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Abstract—Most modern organizations today support network infrastructure to provide ubiquitous network coverage at their premises.
Such a network infrastructure consisting of a set of access points deployed at different locations in buildings can be used to support
coarse-level localization of individuals, who connect to the infrastructure using their mobile devices. This paper describes a system,
entitled QUEST that supports a variety of applications (e.g., identifying hotspot regions, finding people who are potentially exposed to a
condition such as COVID-19, occupancy count of a region/floor/building) based on network data to empower organizations to maintain
safety at their workplace/premises. QUEST builds the above functionalities while fully protecting the privacy of individuals. QUEST

incorporates computationally- and information-theoretically-secure protocols that prevent adversaries from gaining knowledge of an
individual’s location history (based on WiFi data). We describe the architecture, design choices, and implementation of the proposed
security/privacy techniques in QUEST. We, also, validate the practicality of QUEST and evaluate it thoroughly via an actual
campus-scale deployment at our organization over a very large dataset of over 50M rows.

Index Terms—WiFi connectivity data, computation and data privacy, exposure tracing, decentralized solution.
F

1 INTRODUCTION

The ongoing COVID-19 pandemic with rapid and widespread
global impact, has caused havoc over the past year — at the time of
writing this paper, over 231 million individuals have been infected.
The pandemic has caused over 4.7 million global casualties,
and the world economy to come to a screeching halt. Several
(non-pharmacologic) steps are being taken by governments and
organizations to restrict the spread of the virus, including social
distancing measures, quarantining of those with confirmed cases,
lock-down of non-essential businesses, and contact-tracing meth-
ods to identify and warn potentially exposed individuals. These
tracking and tracing measures utilize a range of technological
solutions. Countries, e.g., Israel, Singapore, China, and Australia,
were among the first to utilize cellular data records or data from
Bluetooth-enabled apps to perform contact tracing. In addition,
several commercial and academic solutions (e.g., GAEN by
Google-Apple collaboration [1], European PEPP-PT [2], and [23],
[28], [39], [62]) aim to provide secure contact tracing using
Bluetooth-based proximity-detection. Using this approach, users
can check if they have been exposed to a potential carrier of
the virus by performing a private set intersection of their data
with the secured public registry of infected people. However, such
techniques suffer from limited adoption and significant privacy
issues, as we will discuss in detail in §2. For example, Google-
Apple’s GAEN protocol [1] is still not in use, by all the states in
the US, due to privacy concerns [3], [38].

In this paper, instead of developing a tool/system using Blue-
tooth or cellular data, we take a radically different path by focusing
on a specific type of sensor data — the WiFi connectivity data.
In an organizational WiFi network, whenever a person’s device
connects to a WiFi access point, a network event is generated that
essentially contains the MAC address of the connecting device, the
MAC address of the access point, and the time of connection. Such
a connectivity event can provide a coarse location of an individual,
since it can locate a person to the region covered by the WiFi
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access point. Our focus on WiFi (connectivity) events/datasets is
motivated by the following reasons:

1) Ubiquitous Nature of WiFi. WiFi connectivity is essentially ubiq-
uitous and available in numerous organizations, such as office
buildings and campuses, universities, and shopping complexes.

2) No Additional Infrastructure Cost. Developing applications
based on WiFi data does not require deploying new sensors, and
hence, can be used in the existing places with WiFi connectivity.

3) Network-Centric and Passive Nature of WiFi Connectivity Data.
The application development using WiFi data does not require
users to download and install an application on their mobile
devices, as well as, does not require storing any information
on mobile devices. WiFi data is collected and processed at the
network side, and hence, users do not need to participate in any
data storage or processing.

4) A Turnkey Approach. Unlike other WiFi-based techniques (e.g.,
signal strength, time of flight, angle of arrival approaches) that
require extensive calibration, training, or fingerprinting to work
well across different settings, WiFi connectivity-based approach
is robust and can be deployed with little or no training.

5) Accuracy. WiFi data – coupled with semantic knowledge of
buildings and their users (as is often the case with organizations)
– can be used to achieve high accuracy not just at the level of the
region covered, but even finer-grained at the room level location,
as shown recently in [48].

1.1 Our Contribution: QUEST
Given that WiFi (connectivity) data associates people with spaces
dynamically and continuously, WiFi data can provide valuable
insight into the organization, its functioning, and its culture.
Motivated by the value of WiFi data, we design secure and
privacy-preserving cloud-based services (related to COVID-19),
where organizational WiFi data can be outsourced and analyzed.
We describe our proposed solution, entitled QUEST that exploits
existing WiFi infrastructure (prevalent in almost every modern
organization) to support different applications that empower or-
ganizations to evaluate and tune directives for safe operations,
while protecting the privacy of the individuals in their premises.
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Particularly, QUEST leverages WiFi data (the data generated when
a device connects to wireless access points, see §4 for details) to
support the following applications:
A1: Exposure map application: inputs a period of time (e.g.,
the past 14 days – the possible incubation time of coronavirus)
and an (encrypted) identity of a device (say E(di)) of an infected
individual (who anonymously volunteers such information) and
outputs a list of pairs of the time period and exposed regions within
organizations where E(di) was present. (Note that the connectivity
events contain information that can be used to identify the device
(and hence the owner), and thus, can be used to establish coarse-
level localization based on the access point’s location, (as has been
studied in [61], [65], [67], [68]).
A2: Exposure tracing application: inputs the output of exposure
map application A1 (i.e., a list of pairs of the time period and
exposed locations) and outputs a list of the time period and
(encrypted) device ids/addresses, where device-ids correspond to
device-ids that were present at the exposed locations specified
in the input. Note that by this application, QUEST does not
support contact tracing, but it provides an approximation and
makes contact tracing easier, by identifying people who potentially
should be contact traced (by first identifying locations visited by
the infected person, using application A1).
A3: Occupancy count application: inputs a period of time and
outputs a list of the count of devices connected to access points.
Moreover, depending on the information of access points covering
a region of a building, it provides the number of devices (i.e., the
count of people) in each region. This application helps in finding
potential overcrowded regions (both inside/outside buildings).

The key to QUEST is privacy-preserving mechanisms that
implement the above functionalities at a public cloud, while
preventing the cloud from gaining the ability to learn the identity
of individuals, either those who may have been infected or those
who could have been exposed, by observing the dataset collected
by QUEST. QUEST is designed as an end-to-end system that (i)
collects WiFi (connections) events/data, (ii) transforms the device
identifier/address (typically MAC address of the device) using
a secure hash function such that an adversary (which may the
cloud) cannot confirm the transformed representation to a specific
identity (e.g., MAC address), (iii) encrypts the WiFi connectivity
data with the transformed device representation in order to store
ciphertext data at the cloud, and (iv) generates encrypted queries
(called trapdoors) for query execution on the encrypted data and
answering the above-mentioned applications.

Note that while we list only three applications above, QUEST

is designed to be general enough to support other applications over
WiFi data, such as tracking a person on a particular day, tracking
when two persons met in the last five months, etc.
CQUEST and IQUEST. QUEST supports two different crypto-
graphic alternatives for secure data processing to support different
security levels.

The first is a computationally secure encryption-based mech-
anism, entitled CQUEST that encrypts data using a variant of
searchable encryption methods. Note that computationally secure
techniques can be broken by a computationally efficient adver-
sary. The second approach is an information-theoretical secure
technique, entitled IQUEST that is based on a string-matching
technique [29] over secret-shares generated using Shamir’s secret-
sharing algorithm [58]. Note that information-theoretical secure
techniques are secure regardless of the computational capabilities
of an adversary. Note that information-theoretical secure tech-

niques provide a higher level of security than computationally
secure techniques. Both CQUEST and IQUEST support the above-
mentioned applications. We have deployed CQUEST at University
of California Irvine (UCI) [4], as well as, tested the system on
large WiFi datasets. Note that in this paper, we will also present
experimental results of IQUEST on large WiFi datasets. These
datasets were collected as a part of the TIPPERS smartspace
testbed at UCI [50] and are also used for scalability studies.
(Please see interfaces of the three applications in Appendix B.)

1.2 Advantages of QUEST
QUEST comes with the following advantages over other ap-
proaches based on Bluetooth or GPS data:
Privacy-by-design. QUEST is an end-to-end privacy-preserving
exposure tracing and occupancy count system based on WiFi
technology. Compared to other WiFi-based proposals [61], [65],
[67], [68], QUEST only deals with encrypted data and hence
prevents leakages of user location to the cloud or to other users.
For maintaining data privacy, QUEST exploits both types of
cryptographic techniques computationally secure and information-
theoretically secure techniques in such a way that an adversary
cannot learn past behavior or predict the future behavior of any
user. Furthermore, QUEST prevents the privacy of the users who
visit multiple organizations, by producing ciphertext such that
even from jointly observing data of multiple organizations an
adversary does not learn any information of any users.
Passive solution. Since WiFi is ubiquitous in modern organi-
zations, QUEST is passive in terms of not requiring users to
download apps/update OS/organizations to deploy sensors, and
collects no additional user data (other than what is already being
captured to support WiFi access). Thus, QUEST can be deployed
and used by simply notifying individuals about the existence of
QUEST at the organization’s premises, instead of seeking explicit
user consent. Note that in contrast, Bluetooth-based solutions (e.g.,
GAEN by Google/Apple) require OS upgrades and installation of
apps, which limit their adoption, while GPS-based solutions only
work in outdoors.
Organization-based. QUEST is a decentralized solution, i.e.,
QUEST allows each organization (e.g., universities and offices) to
take steps autonomously and independently to maintain the safety
of their premises by warning people about possible exposure
on their premises and finding occupancy count at coarse level;
(unlike Bluetooth-based solutions [1], [2], [5], [6], [23], [28], [39],
[62] requiring centralization of the data by a single organization
such as Google or Apple about all people who use their app).
Though QUEST uses the public cloud to store the data of multiple
organizations, each organization can use the same or different
cloud vendors. In other words, the public cloud plays the role
of data storage and encrypted search and does not perform any
contact tracing. Moreover, QUEST encrypts data in a way that
the public cloud cannot learn anything from jointly looking at
ciphertext data that belongs to multiple organizations.
No calibration. Compared to WiFi connectivity data, approaches
based on signal strength, time of flight, and angle of arrival may
be more accurate. However, they require extensive calibration/-
training/fingerprinting to work well across different settings. WiFi
connectivity data, in contrast, provides a turnkey solution (no
calibration/training). Equally importantly, it can be implemented
in the encrypted domain; the alternate solutions require signal
processing on an encrypted domain that adds complexity.
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1.3 Discussion
In the present time (at the time of writing of the paper February
2022), organizations such as schools and universities are notify-
ing students and faculties about possible exposure through co-
occupancy due to an infected person in classrooms or confined
areas. QUEST is designed to empower organizations to determine
such co-occupancy in a privacy-preserving manner. Note that
QUEST is not a tool to replace contact tracing based on distance,
time, and immunity. Furthermore, our intention by occupancy
count is to count the total number of connected devices to an
access point, and depending on the background information about
the location that the access point covers, we find an approximate
occupancy count of the location. In situations such as duplicate
devices, the presence of spurious devices (such as printers/ma-
chines) in buildings that may artificially affect the occupancy
counts, missing sensor values (due to disconnections), and location
ambiguity due to the coarse nature of the region covered by an
access point, QUEST cannot find occupancy count close to the
correct value. There are tools such as Locater [48] that exploit
semantic information (lifted directly from data) about the affinity
of people to each other and to locations to clean WiFi data. Such
tools (Locater) reach accuracy as high as 92-93% establishing
WiFi signal as a viable technology for indoor localization and for
occupancy determination. Locater is not the only tool out there that
is using WiFi connectivity for awareness about indoor occupancy.
There are at least two recent startup ventures exploring such a
technology [7], [8]. The focus of QUEST is not building a new tool
for cleaning WiFi data to accurately perform localization using
WiFi. To keep the paper focused on privacy techniques, QUEST

considers the simplistic assumption that WiFi device connectivity
event between WiFi access-points and the device locates an
individual to the precision required to determine exposure, as well
as, to accurately compute occupancy. QUEST can be used over the
cleaned WiFi data using tools (such as [7], [8], [48]) to achieve
more accurate occupancy counts.

