
A Case for Enrichment in Data Management Systems

Dhrubajyoti Ghosh1, Peeyush Gupta1, Sharad Mehrotra1, and Shantanu Sharma2

1University of California, Irvine, USA. 2New Jersey Institute of Technology, USA.

ABSTRACT
We describe ENRICHDB, a new DBMS technology
designed for emerging domains (e.g., sensor-driven smart
spaces and social media analytics) that require incoming
data to be enriched using expensive functions prior to
its usage. To support online processing, today, such en-
richment is performed outside of DBMSs, as a static data
processing workflow prior to its ingestion into a DBMS.
Such a strategy could result in a significant delay from
the time when data arrives and when it is enriched and
ingested into the DBMS, especially when the enrichment
complexity is high. Also, enriching at ingestion could
result in wastage of resources if applications do not
use/require all data to be enriched. ENRICHDB’s design
represents a significant departure from the above, where
we explore seamless integration of data enrichment all
through the data processing pipeline — at ingestion,
triggered based on events in the background, and
progressively during query processing. The cornerstone
of ENRICHDB is a powerful enrichment data and query
model that encapsulates enrichment as an operator inside
a DBMS enabling it to co-optimize enrichment with
query processing. This paper describes this data model
and provides a summary of the system implementation.

1. INTRODUCTION
This paper envisions a new type of data management

technology that seamlessly integrates data enrichment in
the data analysis pipeline. Data analysis pipeline refers to
the process of acquiring data from data sources, potentially
enhancing the data, ingesting it into a database system, and
running queries on the enhanced data. Today, organizations
have access to potentially limitless data sources in the
form of web data repositories, social media posts, and
continuously generated sensory data. Such data is often
low-level/raw and needs to be enriched to be useful for
analysis. Functions used to enrich data (referred to as
enrichment functions in the paper) could consist of (a
combination of) custom-compiled code, declarative queries,
and/or expensive machine learning techniques. Examples
of enrichment functions include sensor interpretation and fu-
sion over sensory inputs, mechanisms for sentiment analysis
over social media posts, and named entity extraction in text.

Traditionally, data enrichment is performed offline as
part of a periodic Extract-Transform-Load (ETL) process.
This process is performed inside a separate system and the

enriched data is stored in a data warehouse for analysis. This
approach adds significant latency between the time data
arrives (or is created) and when it is available for analysis.

[14] has highlighted the limitations of the traditional data
warehouse approach in analyzing the recent data (as it ar-
rives) for online business applications. It has led to the emer-
gence of Hybrid Transaction/Analytical Processing (HTAP)
systems that support both transactional and analytical work-
loads. A warehouse strategy (of periodic enrichment as part
of ETL) exhibits similar limitations in application contexts,
where enrichment is part of the data processing pipeline.
One possibility to overcome this limitation is enriching the
data as it arrives. Systems (e.g., Spark Streaming [20] often
used for scalable ingestion) are capable of executing enrich-
ment functions on newly arriving data prior to its storage
in a DBMS. Recently, [17] has explored ways to optimize
enrichment during ingestion by batching such operations.

Enriching data at arrival is only feasible when enrichment
functions are simple. Complex functions (e.g., Multi-layer
Perceptron and Random Forest), often, used to classify/inter-
pret incoming data, may take several hundred milliseconds
to execute on a single core of a modern server.1 Applying
such functions at ingestion will allow a system to ingest
only tens of events per second per core which is very low.

An alternate strategy is to restrict ETL process to
selectively enrich only a part of the data (based on expected
usage) at ingestion. However, predicting usage is difficult,
especially in an online setting where an analyst can pose
any adhoc query. If the prediction underestimates the
need of enrichment, it may not support certain queries and
overestimation leads to wasted enrichment and resources.
Motivating Example. A quintessential example domain
for which ENRICHDB is designed, is a sensor-driven
smart space environment. Such an environment is often
instrumented with a large number of sensors producing
data, which is stored in databases. Such data consists
of videos, images, data from motion sensors, as well
as connectivity data of user’s mobile devices with WiFi
access points. Such data needs to be processed before it
can be used by applications. E.g., [12] uses connectivity
data of user’s mobile devices with WiFi access points to
localize users inside a building. Furthermore, one can
use surveillance camera images to localize users more
accurately. Localization based on WiFi connectivity data
or images can be expensive, e.g., analyzing a single WiFi
1E.g., a server of 64 core Intel Xeon CPU E5-4640, 2.40GHz, and 128GB memory.

connectivity event takes ≈200ms, and analyzing a single
image takes≈1s. If we consider a campus environment with
hundreds of WiFi access points and cameras (where ≈1,000
Wi-Fi events/sec and ≈100 images/sec are produced by the
sensors), we will need ≈5 minutes of processing time for
locating person using the data that has been generated in
one second, and such a processing time is not feasible.

