 2019 privacy study

An important part of the data collection during the exer-

cise was the collection of data to infer the location of indi-

viduals. This data can be used to further compute various

aggregated statistics (e.g., occupancy of spaces along time,

average time spent by an individual in a particular loca-

tion, average number of people an individual interacted

with, etc.). Since the underlying data is private (i.e., loca-

tion of individuals along time), the idea of an aggregated

statistics leak of information about individual records is a

precautionary concern. Well-known mechanisms can be

applied, such as DP, to protect individual records, but

knowledge on how to choose the appropriate privacy para-

meters is required. In this section, the different values of e
for a DP mechanism are estimated.

Assume a data table is displayed with user-location-

time-table consisting of categories such as user, day, loca-

tion, daytime, and time spent. The categories are used to

describe the amount of time the user has spent on each area

per day. Consider, for instance, a commanding officer that

observes aggregated averages on the time spent for each

recorded location + daytime combination, stated as the

following query:

SELECT day, location, daytime, AVG
(timespent)
FROM user-location-time-table
GROUP BY day, location, daytime;
The goal is to estimate how much a commander (treated

here as an adversary) can learn about the particular time

spent by a specific user. A quite strong attacker that may

already have knowledge regarding the exact amount of

time spent by other people who have been together with

the victim at the same time in the same location can be

assumed. This idea is motivated by the definition of DP,

which is aimed to protect against such attackers.

In this experiment, the attacker first fixes a single vic-

tim out of n users. He/she computes the prior assumption

of the victim’s data based on the data of the other n–1

users (or only a certain fraction of these users). He/she

tries to guess the victim’s spent times (i.e., the amount of

time spent in a particular area of the ship) based on the

prior knowledge he/she has already learned, and on the

aggregated statistics that depend on the victim’s data. The

researchers assume that the attacker wins even if he/she

does not guess the spent time precisely, but with some pre-

cision. For example, if the attacker says that a user has

been in a room for 17 minutes, but it actually was 17.5

minutes, the guess is still considered sufficiently correct.

There are n users that participate in the experiment. For

each location + daytime + day combination, each user ui

has spent times distributed according to normal distribution

N(μi,σi). The attacker predicts μi and σi based on the data

of the other n–1 users.

Fixing some posterior probability t (e.g., t = 0.9), the

researchers want to compute the precision r within which

the attacker’s guess stays with probability t. For example,

if the actual time is x0, then with probability t the attack-

er’s guess will be x ∈ [x0− r, x0+ r].

It can be assumed that an e-DP mechanism is applied

to the released average. In particular, the sensitivity of the

AVG query with respect to attribute timespent is 1/n, so,

for example, the Laplace mechanism Lap(l) where l = 1/

(n · e) can be used.

Using existing results on relating DP to a guessing

advantage (e.g., Pappachan et al.,8 and TIPPERS web-

site9), if pi is the prior guessing probability, then the pos-

terior p’i is bounded by the following:

p0i ≤ 1+ eRε · (1� pi)=pi

� ��1
,

where R = max x,x’∈X d(x,x’) is in this case the largest pos-

sible spent time. While normal distribution is unbounded,
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it shows as Pr[x− m≤ a] = erf(a / (O2 ·s)), where erf is

the error function, so, for example, for a = 3O2 ·s shown

as Pr[x− m≤ a] = erf (3) ≈ 0.9998, which essentially

covers the set of possible inputs. A smaller value of a can

be taken to reduce the size of the exponent, but it also

reduces the attacker’s search space, so this parameter can

be optimized to improve the upper bound on the guessing

probability.

The team computes the following:

pi = Pr x≤ x0 � r½ � � Pr x≤ x0 + r½ �

= 1

2
erf

x0 + r � μjj ffiffiffiffi
2
p · σ

� erf
x0 � r � μjj ffiffiffiffi

2
p · σ

� �
:

Then p’i is computed from pi and e as described above.