1.4 Outline of the Paper
§2 provides detailed related work and compares QUEST against
other approaches designed specifically for COVID-19. §3 provides
the model and security requirments. §4 provides the architecture
of QUEST. §5 provides CQUEST protocol. §6 provides IQUEST

protocol. We evaluate QUEST in §7 and compare it with other
state-of-the-art approaches, e.g., Opaque [66] and multi-party
computation (MPC)-based Jana [17]; we discuss tradeoffs between
security and performance.

2 RELATED WORK AND COMPARISON
This section discusses new approaches designed for COVID-19
contact tracing, several prior proximity-based solutions to monitor
the spread of infections, and compares them against QUEST.

Comparison with COVID-19 proximity finding approaches.
Several approaches for preventing the spread of coronavirus
are based on Bluetooth data-based secure proximity detection.
Among them, the most famous is GAEN by Google/Apple [1].
Also, Switzerland’s SwissCovid [9], South Korea’s 100m [6],
Singapore’s TraceTogether application [5], DP-3T (decentralized
privacy-preserving proximity tracing) [62], Stanford University
app [10], and [23], [28], [39] are based on Bluetooth-based
tracking. Enigma MPC, Inc. [11] developed SafeTrace that re-
quires users to send their encrypted Google Map timeline to a
server equipped with Intel Software Guard Extensions (SGX) [26]

(secure hardware) that executes contact tracing and finds whether
the person got in contact with an impacted person or not. A survey
of recent contact tracing applications for COVID-19 may be found
in [60].

However, all such methods suffer from several limitations: (i)
Limited adoption: GAEN by Google/Apple require OS upgrades
as well as installation of the application. Such a thing is also
common in other Bluetooth-based applications. This limits adop-
tion due to inertia. Several studies show GAEN adoption needs
to be above 60% for effective contact tracing that is difficult
to achieve with non-passive technologies. (ii) Significant privacy
concerns: [24], [38] have shown that data collection process in
Bluetooth-based applications jeopardizes the user privacy by either
broadcasting, sharing, and/or collecting the data using Bluetooth.
Moreover, past experiences have indicated that creating pathways
for large organizations (such as Google and Apple) to capture
personal data can lead to data theft, e.g., Facebook’s Cambridge
Analytica situation. The privacy concerns further restrict the adop-
tion of such technologies in parts of the world where privacy is
considered to be a paramount concern [21], [39] (iii) Data storage
and computation at the device: all Bluetooth-based applications
require to store some data [5], [11], [23], [28], [62] and execute
computation [11], [23], [28] at the device.

In contrast, QUEST does not require any effort by users, since
QUEST relies on WiFi data that is generated when a device
connects with a WiFi network. QUEST is implemented in a
decentralized way with each organization that manages data about
exposure at their premise instead of centralizing the data as in
GAEN or others. Furthermore, QUEST only deals with encrypted
data, preventing leakage of user location to an adversary. The key
contribution of QUEST is a new protocol with appropriate security
mechanisms to ensure both data security and high performance
needed to sustain organizational-level installations.

Comparison with other proximity finding approaches.
Epic [14] and Enact [54] are based on WiFi signal strength, where
a user scans the surrounding’s wireless signals, access points, and
records in their phones. The infected user sends this information
to a server that notifies other users and requests them to find
their chances of contact. However, Epic [14] and Enact [54]
consider trust in reporting by the infected users and requires
storing some information at the smartphone, like Bluetooth-based
solutions [5], [11], [23], [28], [62]. Another problem with such
signal strength-based methods is in developing models to compare
WiFi signals and have issues related to spatial, temporal, and in-
frastructural sensing [41]. NearMe [43], ProbeTag [49], [56], [51],
and [44] proposed similar approaches for proximity detection.
[33] provided a solution for proximity testing among the users
while hiding their locations by encryption and considered user-to-
user-based and server-based proximity testing. Note that all such
methods require active participation from the users.

In contrast, QUEST does not require active participation from
users, since QUEST relies on WiFi connectivity data, which is,
obviously, generated when a device connects with a WiFi network.

Comparison with approaches based on WiFi data. We also note
that recently, several startups have begun exploring the utility of
WiFi data. For instance, Blyncsy Inc. [7] and Occuspace.IO [8]
provide a cloud-based service to collect WiFi data in order to
determine dynamic occupancy counts of different spaces based
on which they support applications, such as dashboards of space
utilization, the density of people, programmable triggers to alerts
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(e.g., overcrowding). COVID-19 has spurred WiFi-based moni-
toring even further with several academic efforts including [61],
[65], [67], [68] that have explored several applications related
to monitoring/mitigating COVID-19 through people to people
contact at their workspaces. To date, efforts so far have focused on
algorithms for locating people based on WiFi connectivity [48],
[65], [67] or on building applications using WiFi data [8], [65],
[68], but have not considered the security and privacy challenges
that arise when WiFi data is collected and applications are built
on WiFi data.

In contrast, QUEST provides an end-to-end WiFi data security
by implementing the two types of cryptographic techniques and
prevents the misuse of the WiFi data by any user or the cloud.

Background on cryptographic techniques. We may broadly
classify existing cryptographic techniques into two categories: (i)
Computationally secure solutions that includes encryption-based
techniques such as symmetric-searchable encryption (SSE) [27],
[46], [47], [59], deterministic encryption [20], and order-
preserving encryption (OPE) [13], (ii) information-theoretically
secure solutions that include secret-sharing-based techniques [29],
[58] and multi-party computation (MPC) techniques [17]. Com-
putationally secure solutions, such as SSE — PB-tree [46] and
IB-tree [47], are efficient in terms of computational time. How-
ever, they (i) reveal access patterns (i.e., the identity of the
row satisfying the query), (ii) do not scale to a large-dataset
due to dependence of a specific index structure, (iii) are not
efficient for frequent data insertion, since it requires rebuilding
the entire index at the trusted side, and (iv) cannot protect data
from a computationally efficient adversary or the government
legislation/subpoena that may force to give them the data in
cleartext. In contrast, information-theoretically secure solutions
hide access patterns, as well as, secure against a computationally
efficient adversary or the government legislation/subpoena, (if
the shares of the data are placed at the public servers under a
different jurisdiction). Instead of using any cryptographic solution,
one may also use secure hardware-based solutions that include
Intel Software Guard eXtension (SGX) [26] based systems, e.g.,
Opaque [66], HardIDX [31], and EncDBDB [32]. However, such
solutions suffer from similar issues as computationally secure
solutions and suffer from additional side-channel (cache-line [37]
and branching) attacks [64] that reveal access patterns.

In contrast, QUEST comes with both computationally se-
cure and information-theoretically secure mechanisms, thereby
depending on the need the organization can select one or both
mechanisms.

3 PRELIMINARY
This section explains the entities involved in deploying QUEST,
their trust assumptions, and the desired security requirements.

3.1 Entities
We have the following four major entities in QUEST, see Figure 1.

• Users (U ): are individuals, who carry their mobile devices that
connect to the WiFi network on the organization’s premise and
generate connection events. The device id or the device address
(i.e., MAC address) serves as the identity of the user, and the cor-
responding WiFi access point they connect to identify the location.
Users are allowed to execute exposure tracing applications via
QUEST over the (encrypted) WiFi connectivity data. Also, users
are allowed to know the output of the exposure map application,
i.e., a list of pairs of the time periods and exposed regions.
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Fig. 1: Entities in QUEST.

A user is not trusted with the cleartext data of other users. In other
words, a user may also wish to learn the behavior of other users by
executing exposure tracing applications on behalf of other users.
Each user Ui has their own public and private keys, denoted by
PuK ui and PrK ui , respectively. The public/private key distri-
bution is done by a trusted authority, and improving/modifying
the generation/distribution of the public/private keys is outside the
scope of this paper.
Note that we assume that before accessing the WiFi services
at the organization, users register their device MAC addresses
along with their identifiable information (such as a public key)
at the organization. Such information is maintained in a file,
called registry at the organization. Note that such type of registry
information is presently maintained by several organizations, such
as universities and office campuses.

• An organization (O): owns WiFi infrastructure (e.g., WiFi ac-
cess points/routers). We assume that the organizations are not
malicious in terms of data collection and usage. WiFi infrastruc-
ture at the organization generates connection events of the form
〈di, li, ti〉, where di is the ith device-id and ti is the time when
di connects with a WiFi access point li. Such connection events
are sent to QUEST hosted at the public cloud in a secure manner
(by encrypting with the public key of the secure hardware hosted
at the cloud. Note that the encrypted data sent by an organization
is never stored at the cloud, the secure hardware just reads the
encrypted data from the network via accessing sockets, executes
the proposed methods via QUEST to appropriately encrypt the
data, and this data is stored at the cloud). Also, the organization
sends the encrypted registry to the cloud. The organization is
allowed to execute the occupancy count application via QUEST

over the (encrypted) WiFi data. We assume that O is trusted, but
does not want to participate in executing applications. An Oi has
their own public and private keys, denoted by PuK oi and PrK oi ,
respectively.

• The public cloud (C): hosts QUEST. We assume that a public
cloud is not trusted with the cleartext data and code of QUEST.
Particularly, we assume that public cloud servers are honest-but-
curious (HBC). Such an adversarial model is considered widely in
data outsourcing techniques [22], [27], [29]. An HBC adversary
may wish to learn information about the data, but never tamper
with the data/query/results.
Due to the untrusted environment at the cloud, QUEST is executed
inside a secure tamper-proof hardware enclave (E), such as Intel
Software Guard eXtensions (SGX) [26].1 We assume that the
secure enclave E has its own public and private keys, denoted by
PuK E and PrK E, respectively. Also, we assume that SGX is not
prone to side-channel (cache-line, branch shadow, page-fault [45],
[63], [64]) attacks, as other work [31], [32], [66] on SGX also

1. The assumption of secure hardware at untrusted third-party machines is consistent
with emerging system architectures; e.g., Intel machines are equipped with SGX [12].
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assumed the same.
As mentioned before, QUEST reads the encrypted data from the
network via accessing sockets. Then, QUEST decrypts the received
WiFi data and then, appropriately encrypts the data (using the
proposed algorithm) on which encrypted queries can be executed
based on trapdoors (i.e., encrypted queries) generated by QUEST.
QUEST’s goal is to ensure that the ciphertext it produces cannot
be used to reveal the user behavior. Also, QUEST maintains the
encrypted registry based on which before executing exposure map
and/or tracing applications, QUEST verifies the identity of the user.
Also, QUEST authenticates the organization before executing the
occupancy count application.

• A publisher P: publishes the secure hash digests (using a hash
functionH with key κ) of device-ids of confirmed infected people,
iff infected people wish to reveal their device-ids to P . The
publisher is assumed to be trusted, and the role of a publisher can
be played by hospitals or CDC. Note that by this way infected
individuals empower organizations to identify infected locations
by them over time in the organization’s premises. The key κ is
only known to QUEST and P . (The key κ can, also, be distributed
by the trusted authority (which distributes the public/private keys
to all entities) to QUEST and P).