Instead, we need to process such data during query exe-
cution in an adaptive manner. Queries on such data can be
ad-hoc: for example, a visitor planning to attend an event at
a location may wish to know the attendees already arrived
(or the count) apriori to avoid crowded regions. Another
example will be exploring suspicious activities that may cre-
ate a timeline of events at different parts of a building using
WiFi connectivity data and then performing detailed analysis
using camera images. To answer such ad-hoc queries, if a
system enriches the required data at query time, it can still
result in high latency depending on the query selectivity. ■

Motivated by the above limitations, we design EN-
RICHDB — an adaptive data management technology
that allows enrichment to be performed all through the
data processing pipeline, i.e., during ingestion, triggered
based on events, or during query processing. ENRICHDB
is designed based on the following criteria:
Semantic Abstraction and Transparency of Enrichment.
ENRICHDB supports a declarative interface to specify and
to link enrichment functions with higher-level observations
that the functions generate from raw data. Users may
associate one or more such functions that differ in terms
of quality (e.g., uncertainty in the enriched value) and cost
(e.g., execution time of the function).

In ENRICHDB, developers do not have to deal with
raw data directly — applications can be fully developed
based on higher-level semantic observation. Furthermore,
developers do not have to be concerned about what data
has to be enriched, using which functions, and at what
stage of data processing. ENRICHDB maintains the
state of enrichment of objects and performs enrichment
automatically based on the current state of objects.
Optimization of Enrichment. ENRICHDB allows enrich-
ment all through the data processing pipeline. ENRICHDB
makes sure that enrichment of objects is performed
optimally. At query time enrichment, ENRICHDB exploits
query optimizer to prune away enrichment of objects that do
not influence the query results. Furthermore, ENRICHDB
allows enrichment of data closer to where the data resides
resulting in a low data movement.
Progressive Computation. When ENRICHDB executes
enrichment functions during query processing, it produces
query answers progressively. A progressive query answer-
ing technique (motivated by Approximate Query Processing
systems [10] that provided progressive query answering for
aggregation queries) produces an initial set of answers that

are improved over time as data is further enriched.
The cornerstone of ENRICHDB is Enrichment Data and

Query Model (EDQM) that integrates enrichment as a first-
class operator in the database system. This paper describes
both data and query models in §2 and briefly describes the
implementation of ENRICHDB in §3. The codebase and
detailed discussion on design decisions are presented in [2].

2. DATA AND QUERY MODEL
In this section, we develop a new data and query model,

called Enrichment Data and Query Model (EDQM).

2.1 Data Model
In EDQM, the data is modeled using relations where

a relation can have two types of attributes: (i) derived
attributes that require enrichment and (ii) fixed attributes
that do not require enrichment. Each derived attribute is
optionally associated with a domain size. If the domain
size is not specified, then that attribute is considered to
have a value from a continuous range. The command for
specifying a relation in ENRICHDB is shown below.
CREATE TABLE wifi(id int, user_id char(30),

timestamp time, wifi_ap char(30),
location int derived:304);

The value of a derived attribute is determined using one
or more enrichment functions associated with it.2

Enrichment functions. EDQM supports a general class of
enrichment functions (frequently used in real world). The
input to an enrichment function is a tuple and the output
is either a single value, multiple values, or a probability
distribution, as described below.

We categorize enrichment functions based on the output
cardinality: (i) single-valued: outputting a single value,
e.g., a binary classifier [16], (ii) multi-valued: outputting
a set of values, e.g., top-k classifiers [11], (iii) probabilistic:
outputting a probability distribution over the possible values
of a label, e.g., probabilistic classifiers [6]. Also, enrichment
functions can be categorized based on the size of output
domain: (i) categorical: predicts outputs from a finite set of
possible values, e.g., sentiment of positive/negative, and (ii)
continuous: outputs a real number, e.g., a weather of 72.8°F.