The experiments are performed for r∈ {0.5, 1.0, 2.0, 3.0,

4.0, 5.0} and e∈ {0.1, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0}, com-

puting the posterior p’i. For each e, the smallest r for which

p’I ø t is found.

Since the actual data of the users’ movements on the

ship collected during the exercise is classified and cannot

be shared even for the privacy study, the researchers simu-

lated the behavior of 150 users, such that the replicated

data has the same statistical moments (means and standard

deviations) as the actual data. This imitated data serves as

the ‘‘real’’ data for the privacy study. Therefore, e-DP is

applied to this dataset and the adversary’s success is

computed.

The posterior guessing probabilities for five data sam-

ples had been estimated. The results are depicted in

Figures 10–14. The number of spent times guessed is

plotted with probability ø 90% for different precisions,

where the precisions are represented with different colors.

The dark green color represents the roughest guess (± 5

minutes) and the dark red color the most precise guess

(± 0.5 minutes). For e = 0.1, only a few people are

depicted in the bar, and this means that for the others the

guessing precision was more than ± 5 minutes.

While the datasets are different, similar trends in these

five plots are noticed. If eø 3 is taken, then very few pri-

vacy guarantees are obtained, and each user’s spent time

may be guessed within 1 minute of precision. On the other

hand, for e≤ 0.5, the guessing precision ranges between 4

and 5 minutes, which is much better, considering that the

actual spent times are on average 8–9 minutes in the given

datasets. There are always several people for whom the

guessing probability is large even for small e, as their

behavior is more predictable, but there are not too many

such people. Since smaller e means more noise in aggre-

gated statistics, data utility also needs to be taken into

account, which would be a separate study and depends on

how the statistics are actually going to be applied.

Alternatively, weaker attackers could be taken, who do not

know ‘‘everyone except the victim,’’ but only some of the

other users. In that case, it could be possible to get better

privacy for larger values of e. Modeling a particular

attacker would require knowledge about the context, who

the attacker is, and what he already knows. This remains

outside the scope of this privacy study.

Figure 11. Experiment times2_2019-08-19. (Color online only.)

Figure 12. Experiment times2_2019-08-21. (Color online only.)

Figure 13. Experiment times2_2019-08-22. (Color online only.)
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6. Conclusion

In this paper, the researchers presented the design and

architecture of the DARPA-funded TIPPERS privacy-

preserving pervasive computing platform and illustrated

how the technological innovations were transitioned to

enable new capabilities in situational awareness in a ship-

board setting for the US Navy. TIPPERS was first

deployed and validated in multiple real-world testbeds and

then further deployed in the US Navy’s TW 19 exercise

on the Navy ship. Detailed scenarios were designed and

implemented to cater to shipboard activities, test new tech-

nologies in a military environment, and facilitate a privacy

study in tactical settings. The paper articulates how chal-

lenges in working with ship networks to execute IoT-based

applications in a secure and privacy-aware manner were

addressed. The PETs studied included policy aware data

release, DP, and encrypted query processing. A privacy

analysis on data collected during the exercise shows that

DP technologies applied with the appropriate privacy para-

meter e (i.e., e-DP mechanisms) can be used to hide the

precise time a sailor stays in a particular space while still

offering some value for the analyst.

Lessons learned as a result of the technical deployment

of the TIPPERS system in the TW 19 setting highlighted

the important role of reliable real-time communications,16,17

privacy technologies, and tools for project management.

Experiences gained from TW 19 are being used to design

an enhanced deployment of TIPPERS that will be deployed

in Trident Warrior 2020 while the ship is afloat.

A unique outcome of the privacy analysis from the TW

19 experience indicates that privacy within a military con-

text is of paramount concern across the command spec-

trum. From senior officers down to the newly enlisted

sailors, privacy concerns (especially in a ship setting) were

many and varied. In many cases, privacy was critical to

tactical operations as well as personnel security. In the

future, minimally invasive architectures are critical to the

deployability of new and emerging IoT technologies that

can create new levels of situational awareness while assur-

ing the enforcement of privacy to individuals operating

and working in the next generation of smart naval vessels.
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