3.2 Security Requirements and QUEST
Now, we discuss the security requirements and briefly provide an
overview of how does QUEST address them (note that the formal
security requirements will be discussed in Section 3.2):

R1: Preventing the cloud to track users. WiFi (connectivity)
data contains the MAC address of a device that could be used
to track people at the granularity of the neighborhood of access
points they connect to. Thus, a system must prevent the cloud
to track individuals from using WiFi data without their consent.
Moreover, since QUEST might be deployed in multiple organi-
zations simultaneously, the system needs to prevent the cloud
to track users across organizations. These requirements need the
design of an efficient cryptographic mechanism that will produce
secure ciphertext (called ciphertext indistinguishability property)
to prevent the cloud from tracking an individual over the ciphertext
data belonging to either one or multiple organizations.
Our approach. To securely encrypt the data, QUEST executes

two layers of encryption, the first converts the device address into
a secure hash-digest (by using a hash functionH and key κ, which
is unknown to all entities except QUEST and the publisher; see
§3.1), and the second encrypts the data using the concatenated
secure key of QUEST sq and the public key of the organization for
which QUEST is working (see details in §5.2). Thus, to know the
device address to ciphertext mapping, an adversary needs to know
κ, sq , and H, which are hidden from the adversary.

R2. Restricting users from accessing other users’ data. A user
may wish to learn about other users, information such as who is
suffering from COVID to harass them. Thus, it is required that the
system must not reveal the device address and information of the
real COVID-19 patient in cleartext to any other users. Moreover,
a user may wish to learn the past behavior of other users based
on WiFi data. Hence, it is also required that the system provides
information to the user that is based on their device address only.
Our approach. In QUEST, only the publisher publishes a secure

list of the real infected people, iff they wish to reveal their device
address to QUEST (securely), by using H and κ. Based on the
secure list of the real infected people, QUEST only produces the

potentially exposed locations via exposure map application and
potentially exposed device addresses via exposure tracing appli-
cation, after user authentication. Furthermore, to restrict more,
QUEST can produce a binary answer when executing the exposure
tracing application, i.e., QUEST can maintain the list of potentially
exposed devices securely and can return an answer 0 or 1 to the
user if their device address intersects with the list (see §5.2 for
details).

R3: Light-weight cryptographic solution. While QUEST could
be built using existing secure data processing techniques/sys-
tems (e.g., searchable-symmetric encryption (SSE) [46], [47],
CryptDB [53], and Arx [52]) or secure hardware-based systems
(e.g., Opaque [66], EnclaveDB [55], and Cypherbase [16]), such
solutions exhibit significant limitations, when serving as a building
block for our purpose. First, the underlying encryption technology
has to sustain data rates in the order of several thousands of
connectivity events per minute.2 Second, the system must be
capable of supporting near real-time answers to queries over
millions of records. Such workloads are simply impractical to
support using existing cryptographic approaches. Many SSEs
solutions [59], not supporting indexes, require linear scans to
process queries. While indexable techniques have been explored
[46], [47], such techniques do not support efficient frequent data
insertion due to building entire indexes at the trusted side for
each insert operation. While recent approaches exploiting secure
hardware (e.g., [32], [55], [66]) have explored scalable batch-
based data insertion, they suffer from significant computational
overheads (see the experimental study in §7.2).
Our approach. Given the above limitations of existing cryp-

tographic approaches, we build QUEST using deterministic en-
cryption (DET). There are several advantages of using DET —
first, DET-based approaches can support dynamic insertion and
index-based retrieval, especially for point queries (and also for
range queries with a discretization of the domain). Also, industrial
systems, such as Microsoft Always Encrypted [15], support DET.
While DET-based solutions scale to the need of QUEST, naı̈vely
using DET will reveal data distribution by observing data-at-rest.
Such an approach will offer very little security, especially when
connectivity patterns of a device could lead to the disclosure of
the user identity. Instead, the encryption mechanism in QUEST

exploits the limited nature of queries (that need to be supported
to store data using DET) in such a way it does not reveal the
distribution and provides strong security guarantees similar to
SSEs. This is achieved by devising a special encryption and
encrypted query (called trapdoor) generation techniques, which
we refer to as CQUEST (§5).

3.3 Scope the Problem
There are other aspects in developing a secure system for sensor
data outsourcing as listed below. QUEST is not designed to deal
with these aspects, and we assume that one can use existing
protocols to deal with these aspects. (i) Authentication protocols
and a secure network. We assume the existence of a public/private
key-based authentication protocol [42] among different entities of
QUEST. Also, we assume the existence of secure communication
protocols that can detect/mitigate network-level attacks, e.g., man-
in-the-middle attacks. (ii) Trusted sensors. We assume that sensors

2. A medium-size college campus may have several thousand access points that can
produce data at the average rate of ≈100 connectivity event per second [67].
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Fig. 2: QUEST system.

(i.e., WiFi access points) are not malicious and cannot be replicat-
ed/spoofed. (iii) Inference from aggregate queries. An adversary
may infer sensitive information from answers to occupancy count
application; but, QUEST does not deal with this issue. We can
minimize such inferences by limiting the preciseness of answers
(e.g., binary results).3 (iv) Inference from the number of sensor
readings. There could be an inference from the number of sensor
readings being outsourced by an organization. E.g., on weekdays
and weekends, WiFi access points produce a different number of
rows. QUEST does not deal with such an issue, but we can handle
it by outsourcing fake rows. (v) Inference due to background
knowledge about a user/organization. There could be an inference
based on the background knowledge about a user and/or an
organization. For example, if it is well-known that person X is
the only person who visits an organization O every day in the
morning (e.g., Sunday morning), then encrypting the data cannot
hide this fact from an adversary, and based on the encrypted data,
the adversary will know that all rows correspond to person X at
location O. QUEST is not designed to deal with such an issue.

4 QUEST ARCHITECTURE
QUEST contains the following three major components (see Fig-
ure 2) and dataflow among them is shown in Figure 2.

Data collector: works at the organization and collects WiFi
connectivity (or association event) data of form 〈di, lj , tk〉, when
a device di connects to a WiFi access point lj at time tk. Partic-
ularly, at the organization side, the collector contains a wireless
controller that receives WiFi data from several access points ( 0 ),
via several methods, e.g., SNMP (Simple Network Management
Protocol) traps [57], [67], recent network management protocol
NETCONF [30], or Syslog [34]). Such data along with the registry
is securely transmitted to QUEST, which is hosted at a public cloud
( 1 ) over the network.

Data encrypter. QUEST at the cloud contains two modules: data
encrypter and trapdoor generator. Both modules execute inside
a secure enclave. Data encrypter implements a cryptographic
technique (using CQUEST Algorithm 1 or IQUEST Algorithm 3)
over the data that is collected for a fixed interval duration, called
epoch (the reason of creating epochs will be clear soon in §5) and
outputs the secured data that is written in the standard database
management system (DBMS) at the servers ( 2 ).

Trapdoor generator. An application is submitted to the trapdoor
generator ( 3 , 4 ) that generates the secure encrypted query, called

3. Such inferences cannot be eliminated by existing cryptographic techniques. One
could potentially use differential privacy [19], while receiving only probabilistic answers.

trapdoor (using Algorithm 2 or 4) for query execution on secured
data. For exposure map application, it receives a hash digest of
device-id of infected persons from P ( 5 ). For exposure tracing
application, it authenticates users based on public/private keys and
their information in the registry. Trapdoors are sent to the DBMS
containing the data at the server that executes queries and sends
back encrypted results ( 6 ). The results are decrypted inside the
enclave before producing the final answer ( 7 , 8 ).

5 CQUEST PROTOCOL
This section presents computationally-secure methods, CQUEST

to encrypt WiFi data and to execute queries on encrypted WiFi
data. First, we provide a high-level overview of the protocol.

5.1 High-Level Overview of CQUEST
This section presents the high-level overview of CQUEST and
details will be presented in the next section §5.2.
Data encryption. QUEST partitions time into subintervals, called
epochs, and executes data encryption algorithm for each row of
each epoch (that has a unique identifier). In QUEST, the cleartext
WiFi dataset contains three columns: device-id (Dev), location
(Loc), and time (Time), and each row is of the following
form: 〈di, li, ti〉. CQUEST encrypts rows such that we satisfy the
following two needs:

1) Secure ciphertext or ciphertext indistinguishability and untrack-
able encrypted data. First note that satisfying this need will
result in addressing the three security requirements R1, R2, R3
of §3.2. CQUEST produces non-identical ciphertext for more than
one appearance of an identical device address or location, by
(i) implementing the hash function H under the key κ over
each device address, and (ii) adding an increasing counter or
a random number with the output of the hash function for a
single device address or a location along with the epoch identifier,
before encrypting them. Note that this prevents an adversary from
learning any information by just looking at the ciphertext.

2) Efficient query processing. While having only encrypted device
address and location columns for each epoch can answer any
query, CQUEST includes two additional encrypted columns for
efficient query processing: (i)ACL for finding all locations visited
by a device in an epoch by placing a list of locations visited by
the device in a row corresponding to the device’s first appearance
in the epoch, and (ii) Au for finding unique devices at different
locations in an epoch by creating searchable encrypted values for
non-duplicated appearances of a device. ACL (and Au) column
helps in the exposure map (and occupancy) application.
Example 5.1.1. Table 1a shows six rows of WiFi data, and
Table 1b shows encrypted rows that are partitioned over two
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Dev Loc Time
1 d1 l1 t1
2 d2 l2 t2
3 d1 l2 t3
4 d2 l1 t4
5 d2 l1 t5
6 d3 l2 t6

(a) Cleartext original WiFi dataset.
A∆ Aid Au AL ACL

1 Ek1(∆x) Ek2(d1, 1,∆x) Ek3(1, 1,∆x) Ek4(l1, 1,∆x) Ek5(r, l1, l2)
2 Ek1(∆x) Ek2(d2, 1,∆x) Ek3(1, 2,∆x) Ek4(l2, 1,∆x) Ek5(r, l1)
3 Ek1(∆x) Ek2(d1, r) Ek3(1, 3,∆x) Ek4(l2, 2,∆x) Ek5(Fake, 3)
4 Ek1(∆y) Ek2(d2, 1,∆y) Ek3(1, 1,∆y) Ek4(l1, 1,∆y) Ek5(r, l1, l2)
5 Ek1(∆y) Ek2(d2, r) Ek3(0, r) Ek4(l1, 2,∆y) Ek5(Fake, 5)
6 Ek1(∆y) Ek2(d3, 1,∆y) Ek3(1, 3,∆y) Ek4(l2, 1,∆y) Ek5(r, l1)

(b) Encrypted WiFi table for an epoch.
TABLE 1: Original WiFi dataset and encrypted WiFi dataset using
CQUEST Algorithm 1.

epochs, each containing three rows. The first epoch is denoted
by ∆x containing the first three rows, and the second epoch is
denoted by ∆y containing the last three rows. The encrypted table
(denoted by R) has five columns: A∆ for encrypted epoch id, Aid
for encrypted device address, AL for encrypted location, ACL for
an encrypted list of locations visited by a device in an epoch, and
Au for the uniqueness of devices at different locations in an epoch.

Note that first, we implement the hash function H under the
key κ on the device-id di ∈ 〈di, li, ti〉 to produce 〈Hκ(di), li, ti〉
(to satisfy the above-mentioned first need). In rest of the paper,
for simplicity, we use di instead of Hκ(di). Now, for producing
secure ciphertext, CQUEST adds counter and random numbers in
the values of Aid and AL columns; see any value in the second
and fourth columns of Table 1b (e.g., E(l2, 1) and E(l2, 2)).