An enrichment function is associated with two parameters:
(i) cost: the average execution time/tuple, and (ii) quality:
a metric of goodness (i.e., accuracy) of enrichment function
in determining the correct value of the derived attribute.
Training of enrichment functions. EDQM supports
training procedures for enrichment functions that internally
uses machine learning models to predict the value of
derived attributes. Often such models use a supervised
learning method [5] that learns a mapping function between
a set of input and output pairs from a ground truth data
set (often referred to as training data). A user needs to
specify the table that stores the training data for the model.
Below, we show an example where a machine learning
2The derived attributes cannot be updated directly by the user.

id user_id time wifi_ap location
t1 24 09:14 56 L1
t2 22 10:26 110 NULL

t3 108 14:10 116 L4
Table 1: The wifi table (location is derived).

tid location
t1 L1:0.54, L2:0.35, L3: 0.11
t2 L1: 0.1, L2: 0.1, ..., L10: 0.1
t3 L4:0.8, L5: 0.15, L6: 0.05

Table 2: State output for derived attributes.
model of Multi-Layer Perceptron (MLP) is learned using
a training procedure of model_train. The training
data is stored in wifi_train table and the name of the
model is location_mlp. It uses the attribute values of
feature as input to the model and outputs the prediction
for location attribute. The model-specific parameters
are passed as a string in model_params.3

SELECT db.model_train(’wifi_train’,
’location_mlp’, ’mlp’,’location’,
’feature[]’, model_params);

The cost and quality of enrichment functions can either
be specified by user or can be determined automatically
by using several methods, e.g., train/test split and k-fold
cross-validation during the training phase.

In real scenarios, often multiple enrichment functions
are used to perform a particular analysis. To localize a
person, one can use multiple ML functions, e.g., decision
tree, random forest, and multi-layered perceptron models.
ENRICHDB supports specification of such functions us-
ing a function-family. Formally, the set of enrichment
functions for a derived attribute Ai are called function-
family of Ai. (We use calligraphic font for derived at-
tributes.) Outputs of enrichment functions in a function-
family are combined using a combiner function. One
can use weighted-average, majority-voting, or stacking-
based [19] combiner functions. Below we show, creation
of function-family for location attribute consisting of
multiple functions along with their cost (seconds/tuple) and
quality (measured in AUC) respectively, using the as-
sign_enrichment_functions command.

SELECT db.assign_enrichment_functions(’wifi’,
[[’location’,3,’location_dt’,0.8,0.7],

[’location’,4,’location_fo’,0.6,0.8],
[’location’,1,’location_mlp’,0.95, 0.9]]);

State of a Derived Attribute. Enrichment state or state of a
derived attribute Ai in tuple tk (denoted by state(tk.Ai)) is
the information about enrichment functions that have been
executed on tk to derive Ai. The state has two components:
state-bitmap that stores the list of enrichment functions
already executed on tk.Ai; and state-output that stores
the output of executed enrichment functions on tk.Ai.
E.g., consider that there are three enrichment functions
f1,f2,f3 and out of which f1,f3 have been executed on
tk.Ai. Also, assume that the domain of Ai contains three
possible values: d1, d2, and d3. Thus, the state-bitmap for
tk.Ai contains ⟨101⟩, i.e., only first and third functions
are executed and the state-output of tk.Ai contains:
3If a machine learning model is updated, i.e., re-trained, then a new
enrichment function has to be added that uses the retrained model.

Rel. Attribute Map
wifi location ⟨1,0,0⟩, [0-0.25):⟨f2,0.1⟩,

⟨1,0,0⟩,(0.25-0.5) : ⟨f3,0.2⟩,
⟨1,0,0⟩,(0.5-0.75) : ⟨f2,0.16⟩,
⟨1,0,0⟩,(0.75-1] : ⟨f2,0.22⟩

wifi location ⟨0,1,0⟩,[0-0.5) : ⟨f4,0.08⟩,
⟨0,1,0⟩,(0.5-1] : ⟨f6,0.11⟩

Table 3: A part of DecisionTable.
⟨[0.7,0.3,0],[],[0.8,0.1,0.1]⟩, i.e., the output of the first and
third enrichment functions (remaining arrays are left empty).
The state-output stores a list of probability distributions
when the enrichment functions are probabilistic. For
single/multi-valued functions and continuous functions, the
state-output attribute stores the actual output of the function
instead of a probability distribution, e.g., ⟨[72.4],[],[76.8],[]⟩.
State of Tuples and Relations. The notion of state of
derived attributes is generalized to the state of tuples and
relations in a straightforward way. The state of a tuple tk
is the concatenation of the state of all derived attributes
of tk, e.g., the state of a tuple tk of a relation R with
three derived attributes Ap, Aq, and Ar is denoted by
state(tk)=⟨state(tk.Ap)||state(tk.Aq)||state(tk.Ar)⟩.
Relative Ordering of Enrichment Functions. In EDQM,
the user can specify (or can be learned by ENRICHDB using
a training dataset) the relative order in which enrichment
functions need to be executed. This order is specified using
the state of tuples for each derived attribute. Such relative
ordering is important for ensembling different enrichment
functions to be executed on a tuple. This ordering is stored
in a table called DecisionTable (see Table 3).