For efficient query processing (the above-mentioned second
need), CQUEST adds: (i) an encrypted column ACL, for example,
see row 1 in ACL column storing a list of locations visited by d1

in the epoch ∆x, while other appearances of d1, i.e., row 3, in the
same epoch ∆x do not contain the same list; and (ii) an encrypted
column Au, for example, see row 1 and row 3 of Au column that
marks device d1 at location l1 and l2 as unique (by Ek3(1, 1,∆x))
in row 1 and (by Ek3(1, 3,∆x)) in row 3. �

Query execution. CQUEST supports the three applications (as
mentioned in §1.1). Before executing a query, CQUEST verifies the
querier’s identity. Then, CQUEST generates the encrypted queries
(called trapdoors) in the enclave according to the application and
fetches only the desired encrypted data in the enclave to produce
the final answer after filtering redundant encrypted rows.
Example 5.1.2. Suppose, the device d1 belongs to an infected
person. Such information is provided by the publisher to QUEST

by sending Hκ(d1). Now, assume that we want to find locations
visited by Hκ(d1) in epoch ∆y , i.e., executing exposure map ap-
plication forHκ(d1) over the epoch ∆y . Then, CQUEST will gen-
erate the following trapdoor E(Hκ(d1), 1,∆y) (or E(d1, 1,∆y),
as mentioned before that for simplicity we omit using Hκ(d1))
and will fetch a corresponding value from ACL column. �

5.2 Details of CQUEST
Now, we will present details of CQUEST’s algorithms.

CQUEST Key Generation
QUEST encrypter generates a symmetric key, as follows: (sq ⊕
kpko)||columni, i.e, the key is generated for each column of
R by XORing the secret-key of QUEST (sq) and public key of
organization (kpko), and then concatenating with the column-id.

Algorithm 1: CQUEST Data Encryption Algorithm.
Inputs: ∆: duration. 〈di, lj , tk〉: A row.H: Hash function. E : encryption

function. PRF: a pseudo-random generator.
Output: R(Aid ,Au,AL, ACL,A∆): An encrypted table R.
Variable: cli : A counter variable for location li.

1 Function encrypt(∆x) begin
2 ∀ty = 〈di, lj , tk〉 ∈ ∆x:

`i ← create list device location(distinct(di ))
3 HTabid ← init hash table device(),

HTabL ← init hash table location()
4 for ty = 〈di, lj , tk〉 ∈ ∆x do
5 r ← PRF()
6 //Allocating epoch identifier to rows and creating column A∆

R.A∆[y]← Ek1(∆x)
7 //Encrypting device-ids and creating columns Aid and Au

if HTabid [H(di)] 6= 1 then R.Aid [y]← Ek2(di, 1, x),
R.Au[y]← Ek3(1, y,∆x), αi[]← lj

8 else if HTabid [H(di)] == 1 ∧ lj /∈ αi[] then
R.Aid [y]← Ek2(di, r), R.Au[y]← Ek3(1, y,∆x),
αi[]← lj

9 else if HTabid [H(di)] == 1 ∧ lj ∈ αi[] then
R.Aid [y]← Ek2(di, r), R.Au[y]← Ek3(0, r)

10 //Encrypting locations and creating columns AL and ACL

ifH(lj) /∈ HTabL ∧ HTabid[H(di)] 6= 1 then
HTabid [H(di)]← 1, clj ← 1,
R.AL[y]← Ek4(lj , clj ,∆x), R.ACL[y]← Ek5(r, `i)

11 else ifH(lj) /∈ HTabL ∧ HTabid[H(di)] == 1 then
clj ← 1, R.AL[y]← Ek4(lj , clj ,∆x),
R.ACL[y]← Ek5(Fake, r)

12 else ifH(lj) ∈ HTabL ∧ HTabid[H(di)] 6= 1 then
HTabid [H(di)]← 1, R.AL[y]← Ek4(lj , clj + 1,∆x),
R.ACL[y]← Ek5(r, `i)

13 else ifH(lj) ∈ HTabL ∧ HTabid[H(di)] == 1 then
R.AL[y]← Ek4(lj , clj + 1,∆x),
R.ACL[y]← Ek5(Fake, r)

14 cmax ← max(cmax , clj ), ∀lj

15 Delete all hash tables for ∆x

We denote the key for a column i by ki in Algorithm 1, and
unless not clear, we drop the notation ki from the description.

CQUEST Data Encryption Method
Algorithm 1 provides pseudocode of the proposed data encryption
method that is executed at QUEST encrypter. It takes rows of an
epoch, produces an encrypted table R with five columns. Table 1b
shows an example of the produced outputs by Algorithm 1, which
works as follows:

Selecting epochs and creating column A∆ (Lines 6). We use bulk
encryption. Note that WiFi access points capture time in millisec-
onds and ping the same device after a certain interval, during
which the device can move. These two characteristics of WiFi
data make it hard to track a person based on time.4 Thus, we
discretize time into equal-length intervals, called epoch, and store
a special identifier for each interval (that maps to the wall-clock
time). An epoch x is denoted by ∆x and is identified as a range
of begin and end time. All sensor readings during that time period
are said to belong to that epoch. Thus, we allocate an identical
epoch identifier to all rows belonging to epoch ∆x and encrypt
the identifier. Epoch identifiers allow searching based on time.5

There are no gaps between epochs, i.e., the end time of the
previous epoch is the same as the begin time of the next epoch.
For simplicity, we identify each epoch by its beginning.

Encrypting device-ids and creating column Aid (Lines 7-9). On
each device id di of an epoch, CQUEST first implements the hash
functionH under key κ, that results inHκ(di). For simplicity, we

4. For example, a query to find a device’s location at 11:00am, cannot be executed in a
secure domain, due to unawareness of millisecond-level time generated by access points.

5. Based on epoch-ids, we can execute a query to find the device’s location at any
desired time, e.g., 11:00am.
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Algorithm 2: CQUEST query execution algorithm.
Inputs:H: Hash function. E : encryption function. Registry[]: As defined in

§3.1. T : A fixed interval (e.g., 14 days).
Output: Answers to queries.

1 Function Exposure Map(q(di,Time)) begin
2 Q: Generate trapdoors E(di, 1,∆t): ∆t is the epoch-id covers the

requested Time
3 S→ Q: loc, epoch[∗, ∗]← Location and epoch-ids from ACL and

A∆ corresponding to E(di, 1,∆t) from Aid

4 Q: Decrypt loc, epoch[∗, ∗] and produce answers

5 Function Exposure Trace(q(di,Time)) begin
6 Q: loc, epoch[∗, ∗]← Location Trace(q(di,Time))
7 Q: Generate trapdoors: ∀li ∈ loc: E(li,m),

m ∈ {1,max counter for any location}
8 S→ Q: id[]← Values from Aid corresponding to E(li,m) and T

covers epoch[]
9 Q: Decrypt id[]

10 User→ Q: know about their exposure
11 Q: Authenticate the user against the registry information and if

successful, perform intersection of id[] and the user device address and
return the appropriate answer

12 Function Occupancy count(q(Time)) begin
13 Q: Generate trapdoors: E(1, y,∆t), y = max rows in any epoch, ∆t =

epoch-id covers the requested Time
14 S→ Q: loc[]← Location values from AL corresponding to

E(1, y,∆t) from Au
15 Q: ∀li ∈ Decrypt(loc[]), countli ← countli + 1

use di to denote Hκ(di) in the following. As mentioned before
in §3.2, CQUEST uses deterministic encryption, which reveals
frequency of a value via ciphertext, also known as frequency-
count attack. To prevent such information leakage and efficiently
finding the first appearance of di in any epoch (when executing
exposure trace application), CQUEST encrypts the first appearance
of di in an epoch ∆x as: E(di, 1,∆x), where 1 shows the first
appearance of di in the epoch ∆x. In addition, CQUEST maintains
a hash table (HTabid ) with value one for di in the epoch ∆x.
All the other appearances of the device di in the epoch ∆x are
encrypts as E(di, r), where r is a random number used to produce
secure ciphertext, i.e., preventing the frequency count of a value
via ciphertext, in the epoch ∆x.

Uniqueness of the device and creating column Au (Lines 7-9). To
execute the occupancy count application, we need to know unique
devices at each location in the epoch ∆x. Thus, when a device
di appears for the first time at a location in yth row, we add its
uniqueness by E(1, y,∆x). (As will become clear soon, it will
avoid CQUEST to decrypt all encrypted device-ids for knowing
distinct devices in ∆x.)

Encrypting locations and creating columns AL and ACL

(Lines 10-13). First, we need to produce different ciphertexts for
multiple appearances of a location to prevent frequency-count
attack, while data is at-rest. To do so, CQUEST uses a counter
variable for each location and increments by 1, when the same
location appears again in a row of the same epoch (and could,
also, add epoch identifier, like di’s encryption). Second, we need
to deal with di that moves to different locations in an epoch
∆x. Note that based on E(di, 1,∆x), we can search only the
first appeared location of di in ∆x. Thus, CQUEST collects all
locations visited by di in ∆x and adds to the combined-locations
column ACL in a row having E(di, 1,∆x). CQUEST pads the
remaining values of ACL by encrypted fake values.

CQUEST Query Execution
Algorithm 2 explains encrypted query (called trapdoor) generation
process and their execution at CQUEST. We denote the process in
the enclave at CQUEST by Q and the process outside of the enclave
by S. Below, we explain the execution of our three applications.
Table 9 in Appendix A shows SQL for the three applications.

Exposure map application (lines 1-4). This application takes as
input a period of time and a secure device address (belonging to a
real infected person) provided by the publisher. Before obtaining
the a secure device address (denoted by H(di)), CQUEST authen-
ticate the publisher. Based on H(di), CQUEST produces a list
of pairs of time period and exposed regions within organizations
whereH(di) was present. To do so, Q creates and sends trapdoors
for di as: E(di, 1,∆t),6 where t is the epoch-identifiers that can
cover the desired queried time (line 2). S executes a selection
query for fetching the values of ACL column corresponding to all
encrypted query trapdoors (line 3). The answers to the selection
query are given to Q that decrypts them to know the exposed or
impacted locations in a given epoch (line 4).
Example 5.2.1. Suppose d1 belongs to an infected person in
Table 1b, and we wish to know the location visited by d1 in epoch
∆x. To execute exposure map application, Q creates trapdoor for
d1, as: E(d1, 1,∆x). S checks the trapdoor in Aid column and
sends the corresponding value of ACL column, i.e., Ek5(r, l1, l2)
to Q. On decrypting the received answer, Q knows the impacted
locations are l1 and l2. �

Exposure tracing application (lines 5-11). This application
takes the output of exposed location tracing application A1, i.e.,
loc, epoch[∗, ∗] (line 6). To produce a list of device ids that
may have been exposed (i.e., were at the infected locations), Q
executes creates trapdoors for all such infected locations (line 7),
as: E(li,m), where li is the ith impacted location and m is the
maximum counter value for any location in any epoch, as obtained
in Algorithm 1’s line 14.7 S executes a selection query for the
trapdoor (or a join query between a table having all trapdoors
and another table having the encrypted WiFi data) to know the
corresponding values of Aid column (line 8). All such values are
sent to Q that decrypts them to know the final list of potentially
exposed device addresses in the hash digest form (line 9).

If users request to know their exposure (i.e., the presence at
the infected location), Q first verifies the user, performs the hash
function H under the key κ on the user device address, and then
executes an intersection between the hash digests of user device
address and the list of potentially exposed device addresses in hash
digest form (line 11). Depending on the answer to the intersection,
Q informs the user.
Example 5.2.2. Suppose, in a time duration covered by epoch ∆x,
we wish to know the impacted people that may in contact with
the infected person whose device-id is d1. From Example 5.2.1,
we know that 〈l1, l2〉 are the impacted locations. Suppose the
maximum counter value for any location (cmax ) is two. Thus,
Q generates trapdoors as follows: E(l1, 1), E(l1, 2), E(l2, 1),
E(l2, 2), and sends them to S. S executes a selection query over
AL column for such trapdoors and sends device-ids from Aid

column, corresponding to the trapdoors. After the decryption, Q
knows that d2 is the device of a person that was in contact with
the infected person whose device-id is d1. �

Occupancy count application (lines 12-15). In order to find
occupancy of locations in a given time, Q generates trapdoors
as: E(1, y,∆t), where y is the maximum number of rows in
any epoch, and send such trapdoors to S. S executes a selection
query for fetching the values of AL column corresponding to all

6. For simplicity, we denote a queried device-id by di.
7. Generating trapdoors for impacted locations equals to the maximum counter value

may incur computation and communication overheads. Thus, we will suggest optimization
to prevent this.
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encrypted query trapdoors over Au column (line 3). The answers
to the selection query are given to Q that decrypts and counts the
appearances of each location (line 4).
Example 5.2.3. Suppose that we want to find occupancy in a
time duration covered by epoch ∆y . Q generates the following
three trapdoors to be searched by S in Au column: E(1, 1,∆y),
E(1, 2,∆y), and E(1, 3,∆y). Based on these trapdoors, S sends
E(l1, 1) and E(l2, 1) from AL columns. On receiving the en-
crypted location values, Q decrypts them and counts the number
of rows for each location. �

Advantages of CQUEST. CQUEST’s approach is simple, but
maintains hash tables during encryption of rows belonging to
an epoch. Nevertheless, the size of hash tables is small for an
epoch, (see §7). CQUEST efficiently deals with dynamic data, due
to independence from an explicit indexable data structure, (unlike
indexable SSE techniques [46], [47] that require rebuilding the
entire index due to data insertion at the trusted size). CQUEST’s
query execution algorithm avoids reading, decrypting the entire
data of an epoch to execute a query, (unlike SGX-based sys-
tems [66]); thus, saves computational overheads. Also, the key
generation by XORing sq and kpko prevents the adversary to learn
any information by observing the encrypted data belonging to two
(or multiple) different organizations, since one of the keys will be
surely different at different organizations.

Optimizations for the exposure tracing application. We provide
two optimizations for trapdoor generation in Exposure Trace().
§7 will show the impact of such optimizations. Note that in the
exposure trace application (Line 7 of Algorithm 2), CQUEST

generates the number of trapdoors equals to the maximum counter
values (i.e., maximum connection events at a location in any
epoch; line 14 of Algorithm 1). It may incur the overhead in
generating multiple trapdoors. We can reduce the number of
trapdoors by keeping two types of counters: (i) counter per epoch
to contain the maximum connection events at a location in each
epoch, and (ii) counter per epoch and per location to contain the
maximum connection events at each location in each epoch.

Optimizations for the occupancy count application. The occu-
pancy count application depends on counting the unique devices
at each location. In CQUEST query execution algorithm (Line 13
Algorithm 2), we generate the number of trapdoors equals to the
maximum number of rows in any epoch. We can avoid generating
so many trapdoors, by encrypting and outsourcing counter per
epoch and per location, as mentioned above. Note that based on
the counter per epoch and per location, we can find the unique
device at any location by just decrypting the counter value for the
desired location in the desired epoch.

Information Leakage Discussion
CQUEST address all three security requirements, mentioned
in §3.2, by (i) producing secure ciphertext or ciphertext indistin-
guishable data, (ii) authenticating the user and producing a binary
answer for the exposure trace application, and hence restricting
a user to ask a query about other users, and (iii) carefully using
deterministic encryption techniques. Experiment 3 in §7.1 will
also show the efficiency of CQUEST. The query execution reveals
access-patterns (like SSEs or SGX-based systems [32], [37], [64],
[66]). Thus, an adversary, by just observing the query execution,
may learn additional information, e.g., which of the rows corre-
spond to an infected device id (by observing Exposure Map),
how many people may get infected by an infected person (by

observing Exposure Map). Also, since CQUEST is based on
encryption, a computationally efficient adversary can break the
underlying encryption technique.

6 IQUEST PROTOCOL
We provide one more version of QUEST, called IQUEST that
provides information-theoretic security, i.e., security regardless of
the computational capabilities of an adversary. IQUEST is based on
Shamir’s secret-shares [58] and string-matching operation [29] on
secret-shares. Sharing-sharing techniques are also quantum secure
and use multiple non-colluding cloud servers to store data in the
secret-share form. These servers could be any cloud instantiations
from one or more vendors, such as Microsoft Azure, AWS, or
Google Cloud.

6.1 Background on Secret-Sharing
We provide an overview of Shamir’s secret-shares [58] and the
string matching algorithm [29] that are building blocks of IQUEST.

Shamir’s secret-sharing (SSS) [58]. Informally, in secret-sharing
techniques, a user can take a value, convert it into multiple
pieces (called shares), and store different shares at different non-
colluding servers. A server can compute an operation over indi-
vidual shares, and then, the results computed over the shares are
sent to the user that computes the final answer after interpolation.
Formally, in using SSS [58], the database (DB) owner divides a
secret value, say S, into c different shares, and sends each share to
a set of c non-colluding participants/servers. These servers cannot
know the secret S until they collect c′ < c shares. In particular,
the DB owner randomly selects a polynomial of degree c′ with c′

random coefficients, i.e., f(x) = a0 +a1x+a2x
2 + · · ·+ac′x

c′ ,
where f(x) ∈ Fp[x], p is a prime number, Fp is a finite field
of order p, a0 = S, and ai ∈ N(1 ≤ i ≤ c′). The DB owner
distributes the secret S into c shares by placing x = 1, 2, . . . , c
into f(x). The secret can be reconstructed based on any c′ + 1
shares using Lagrange interpolation [25]. Note that c′ ≤ c, where
c is often taken to be larger than c′ to tolerate malicious adversaries
that may modify the value of their shares.

String matching over secret-sharing. Now, we explain the string
matching algorithm of [29].
DB Owner: outsourcing searchable-secret-share (SSS). Assume
there are only two symbols: X and Y. Thus, X and Y can be
written as 〈1, 0〉 and 〈0, 1〉. Suppose, the DB owner wishes to
outsource Y; thus, creates unary vector 〈0, 1〉. But, to hide exact
numbers in 〈0, 1〉, she creates secret-shares of each number using
polynomials of an identical degree (see Table 2) and sends shares
to servers.

Values Polynomials Ist shares IInd shares IIIrd shares
0 0 + 2x 2 4 6
1 1 + 8x 9 17 25

TABLE 2: Secret-shares of 〈1, 0, 0, 1〉, created by the DB owner.

User: SSS query generation. Suppose a user wishes to search for
Y. She creates unary vectors of Y as 〈0, 1〉, and then, creates
secret-shares of each number of 〈0, 1〉 using any polynomial of the
same degree as used by the DB owner (see Table 3). Note since a
user can use any polynomial, it prevents an adversary to learn an
equality condition by observing query predicates and databases.

Values Polynomials Ist shares IInd shares IIIrd shares
0 0 + 3x 3 6 9
1 1 + 7x 8 15 22

TABLE 3: Secret-shares of 〈1, 0, 0, 1〉, created by the user.
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Servers: String-matching operation. Each server has a secret-
shared database and a secret-shared query predicate. For executing
the string-matching operation, the server performs bit-wise multi-
plication and then adds all outputs of multiplication (see Table 4).

Server 1 Server 2 Server 3
2× 3 = 6 4× 6 = 24 6× 9 = 54
9× 8 = 72 17× 15 = 255 25× 22 = 550
78 279 604

TABLE 4: Servers’ computation.

User: result reconstruction. The user receives results from all
servers and performs Lagrange interpolation [25] to obtain final
answers:

(x−2)(x−3)
(1−2)(1−3)

× 72 +
(x−1)(x−3)
(2−1)(2−3)

× 255 +
(x−1)(x−2)
(3−1)(3−2)

× 550 = 1

Now, if the final answer is 1, it shows that the secret-shared
database at the server matches the user query.
Note. String matching operation over secret-shared dataset exe-
cutes multiplication operation, which increases the degree of the
polynomial. If the shares are created using polynomials of degree
one and the length of the string is `, then we need at least 2`+ 1
shares to execute string matching operation.

6.2 High-Level Overview of IQUEST
This section presents the high-level overview of IQUSET and
details will be presented in the next section. Data outsourcing and
query execution in IQUEST setting is shown in Figure 3.
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Fig. 3: Data outsourcing and query execution in secret-shared
settings.

Secret-share creation of WiFi data. Likewise CQUEST, IQUEST

partitions time into subintervals, called epochs, and executes
secret-sharing creation algorithm for each row of each epoch.
Likewise CQUEST, IQUEST satisfy the three security requirements
by ensuring ensures ciphertext indistinguishability and untrack-
ability of a user from secret-shared dataset, and by appending
additional columns for efficient query execution.

Before creating secret-shares of a device address, IQUEST per-
forms the hash function H under the key κ, and then implements
secret-share creation algorithm over the entire row. Note that
IQUEST creates two types of shares for each value of device ad-
dress and location: one is for performing string matching operation
using [29] and another is for retrieving the value. Further note that
having two different types of shares also helps in efficient query
execution, as will become clear soon. We will denote columns
for string matching operation by Asm∗ and columns for value
retrieval byAs∗, where ∗ can be device id or location. For efficient
execution of occupancy count, IQUEST adds one more column
(denoted by Asu ) to capture the unique devices in an epoch.

Dev Loc Time
1 d1 l1 t1
2 d2 l2 t2
3 d1 l2 t3
4 d2 l1 t4
5 d2 l1 t5
6 d3 l2 t6

(a) Cleartext original WiFi dataset.
A∆ Asmid Asid Asu AsmL AsL

1 ∆x SSS(d1) S(d1) S(1) SSS(l1) S(l1)
2 ∆x SSS(d2) S(d2) S(1) SSS(l2) S(l2)
3 ∆x SSS(d1) S(d1) S(1) SSS(l2) S(l2)
4 ∆y SSS(d2) S(d2) S(1) SSS(l1) S(l1)
5 ∆y SSS(d2) S(d2) S(0) SSS(l1) S(l1)
6 ∆y SSS(d3) S(d3) S(1) SSS(l2) S(l2)

(b) Secret-shared WiFi table for an epoch.
TABLE 5: Original WiFi dataset and secret-shared WiFi dataset
using IQUEST Algorithm 3.

Example 6.2.1. Table 5a shows six rows of WiFi data, and
Table 5b shows secret-shared rows that are partitioned over two
epochs, each containing three rows. The first epoch is denoted
by ∆x containing the first three rows, and the second epoch is
denoted by ∆y containing the last three rows. The secret-shared
table (denoted by S(R)i) has six columns:A∆ for epoch identifier
in cleartext, Asmid for device ids on which we can execute string
matching, Asid for device id for retrieval operation, Asu for
storing the uniqueness of devices in an epoch and locations, AsmL

for locations on which we can execute string matching, and AsL

for location for retrieval operation. �

Query execution over secret-shared datasets. IQUEST supports
the three applications (as mentioned in §1.1). Before executing
a query, IQUEST verifies the querier’s identity. Then, IQUEST

generates trapdoors in the enclave according to application and
fetches only the desired secret-shared data in the enclave to
produce the final answer after interpolating the retrieved rows and
filtering redundant rows; see details below.

6.3 Details of IQUEST
Now, we will present details of IQUEST’s algorithms.

IQUEST Data Outsourcing Method
IQUEST uses Algorithm 3 for creating secret-shares of input
WiFi table R. As clear by the description of SSS in §6.1, a
secret-sharing algorithm creates multiple shares of a value. In the
enclave, IQUEST will produce multiple shares of a value (device
id, location, or time) and place each share into a set of non-
colluding servers. The share transmission from the enclave to the
servers can be done using anonymous routing protocol [35] to hide
the information about the receiver servers from the adversary, and
the transmission can happen without storing shares on the disk at
the server where the enclave is hosted.