This table, for each derived attribute of a relation, stores a
map that — given the current state of a tuple with respect
to the attribute — specifies the next function that should
be executed to further enrich the attribute, as well as (op-
tionally) the expected improvement in quality (denoted as
benefit) that will result from enriching the attribute of the
tuple. ENRICHDB uses benefit and the cost of enrichment
functions to order the enrichment of tuples.

In Table 3, each row stores a map containing (state bitmap,
entropy range) as keys and the corresponding (next best
function, benefit) pair as values. Consider the tuple t1 of
wifi table (see Table 1) and assume that the location
state bitmap of t1 is [1,0,0] and the location state output
of t1 is [[0.54,0.35,0.11],[0,0,0],[0,0,0]]. The entropy of
t1 is (−0.54× log3(0.54)− 0.35× log3(0.35)− 0.11×
log3(0.11))=0.85. From first row of Table 3, since entropy
of t1 is in the range (0.75-1], the decision table specifies that
the next best function to execute is f2 and its benefit as 0.22.

2.2 Query Model
This section describes the query language (§2.2.1), query

semantics (§2.2.2), and the goal of enrichment (§2.2.3).
2.2.1 Query Language

The query language of ENRICHDB is an extended
version of SQL. Queries in ENRICHDB are associated
with a query semantics (which are required to deal with
probabilistic values of derived attributes) and a (optional)
quality parameter for the quality of the query results.

Two types of query semantics for probabilistic data
have been proposed in the past: (i) determinization-based
semantics [7] and (ii) possible world (PW) semantics [15].
The determinization-based semantics converts probabilistic
representation to a single or a small set of deterministic
worlds. The query is executed in each of these worlds and
a single deterministic answer is produced. In contrast, in
PW semantics, all possible worlds are generated (implicit-
ly/explicitly) from probabilistic representation and the query
is executed in each world. The result consists of all possible
tuples along with their probability of being part of the result
in at least one world. The choice of one semantics over the
other depends on the application scenarios. In some scenar-
ios, applications can make good decisions by using the most
probable answers, whereas in some scenarios, they require
analysis of all possible answers along with their probability
distribution. Due to simplicity, we have implemented the
determinization-based query semantics in ENRICHDB (the
implementation of PW semantics is under development).

An example query in ENRICHDB that requires a
minimum quality of 0.9 is shown below:
SELECT wifi.location as p_location,
wifi.timestamp as p_time FROM wifi
WHERE p_location = ’L1’
AND p_time BETWEEN (’10:00’,’12:00’)
AND QUALITY 0.9;
2.2.2 Query Semantics

In determinization-based query semantics, tuples of all
participating relations in a query are determinized first
before evaluating the query. The process of converting
a probabilistic data representation, i.e., the output of
probabilistic enrichment functions, to a deterministic
representation is referred to as the determinization process.

Consider a derived attribute Ai and a tuple tk. The
value of tuple tk in attribute Ak (i.e., tk.Ai) is determined
using a determinization function (DET(.)) based on tuple’s
state. DET(state(tk.Ai)) returns a single or multiple
values for tk.Ai or a NULL value, representing a situation
when state of the attribute does not provide enough
evidence to assign any value for tk.Ai. Determinization
concept naturally extends to a tuple and a relation. The
determinized representation of a relation R is denoted by:

DET(R)=DET(state(ti.Aj)) |∀ti∈R,∀Aj of R.
In Table 1, location attribute stores the deter-

minized value (using top-1 determinization strategy) based
on the state stored in Table 2.

C1 T F P P P P U
C2 P P T F P U P

C1∧C2 P F P F P U U
C1∨C2 T P T P P P P
NOT C1 F T F F F F U

Table 4: Truth table for evaluating complex conditions.
Since determinization of a tuple can result in either a set

of values or NULL, evaluation logic of different conditions
needs to be defined. ENRICHDB extends the traditional
three-valued logic used in relational operators, i.e., with
truth values of T , F , and U into a four-valued logic: true
(T), false (F), possible (P), and unknown (U). Here, P
represents that the condition is possibly true based on the
current state of enrichment, whereas U (as in traditional
setting) represents that the truth value is unknown, given
the current level of enrichment. Similar to SQL, the DBMS
implementing this data model does not have to return
tuples that evaluate to unknown. However, the tuples
evaluating to possible may or may not be returned. E.g., the
inclusion of such tuples in the answer could be based on the
maximization of the quality of the query. We next discuss
how we assign truth values to predicates/expressions.
Simple Predicates. Consider an expression Ai op am,
where Ai is a derived attribute, op is an operator, and
am is a possible value of Ai. The operator op is one of
the following operators: ⟨=, ≠, >, ≥, <, ≤⟩. If the output
of DET(state(tk.Ai)) is NULL, then the expression
evaluates to U . If DET(state(tk.Ai)) is a singleton set S
and x∈S such that x op am holds, then the expression
evaluates to T ; otherwise, F . If DET(state(tk.Ai)) is a
multi-valued set (say S) and ∃x∈S such that x op am
holds, then it is possible that tk satisfies the expression, and
hence, it evaluates to P . However, if ̸ ∃x∈S for which x
op am holds, then the expression evaluates to F .

Consider an expression Ai op Aj, where Ai and Aj

are two derived attributes of (possibly different) relations and
op is a comparison operator. If DET(state(tk.Ai)) or
DET(state(tl.Aj)) is NULL, then the condition evaluates
to U . If both DET(state(tk.Ai)) and DET(state(tl.Aj))
are singleton sets and for elements x∈DET(state(tk.Ai))
and y ∈ DET(state(tl.Aj)), x op y holds, then the
condition evaluates to T ; otherwise, F . In case one or
both of DET(state(tk.Ai)) and DET(state(tl.Aj))
are multi-valued sets and ∃x ∈ DET(state(tk.Ai)) and
∃y ∈DET(state(tl.Aj)), such that x op y holds, then
the condition evaluates to P ; otherwise, F .
Complex Predicates. Complex predicates are formed using
multiple comparison conditions connected by Boolean op-
erators (AND (∧), OR (∨), and NOT (¬)). Table 4 shows
the truth table for such logical operators. This table only
shows entries when one of the two expressions evaluates
to P . When both expressions evaluate to either T , F , or
U , we follow the same evaluation logic as in standard SQL.
Aggregation. Aggregation functions on fixed attributes are

evaluated as in SQL, while, on a derived attribute, return a
range of values [l,u], denoting the lower and upper bounds
of aggregated value. An aggregation function (e.g., count,
sum,min) applied to allT tuples of a set produces the lower
bound l, while applied to all T and P tuples produces the
upper bound u. E.g., consider a query on Table 1 that counts
the occupancy of location L1, and assume that the table has
250 tuples of which 100 tuples evaluate to T , while 20 of the
remaining 150 tuples evaluate to P . Hence, the condition
evaluation logic returns a range of [100,120]. Likewise,
group-by aggregation results in one such range per group.
Top-k Aggregation. ENRICHDB first evaluates aggregation
functions for each group-by key (as described above), and
then ranks their outputs by a ranking function. The query
result consists of a set of group-by keys with the top-k ranks.
The purpose of the ranking function is to return a minimal an-
swer set A, such that the real top-k groups are guaranteed to
be part of A. ENRICHDB sorts the group-by keys based on
the lower bounds in a descending order and selects the first
n (where n≥k) group-by keys as the minimal answer set A
such that the upper bound of (n+1)-th key is lower than the
lower bound of the n-th key. This ensures that the (n+1)-th
group-by key cannot be part of the top-k answer set.

Consider a query that returns top-2 locations with highest
occupancy from Table 1. Suppose after applying count(),
the locations had following bounds for occupancy: L1:
[100,150], L2:[110,120], L3:[100,115], and L4:[80,95]. The
results returned are locations {L1, L2, L3} that guarantees
that the actual top-2 locations (i.e., L1, L2) are part of the
result. L4 is excluded as the upper bound of occupancy (i.e.,
95) is lower than the lower bounds of locations in the answer.