Note that IQUEST Algorithm 3 creates shares for string match-
ing denoted by SSS(v) and creates share of a complete value
denoted by S(v). SSS(v) of the value v is created by following the
strategy of string matching algorithm as mentioned in §6.1. S(v)
of the value v is created by implementing Shamir’secret-sharing
algorithm over v. To create shares, IQUEST randomly selects a
polynomial of an identical degree. Note that if the adversary
cannot collude with two servers, then we can use polynomials of
degree one, (since based only on one share the adversary cannot
learn anything about the data). Table 5b shows an example of the
output of Algorithm 3. Algorithm 3 selects an epoch duration (like
CQUEST (§5)) and produces an ith secret-shared table S(R)i with
six columns, denoted by A∆, Asmid , Asid , Asu , AsmL, and AsL.
Algorithm 3 works as follows:
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Algorithm 3: Secret-share creation algorithm.
Inputs: ∆: duration. 〈di, lj , tk〉: A row.H: A hash function known to only

IQUEST.
Output: S(R)i(Asmid , Asid , Asu , AsmL, AsL, A∆): An ith encrypted

table R with six columns.
Functions: SSS(v): A function for creating searchable secret-shares of v .

S(v): A function for creating Shamir’s secret-shares of v .
1 Function create shares(∆x) begin
2 HTabid ← init hash table device()
3 for ty = 〈di, lj , tk〉 ∈ ∆x do
4 Allocating epoch identifier to rows and creating column A∆

R.A∆[y]← identifier(∆x),
5 Creating shares of device-ids and creating columns Asmid , Asid

val ← last v bits(H(di))
6 R.Asmid [y]← SSS(val), R.Asid [y]← S(val)
7 Creating shares of the uniqueness of device-ids and creating

columns Au

if HTabid [H(di)] 6= 1 then R.Asu [y]← S(1), αi[]← lj
8 else if HTabid [H(di)] == 1 ∧ lj /∈ αi[] then

R.Asu [y]← S(1), αi[]← lj
9 else if HTabid [H(di)] == 1 ∧ lj ∈ αi[] then

R.Asu [y]← S(0)
10 Creating shares of locations and creating columns AsmL, AsL

R.AsmL[y]← SSS(lj ), R.AsL[y]← S(lj )
HTabid [H(di)]← 1

Epoch-ids and creating column A∆ (Line 4). Likewise CQUEST,
IQUEST partition the input WiFi data into epochs and allocate an
identical epoch identifier to all rows of an epoch.

Secret-shares of devices and creating columns Asmid , Asid

(Lines 5-6). Likewise CQUEST, on each device id di of an epoch,
IQUEST implements the hash functionH under key κ, that results
in Hκ(di), and for simplicity, we use di to denote Hκ(di) in
the following. We create two types of shares of each device id
di, one is denoted by SSS(di) that is used for string matching
operation and stored in Asmid , and another is just a Shamir’s
secret-share of the entire device-id, denoted by S(di) and stored
in Asid . The values in Asmid help in searching for a device-id
when executing the exposure map application, while the values in
Asid helps in fetching the device-id when executing the exposure
tracing application.

Aside. Recall that creating secret-shares for string matching
requires converting the hash digest of device-ids into a unary
vector; as shown in Table 2. However, it increases the length of
device-ids significantly (i.e., 16 × 128 = 2, 048, often a hash
digest contains 12 hexadecimal digits (a combination of numbers
0, 1, . . . , 9 and alphabets A, B, . . . F), and thus, every single hash
digest digit will use a unary vector of size 16). Instead, we use the
last v > 1 digits of the digest. With a very low probability, the
last v digits of two hash digests will be identical.

Uniqueness of devices and creating column Asu (Lines 7-9). To
find unique devices at each location in an epoch, IQUEST assigns
value v = 1 when a device di appears for the first time at a
location in an epoch; otherwise, v = 0, and then, creates S(v).

Secret-shares of location and creating columns Asmid , Asid

(Line 10). Likewise two types of secret-shares for device-ids,
IQUEST creates two types of shares of each location li, one is
SSS(li) – stored in AsmL, and another is S(li) stored in AsL.

Differences between data outsourcing methods of CQUEST and
IQUEST. CQUEST is an encryption-based method and IQUEST

is a secret-sharing-based method. They, also, differ the way of
keeping metadata (in Algorithms 1 and 3). First, IQUEST does not
keep a hash table for locations to maintain their occurrences in
rows of an epoch. Second, IQUEST does not need to first find all
locations visited by a device during an epoch and adds them in a
special column; hence, IQUEST does not keep column ACL. Note

Algorithm 4: IQUEST query execution algorithm.
Inputs: Secret-shared relation, i.e., the output of Algorithm 3.
Output: Answers to queries.
Notation: ⊗: string matching operation
Functions: SSS(v) and S(v): From Algorithm 3. interpolate(shares): An

interpolation function that takes shares as inputs and produces the secret
value.

1 Function Exposure Map(q(Hκ(di),Time)) begin
2 Q→ S: γ ← SSS(Hκ(di)), ∆t, where ∆t is the epoch-id covers the

requested Time
3 S: sLoc[], epoch[]← (Asmid [j]⊗ γ)× AsL, ∆t j ∈ {1, y}, y =

#rows in ∆t

4 Q: location[], epoch[]← interpolate(sLoc[]), epoch[]

5 Function Exposure Trace(q(di,Time)) begin
6 Q: location[], epoch[]← Exposure Map(q(di,Time))
7 Q→ S: sssLoc[]← SSS(location[]), ∆t: t covers the requested

Time
8 S: ∀i ∈ {1, |sssLoc[]|}, ∀j ∈ {1, y}, y = #rows in ∆t,

sID[i, j]← (sssloc[i]⊗ AsmL[j])× Asid [j]
9 Q: id[]← interpolate(sID[∗, ∗]), ∀i ∈ {1, |sID[∗, ∗]|}

10 User→ Q: know about their exposure
11 Q: Authenticate the user against the registry information and if

successful, perform intersection of id[] and the user device address and
return the appropriate answer

12 Function Occupancy count(q(Time)) begin
13 Q→ S: ∆t: t covers the requested Time
14 S→ Q: sLoc[j]← Asu [j]× AsL[j], ∀j ∈ ∆t

15 Q: location[]← interpolate(sLoc[])
16 Q: ∀li ∈ location[], countli ← countli + 1

that these differences occur, due to exploiting the capabilities of
SSS and selecting different polynomials for creating shares of any
value, thereby, different occurrences of an identical value appear
different in secret-shared form.

IQUEST Query Execution
Algorithm 4 explains secret-shared query generation at IQUEST

(denoted by Q), query execution at the server (denoted by S),
and final processing before producing the answer at Q. Note
that in Algorithm 4, ⊗ denotes string-matching operation and
× denotes normal arithmetic multiplication. Below, we explain
query execution for different applications over secret-shares.

Exposure Map (lines 1-4). After verifying the publisher and on
receiving the hash digest Hκ(di) from the publisher for a device
id belonging to an infected person, Q creates SSS of Hκ(di)
(denoted by γ) and sends it to each non-colluding servers along
with the desired epoch identifier (line 2). Each server executes
string-matching operation over each value of Asmid against γ
in the desired epoch, and it will result in either 0 or 1 (recall
that string-matching operation results in only 0 or 1 of secret-
shared form). Then, the ith result of string-matching operation
is multiplied by ith value of AsL, resulting in the secret-shared
location, if impacted by the user; otherwise, the secret-shared
location value will become 0 of secret-shared form (line 3).
Finally, Q receives shares from all servers, interpolates them, and
it results in all locations visited by the infected person (line 4).
Example 6.3.1. Suppose d1 belongs to an infected person in
Table 5b. To execute exposure map application for an epoch ∆x,
Q generates SSS of d1, say γ. S checks γ against the first three
shares (via string-matching operation) in Asmid and results in
〈1, 0, 1, 〉 (of secret-shared form) that is position-wise multiplied
by 〈S(l1),S(l2),S(l2)〉. Thus, S sends 〈l1, 0, l2, l1〉 of secret-
shared form to Q that interpolates them to obtain the final answer
as 〈l1, l2〉, i.e., l1, l2 are potentially exposed locations. �

Exposure tracing (lines 5-11). First, Q executes
Exposure Map() for knowing the exposed or impacted
locations by an infected person (line 6). Then, Q creates SSS
of all impacted locations (denoted by sssLoc[]) and sends them
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to the servers along with the desired epoch-identifier (which is
the same as in Exposure Map(); line 6). S executes string-
matching operation over each value of AsmL against each value
of sssLoc[] in the desired epoch and results in either 0 or 1
of secret-shared form. Then, the ith result of string-matching
operation is multiplied by the ith value of Asid , resulting in the
secret-shared device-ids, if (potentially) exposed to the infected
person; otherwise, the secret-shared device-id value will become
0 of secret-shared form (line 8). Finally, Q receives shares from
all servers, interpolates them, and results in the hash digest of
device addresses of the impacted people (line 9).

Now, likewise CQUEST, if users request to know their expo-
sure (i.e., the presence at the infected location), Q verifies the
user, performs the hash function H under the key κ on the user
device address, and then executes an intersection between the hash
digests of user device address and the list of potentially exposed
device addresses in hash digest form. Depending on the answer of
the intersection, Q informs the user.
Example 6.3.2. We continue from Example 6.3.1, where d1 was
the device of an infected person in Table 5b and impacted
locations were 〈l1, l2〉 that were known to Q after executing
Exposure Map(∗) (line 1). Now, to find impacted people, Q
generates SSS of l1 and l2, say γ1 and γ2, respectively. S checks
γ1 and γ2 against the three shares (via string-matching operation)
in AsmL. It will result in two vectors: 〈1, 0, 0〉 of secret-shared
form corresponding to γ1 and 〈0, 1, 1〉 of secret-shared form cor-
responding to γ2. Then, the vectors are position-wise multiplied
by 〈S(d1),S(d2),S(d1),S(d1)〉. Thus, S sends 〈d1, 0, 0〉 and
〈0, d2, d1〉 of secret-shared form to Q. Q interpolates the vectors
and knows that the device d2 belongs to an impacted person. �
Occupancy count (lines 12-16). Q sends the desired epoch
identifier to the servers (line 13). Based on the desired identifier,
each server multiplies the ith value of Asu with the ith value of
AsL, and it results in all locations having the unique devices. The
server sends all such locations to Q (line 14). First, Q interpolates
the received locations (line 15) and then, counts the appearance of
each location (line 16).
Example 6.2.3. Suppose, we want to find occupancy of all location
in epoch ∆x. Q sends the desired epoch identifier ∆x to S that
executes position-wise multiplication and sends the output of the
following to Q: 〈S(1) × S(l1), S(1) × S(l2), S(1) × S(l2).
Q interpolates the received answers, counts the number of each
location as: l1 = 1 and l2 = 2. �
Advantages of IQUEST over CQUEST. Note that IQUEST

executes an identical operation on each row for executing an
application, and it hides access-patterns, i.e., the identity of rows
that satisfy a query. Furthermore, due to using SSS, IQUEST

provides the highest level of security, as well as addresses all the
security requirements, mentioned in §3.2. In addition, IQUEST is
fault-tolerant, due to using multiple servers.

Information Leakage Discussion
Since Algorithm 3 uses different polynomials of the same degree
for creating shares of a value, an adversary cannot learn anything
by observing the shares. Thus, IQUEST produces ciphertext indis-
tinguishable or secure ciphertext dataset. Also, the query execution
Algorithm 4 creates secret-shares of a query predicate that appears
different from the secret-shared data. Thus, the adversary by
observing the query predicate cannot learn which rows satisfy the
query. In addition, since query execution Algorithm 4 performs an
identical operation on each share (e.g., lines 3,8,14), IQUEST hides

access patterns; thus, the adversary cannot learn anything from
the query execution, also. Hence, in IQUEST provides stronger
security than CQUEST.

IQUEST also authenticates the user and produces a binary
answer for the exposure trace application, and hence restricting
a user to ask a query about other users. However, as we will see in
Experiment 3 in §7.1, while providing strong security guarantees,
IQUEST is a little bit slower as compared to CQUEST.

7 EXPERIMENTAL EVALUATION
QUEST has been deployed at University of California Irvine
(UCI), to support occupancy count on a daily basis. (Please see
interfaces of the three applications in Appendix B.) Since the
exposure map and tracing applications are based on the device
address of an infected person, we simulate such a scenario to
evaluate the performance of QUEST. This section evaluates the
scalability of QUEST to evaluate its practicality for larger deploy-
ments and for all supported applications. We used AWS servers
with 192GB RAM, 3.5GHz Intel Xeon CPU with 96 cores, and
installed MySQL to store the secured datasets. A 16GB RAM
machine at the local-side hosts worked as the data collector that is
hosted at the university IT department, which manages the WiFi
infrastructure at the university.

Dataset. We used WiFi association data generated using SNMP
traps at the campus-level WiFi infrastructure at UCI that consists
of 2000 access points with four controllers. Experiments used real-
time data received at one of the four controllers (that collects real-
time WiFi data from 490 access points spread over 40+ buildings).
Using this WiFi data, we created two types of datasets, refer to
Table 6. For evaluating IQQUEST, we created nine shares, since
at most 2(` + y) + 1 shares are required (as mentioned in §6.1),
where ` = 3 (the length of device-ids, line 5 Algorithm 3) and
y = 1 (a single secret value in column AsL, line 10 Algorithm 3).

#rows Cleartext size Days covered Encrypted size Secret-Share size
10M 1.4GB 14 5GB 25GB
50M 7.0GB 65 13GB 65GB

TABLE 6: Characteristics of the datasets used in experiments.

Queries. We executed our three applications: exposure map,
exposure tracing, and occupancy count over the 10M and 50M
datasets, as mentioned above.

7.1 Performance Evaluation of QUEST
This section presents how does QUEST behave on different param-
eters and evaluates the scalability of QUEST.
Exp 1: Throughput. In order to evaluate the overhead of CQUEST

and IQUEST at the ingestion time, we measured the throughput
(rows/minute) that QUEST can sustain. CQUEST Algorithm 1 can
encrypt ≈494,226 rows/min, and IQUEST Algorithm 3 can create
secret-shares of ≈38,935 rows/min. Though the throughput of
Algorithm 3 is significantly less than Algorithm 1 due to creating
9 (different) shares, Algorithm 3 sustains UCI level workload.

Exp 2: Metadata size. Recall that Algorithm 1 (Algorithm 3) for
CQUEST (IQUEST) maintains hash-tables for a certain duration.
Table 7 shows the size of hash tables created for epochs of
different sizes: 15min, 30min, and 60min. Note that the metadata
size for CQUEST is more than the metadata size for IQUEST, since
CQUEST uses two hash tables (see line 3 Algorithm 1) and one
list of visited places by each device, while IQUEST uses only one
hash table (line 2 Algorithm 3). Nevertheless, metadata overheads
remain small for both techniques.
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(a) 1-infected, 1-day.
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(b) 100-infected, 1-day.
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Fig. 4: Exp 3: Scalability test of 10M and 50rows with varying other parameters.

Epoch duration CQUEST IQUEST

15min 1.96MB 0.93MB
30min 3.40MB 1.37MB
60min 5.84MB 2.10MB

TABLE 7: Exp 2: Size of hash tables, for different epoch sizes.
Exp 3: Scalability. We measured the scalability of QUEST in three
scenarios: (i) varying the number of infected people from 1 to 100,
(i) varying the days for tracing from 1 to 14 days, and (iii) varying
dataset size from 10M to 50M. Figure 4 shows the result of this
experiment. In Figure 4, Q1 denotes exposure map, Q2 denotes
exposure tracing, and Q3 denotes occupancy count applications.
Note that in Figure 4, we have combined all three applications to
compare all of them. However, only exposure map and exposure
tracing applications exploit the number of infected persons, which
we vary from 1 to 100. We execute all three applications for 1 and
14 days on 10M and 50M rows.

In exposure map application (Q1), a device has visited between
1 to 55 locations in 1 epoch. Note that Q1 using CQUEST took
less time in all three cases (i.e., varying the number of the infected
person, number of days, and the dataset size), since it uses an
index on Aid column (line 3 Algorithm 2); while IQUEST took
more time, since it scans all data depending on the queried
interval (line 3 Algorithm 4). As the number of infected people
increases, the query time increases too. The cost analysis follows
the same argument for the exposure tracing application (Q2) that
is an extension of the exposure map application (Q1). Since in
the exposure tracing application (Q2), we also find potentially
impacted people after executing the exposure map application
(Q1), exposure tracing application (Q2) takes more time than Q1.

For the occupancy count application (Q3) in Figures 4a and 4b,
IQUEST took less time than CQUEST. The reason is: IQUEST

performs multiplication on ith values of AsL and Asu (line 14
Algorithm 4), and the cost depends on the number of rows in the
desired epochs. However, CQUEST joins a table of size y×∆t×x
with the encrypted WiFi data table on AL column to obtain the
number of locations having unique devices (line 14 Algorithm 2),
where y is the maximum appearance of a location in any epoch
(can be of the order of 10,000, causing a larger join table size), ∆t

is the number of desired epochs, and x is the number of locations.
Observe that for occupancy count application in Figures 4c and 4d,
IQUEST took more time than CQUEST, since the increase in the
cost of multiplication operations (due to larger dataset of 14-days
tracing period) in IQUEST overtook the increase in the cost of join
in CQUEST. It shows CQUEST is more scalable than IQUEST.

Exp 4: Impact of optimization. We have implemented the opti-
mization method to minimize the value of max location counter
(§5) for CQUEST and measured the performance improvement
over 10M rows, while fixing the number of infected people to
100 and interval duration to 1-day. The counter per epoch for the
exposure tracing application reduced the computation time from
63s (Figure 4b) to ≈35s and used 128KB more space to maintain

the counter; while the counter per epoch and per location for the
exposure tracing application took only ≈2sec with 55MB space to
store the counters.

We have also implemented the optimization method for the
occupancy count application that finds unique devices in an epoch.
The proposed optimization (i.e., outsourcing encrypted counter per
epoch and per location) reduces the time of the occupancy count
application from 179.4s (Figure 4b) to 1s.

Exp 5: Memory access-patterns. Recall that access patterns
refer to the identity of rows that satisfy a query. Figure 6 shows
a sequence of memory accesses by CQUEST and IQUEST. For
this, we run the exposure tracing application multiple times, by
selecting different device-ids each time over a fixed set of epochs.
It is clear that IQUEST accesses the same memory locations
(accesses all the rows of the given set of epochs) and produces an
output for each accessed row for different queries, while CQUEST

accesses different memory locations (different rows for different
device-ids) for answering different queries. It also experimentally
validate that IQUEST hides the access patterns, while CQUEST

does not hide access patterns.

Exp 6: Impact of communication. Recall that IQUEST creates
multiple shares of a value, places them on multiple non-colluding
servers, and fetches the shared data that is propositional to the
epoch size when executing an application. Thus, we need to
measure the impact of communication on IQUEST. Table 8 shows
the amount of data transfer using IQUEST and the data transfer
time using different transfer speeds.

From Table 8, it is clear that IQUEST incurs communication
overhead, while IQUEST provides a high-level of security. In par-
ticular, the exposure map application requires us to fetch ≈32MB
data from each server when the tracing period was 14-days for
an infected person. As the exposure tracing application requires
two communication rounds (the first for knowing the impacted
locations and another for knowing the impacted device ids), the
exposure tracing application incurs significant communication cost
by fetching≈3.5GB data from each server. The reason is: we need
to fetch data corresponding to 55 locations that a user can visit
during an epoch. In the occupancy count application, we also need
to fetch data corresponding to all locations in epochs that cover
14-day time duration. Thus, the occupancy count application, also,
requires fetching ≈3.5GB data from each server.

To calculate the data transfer time, we calculated the size of
the data to be transferred and divided by different data transfer
speeds to find the time required to move the data.

7.2 Comparing QUEST against Other Systems
Now, we compare QUEST against two existing systems (since
these systems were available to us and work on any dataset).
Exp 7: Using other existing systems to support QUEST
applications. Since CQUEST uses SGX-based processing, we
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Fig. 5: Exp 7: Using other systems (secure hardware based Opaque and secret-sharing-based Jana) vs CQUEST and IQUEST on 10M.
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Fig. 6: Exp 5: Access-patterns created by QUEST.

Criteria Exposure Map Trace Occ. count
Dataset size 32MB 3.6GB 3.6GB
Trans. speed 25MB/s Neg. ≈2.5m ≈2.5m
Trans. speed 100MB/s Neg. ≈1m ≈1m
Trans. speed 500MB/s Neg. ≈11s ≈11s

TABLE 8: Exp 6: IQUEST: the amount of data to be transferred,
and the required time to transfer data on different data transfer
speeds. Neg. refers to negligible.

compare CQUEST against the state-of-the-art SGX-based system
Opaque [66]. Also, we compare IQUEST against the state-of-
the-art secret-sharing-based system Jana [17], since IQUEST is
built over secret-sharing techniques. We tried one more secret-
sharing-based system, namely SMCQL [18]; however, it does not
support any arbitrary as well as a large amount of dataset. For
this experiment, we took 10M rows of WiFi dataset and vary: (i)
the number of infected people from 1 to 100 and (ii) the days for
tracing from 1 to 14.

We inserted data using non-deterministic encryption [36] in
Opaque and using the underlying secret-sharing mechanism in
Jana. Then, we used their query execution mechanisms for our
three applications. Figure 5 shows the impact of using different
systems for supporting our three applications, denoted by Q1, Q2,
and Q3. Note that we drop any query that took more than 1000s.

In terms of performance, observe that CQUEST works well
compared to Opaque, since CQUEST uses index-based retrieval,
while Opaque reads entire data in secure memory and decrypts
it. In terms of security, CQUEST and Opaque provides the same
security, i.e., ciphertext indistinguishability, and reveals access-
patterns. Note that CQUEST reveals access-patterns via index-scan,
while Opaque reveals access-patterns due to side-channel (cache-
line [37] and branch-shadow [64]) attacks. Furthermore, if data
belonging to multiple organizations is non-deterministically en-
crypted and hosted at the same cloud, then while Opaque does not
need to develop any encryption or query execution algorithm, by
just observing the ciphertext dataset, an adversary may deduce the
information about those users who work in multiple organization.

In terms of performance, IQUEST is efficient compared to Jana
that takes more than 1000s in each application. The reason is:

IQUEST does not require communication among servers due to
using string-matching over secret-shares [29], while Jana requires
communication among servers. In terms of security, IQUEST and
Jana provide identical security by hiding access-patterns, due to
executing identical operations on each row.

8 CONCLUSION
In this paper, we designed, developed, and validated a system,
called QUEST for privacy-preserving presence/exposure tracing
and occupancy count at the organizational level using WiFi con-
nectivity data to enable community safety in a pandemic. QUEST

incorporates a flexible set of methods that can be customized
depending on the desired privacy needs of the smartspace and
its associated data. Particularly, QUEST comes with both flavors
of the security, namely computational security via CQUEST and
information-theoretic security via IQUEST. The capabilities pro-
vided by QUEST are vital for organizations to resume operations
after a community-scale lockdown. Additionally, QUEST shows
an interesting and practical use-case of cryptographic techniques,
explored for data outsourcing.
Future Directions. Below, we discuss a few directions in which
QUEST can be extended.

1) Malicious entities and use of blockchains. This paper focused
on protocols to collect, store, and search data in encrypted form
to support the three applications. In doing so, our solutions
have assumed both the organization and the cloud to be non-
malicious — they could be honest-but-curious and may wish to
learn the behavior of individuals either from the ciphertext or
query execution. We have not considered approaches to protect
against attacks, such as an organization or the cloud deliberately
deleting the data about an individual (log truncation attack), or
maliciously modifying users’ data. If such attacks were to be
considered, solutions such as blockchains would be required to
address such concerns and to write authenticated tamper-proof
logs, which could be written into the blockchain.

2) QUEST with cleaned WiFi data. As mentioned earlier, there are
some issues with WiFi also, as: duplicate devices, the presence
of spurious devices (such as printers/machines) in buildings that
may artificially affect the occupancy counts, missing sensor
values (due to disconnections), and location ambiguity dye to
coarse nature of region covered by an access point, etc. As
mentioned before, there are tools (such as [7], [8], [48]) that
exploit semantic information about locations and people to clean
WiFi data and reach accuracy as high as 92-93%. One can think
about using tools to clean WiFi data and then use QUEST and
compare the accuracy among two different scenarios. Another
interesting direction would be to use data cleaning tools at the
cloud equipped with secure hardware (such as Intel Software
Guard eXtension – SGX).
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APPENDIX A
SQL QUERIES OF THE THREE APPLICATIONS

Table 9 provides SQL queries for our three applications: exposure
map, exposure trace, and occupancy count.

APPENDIX B
INTERFACES OF THE THREE APPLICATIONS
Figure 7 shows the interface of the exposure map and exposure
tracing applications. Since we do not have the device address of
a real infected person, as mentioned in our experiments also, we
simulated the execution of the exposure map and exposure tracing
applications. The left-hand side of Figure 7 shows that there is a
user 49352 (user name is anonymized here) who got COVID-19
and visited which building in the past 14 days. The right-hand side
of Figure 7 shows other users who got potentially exposed to the
infected person 49352.

Figure 8 shows the interface of the occupancy count appli-
cation at University of California Irvine, before the lockdown
was announced. Figure 8 shows the occupancy count only at
floors level. On clicking, one can also see the occupancy count at
different granularity, such as regions buildings. Note that instead
of showing the number of unique devices, we represent occupancy
as low, medium, and high, depending on a pre-specified threshold.
Figure 9 shows the interface of the occupancy count application at
University of California Irvine after the lockdown was announced.

C FORMAL SECURITY PROPERTY
We have discussed our security requirements and how does Quest
handle them in §3.2. We have also discussed information leakage
discussion from CQUEST and IQUEST. Below, we defined our
desired security properties formally.

Recall that in the cloud-based setting, an adversary, which may
be the cloud or a user, wishes to reveal user privacy by learning
from data-at-rest and query execution. Thus, a secure algorithm
must prevent an adversary to learn the data by just observing (ii)
cryptographically secure data and (ii) query execution. Also, we
need to ensure that a querier cannot learn the information about
infected people or potentially exposed people. Thus, we need to
maintain the following properties:
Ciphertext indistinguishability. In the proposed scheme, the
data contains user device-id. Thus, the indistinguishability of the
user device-ids and locations is a vital requirement. It requires
that the adversary, just by observing the secured dataset, cannot
deduce that any two rows belong to the same user/location or not.
Note that satisfying indistinguishability property also prevents the
adversary from learning any information from jointly observing
two datasets belonging to two different organizations.
Secure query execution. It requires maintaining: (i) Query pri-
vacy that prevents the adversary from distinguishing between
two query predicates (for the same or different device-ids and
locations) by observing the query predicates or by observing the
two queries’ execution. (ii) Execution privacy that enforces the
adversary to behave identically and to provide an identical answer
to the same query. (Since an adversary cannot distinguish between
two query predicates, it should follow the same protocol for each
query execution to prove its non-adversarial behavior.)

Satisfying these two properties achieve indistinguishability
property during data-at-rest/query execution and do not reveal

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 04,2022 at 23:10:44 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3166802, IEEE
Transactions on Services Computing

18
Applications SQL syntax
Exposure Map SELECT DISTINCT l o c a t i o n I d

FROM WiFiData
INNER JOIN I n f e c t e d U s e r s ON WiFiData . macId = I n f e c t e d U s e r s . macId
WHERE t imes t amp > t1 AND t imes t amp < t2

Exposure Trace SELECT DISTINCT Wif iDa ta . macId
FROM WiFiData LEFT OUTER JOIN I n f e c t e d U s e r s ON WiFiData . macID = I n f e c t e d U s e r s . macId

(SELECT l o c a t i o n I d , t imes t amp
FROM WiFiData
INNER JOIN I n f e c t e d U s e r s ON WiFiData . macId = I n f e c t e d U s e r s . macId
WHERE t imes t amp > t1 AND t imes t amp < t2 ) AS I n f e c t e d L o c a t i o n s

WHERE WiFiData . l o c a t i o n I d = I n f e c t e d L o c a t i o n s . l o c a t i o n I d
AND EXTRACT( WiFiData . t imes tamp , ∆ ) = EXTRACT( I n f e c t e d L o c a t i o n s . t imes tamp , ∆ )
AND I n f e c t e d U s e r s . macId IS NULL

Occupancy count SELECT l o c a t i o n I d , DISTINCT COUNT( MacId )
FROM WiFiData
WHERE t imes t amp > t1 AND t imes t amp < t2
GROUP BY l o c a t i o n I d , EXTRACT( WifData . t imes tamp , d e l t a )

TABLE 9: Three supported applications by QUEST in SQL.

Fig. 7: Exposure map and trace applications interface.

Fig. 8: Occupancy count application interface before lockdown.
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Fig. 9: Occupancy count application interface after lockdown.

any information about the device-ids/locations. We can, formally,
define it using the algorithm’s real execution at the servers against
the algorithm’s ideal execution at a trusted party having the same
data and the same query predicate. An algorithm reveals nothing
if the real and ideal executions of the algorithm return the same
answer.

Definition: Query privacy. For any probabilistic polynomial time
(PPT) adversary having a secured table and any two input query
predicates, say p1 and p2, the adversary cannot distinguish p1 or
p2, either by observing the query predicates or by query output.

Definition: Execution privacy. For any given secured table, any
query predicate p issued by any real user U , there exists a PPT
user U ′ in the ideal execution, such that the outputs to U and U ′

for the query predicate p on the secured data are identical.

Note that satisfying the above two security properties (which
are widely considered in many cryptographic approaches [29],
[40]) will hide access patterns, thus, the adversary cannot dis-
tinguish between two different queries and the satisfying output
rows. However, such a secure algorithm (i.e., IQUEST as given in
§6) incurs the computation overhead, as clear from Experiment
3 in §7.1. Thus, we relax the access pattern hiding property
(similar to existing searchable encryption or secure-hardware-
based algorithms) and, also, presented an efficient access-pattern
revealing algorithm, CQUEST in §5. Observe that IQUEST satisfies
all the above-mentioned properties, by producing ciphertext secure
dataset and by executing identical operations regardless of the data
as well as queries.

In order to define the security property for techniques, we
follow the standard security definitions of symmetric searchable
encryption techniques [27] that define the security in terms of
leakages: (i) setup leakage Ls that includes the leakages from the
encrypted database size and leakages from metadata size, and (ii)
query leakage Lq that includes search-patterns (i.e., revealing if
and when a query is executed) and access-patterns (i.e., revealing
which rows are retrieved to answer a query)). Observe that in
access pattern hiding techniques such as IQUEST, there will be no
Lq leakage, while the adversary will only know the size of the
encrypted dataset via Ls.

Based on these leakages Ls and Lq , the security notion
provides guarantees that an encrypted database reveals no other
information (i.e., occupancy count of a location or tracking an
individual by the cloud) about the data beyond leakages Ls and
Lq . Now, before defining security property, we need to formally
define CQUEST’s query execution method that contains the fol-
lowing three algorithms (a similar setting will work for IQUEST):

1) (K,R))← Setup(1k, R): is a probabilistic algorithm that
takes as input a security parameter 1k and a table R. It outputs
a secret key K and an encrypted table R. This algorithm (as
given in Algorithm 1) is executed at QUEST’s encrypter, before
outputting the encrypted table at the server.

2) trapdoor{1, . . . , q} ← Trapdoor Gen(K, query): is a deter-
ministic algorithm that takes as input the secret key K and a
query predicate query , and outputs a set of query trapdoors,
denoted by trapdoor{1, . . . , q}. This algorithm (as given in
Algorithm 2) is executed at QUEST’s trapdoor generator and
trapdoor{1, . . . , q} are sent to the DBMSs hosted at the server
to retrieve the desired rows (in the enclave).

3) results ← Query Exe(trapdoor{1, . . . , q},R): is a deter-
ministic algorithm. It takes the encrypted table R and the
encrypted query trapdoors trapdoor{1, . . . , q} as the inputs.
Based on the inputs, it produces the results.

In order to define the security notion, we adopt the real
and ideal game model security definition [27]. Based on this
game, what the security property is provided is known as in-
distinguishability under the chosen-keyword attack (IND-CKA)
model [27]. IND-CKA prevents an adversary from deducing the
cleartext values of data from the encrypted table or from the query
execution, except for what is already known.

Security Definition. Now, based on the formal definition of
CQUEST, we define the security of CQUEST.

Let Ψ = (Setup,Trapdoor Gen,Query Exe) be a row of
algorithms. Let A be an adversary. Let Ls be the setup leakage,
and let Lq be the query leakage.
• RealΨ,A(k): The adversary produces a table R and sends it to a

simulator. The simulator runs Setup algorithm and produces an
encrypted table R that is sent to A. The adversary A executes a
polynomial number of queries on the encrypted tables R by

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on May 04,2022 at 23:10:44 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3166802, IEEE
Transactions on Services Computing

20

asking trapdoors for each of the queries from the simulator.
Then, the adversary A executes queries using Query Exe()
algorithm and produces a bit b.

• IdealΨ,A(k): The adversary A produces a table R′. Note that
this table may or may not be identical to the table R, produced
in RealΨ,A(k). However, Ls in the ideal world should be
identical to the real world. The simulator has neither access
to the real dataset R, nor access to the real queries. Instead,
the simulator has, only, access to Ls and Lq . The simulator
simulates Setup and Trapdoor Gen algorithms. Given Ls
and Lq , the simulator produces an encrypted table R′ and the
trapdoors for all queries that were previously executed. The
adversary executes the queries and produces a bit b.

We say Ψ is (Ls,Lq)-secure against non-adaptive adver-
sary, iff for any probabilistic polynomial time (PPT) adversary
A, there exists a PPT simulator such that: |Pr [RealΨ,A(k) =
1] − [Pr [IdealΨ,A(k) = 1]| ≤ negl(k), where negl() is a
negligible function.

The above real-ideal game provides the following intuition:
an adversary selects two different tables, R1 and R2, having an
identical number of attributes and an identical number of rows.
Relations R1 and R2 may or may not overlap. The simulator
simulates the role of QUEST encrypter to produce an encrypted
table and provides it to the adversary. On the encrypted data, the
adversary executes a polynomial number of queries. The adversar-
ial task is to find the table encrypted by the simulator, based on
the query execution. The adversary cannot differentiate between
the two encrypted tables, since if the adversary cannot find which
encrypted table is produced by the simulator with probability non-
negligibly different from 1/2, then the query execution reveals
nothing about the table.

Proof outline. We first construct a simulator that can build the
entire encrypted dataset based only on Ls and Lq . In order to do
that, the simulator executes CQUEST data encryption Algorithm 1
and regards the leakage Ls. The simulator picks n number of any
random rows and encrypts them using Algorithm 1 such that the
size of the simulated encrypted data matches with the size of the
real encrypted data. Note that this is possible for the simulator to
produce such a dataset, since the simulator knows Ls.

Now, we need to show that the simulator can also simulate
queries and can produce trapdoors for the queries. Note that
according to the leakage Lq , the simulator knows which rows
were accessed for all queries that have been executed, due to the
revealed access patterns via Lq . Thus, the simulator can simulate
the tokens such that the simulated token regards Lq . Now if a
probabilistic polynomial time adversary issues a query (i.e., a
keyword), the simulator can generate a trapdoor for this query
as above. The trapdoor given by the simulator and the query result
produced by the simulated encrypted dataset are indistinguishable
to the adversary, because of identical leakages Ls and Lq from the
real encrypted dataset and the simulated encrypted dataset. Thus,
CQUEST is IND-CKA secure.
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