Based on the definition of determinization func-
tion and the predicate evaluation logic as described
above, we define the query semantics as follows:
q(R1,R2,...,Rn)=q′(DET(R1),DET(R2),...,DET(Rn))

Here, q(R1,R2,...Rn) is a query on relations R1,...,Rn,
DET(Ri) is the determinized representation of the ith

relation. Query q is rewritten as q′ to be executed on the
determinized representations of relations using the four
valued logic as described above.
2.2.3 Quality Measure of Query Results

In ENRICHDB, we measure the quality of answers to
(i) set based queries using Jaccard’s similarity or expected
Fα-measure, (ii) aggregation queries using the root-mean-
square error, mean absolute error, or the half-interval length
of query answer, and (iii) group-by and top-k queries using
the summation of half-interval lengths of all group by keys.
Progressive Score. Since ENRICHDB allows users to
stop query evaluation at any instance of time (even before
the quality requirement is met), performing enrichments
impacting answer quality as early as possible is needed.
ENRICHDB’s effectiveness is measured using the following
progressive score (similar to [13, 4]):

Tightly Coupled System
(EnrichDB)

Data Enrichment
Module IMV

Query:
q(R1, R2, …,Rn)

Data

Update at the end
of each epoch

Feedback from IMV to
drive future enrichment

Enrichment at the
database itself

Answer
Data

Enrichment
Module

IMV

Query:
q(R1, R2, …,Rn)

Bursty Data Arrival
(Updating base
tables of IMV)

Enrichment
Plan

Data Loosely Coupled System

Answer

Query with
uncertain query

semantics

Prune(q,R1),
Prune (q,R2),
…,
Prune(q,Rn)

Enrichment
Plan

Prune(q,R1),
Prune (q,R2),
…,
Prune(q,Rn)

Figure 1: Loosely coupled system versus ENRICHDB.

PS(Ans(q,E))=
|E|∑
i=1

W(ei)·[Q(Ans(q,ei))−Q(Ans(q,ei−1))]

The query execution time is discretized into sub-intervals,
called epochs ({e1 ,e2 ,...,ez}), W (ei)∈ [0,1] is the weight
allotted to the epoch ei, W (ei)>W (ei+1)), Q is the qual-
ity of answers, and [Q(Ans(q,ei))−Q(Ans(q,ei−1))] is
the improvement in the quality of answers occurred in the
epoch ei. The quality Q is measured according to the type
and semantics of the query as discussed above. Given a
query, a quality metric, and a set of weights assigned to each
epoch, ENRICHDB’s goal is to achieve maximum progres-
sive score for the query, if query execution is stopped early.

3. ENRICHDB IMPLEMENTATION
There are two possible ways of implementing the above

data model as shown in Figure 1: (i) a loosely coupled (LC)
approach, wherein an enrichment module is implemented
separately from the DBMS, and (ii) a tightly coupled (TC)
approach, wherein an enrichment module is tightly inte-
grated with the query processing module of the DBMS.
ENRICHDB follows TC approach on top of PostgreSQL as
it uses the query context to eliminate redundant enrichment.
Consider a query with two selection conditions on derived at-
tributesA1 andA2, connected using AND, the LC approach
will enrich the tuples for both A1 and A2. In contrast, in TC,
after enriching A1 of a tuple, if it does not satisfy the condi-
tion onA1, then attributeA2 is not enriched. Such a pruning
strategy can be very effective, when queries are complex and
selective. Furthermore, the TC approach executes the enrich-
ment functions closer to the data, in the database engine.

An ENRICHDB query is wrapped in a stored procedure
that internally executes appropriate SQL queries on top
of PostgreSQL tables during multiple epochs. The query
results are maintained using Incremental Materialized Views
(IMV) [3] to reduce the overhead of executing queries
multiple times. Enrichment functions are implemented
as user-defined functions (UDFs), and their execution is
orchestrated by a special UDF that executes enrichment
functions as UDFs by taking them as arguments. For
implementation details, please check [2].

4. USE CASE OF ENRICHDB
This section describes how ENRICHDB can be used to

develop the application described in §1 that finds out loca-
tion of attendees already arrived for an event. It requires

fine-grained localization of people using WiFi connectivity
data inside a building using multiple predictive models with
different cost and quality [12]. The application poses queries
to find out attendees at a location between two time intervals.
Ease of Application Development. To develop this applica-
tion, the steps that developers need to take in ENRICHDB
are presented below. ENRICHDB-based implementation
is much simpler (≈26 lines of code) as compared to any
loosely coupled implementation, where enrichment is per-
formed outside of DBMS and requires much more lines of
code (≈130 lines, given in [2]).

1 -- Creating a new table
2 CREATE TABLE wifi(id int, user_id char(30),
3 timestamp timestamp, wifi_ap char(30),
4 location int derived:304)
5 -- Training ML Models
6 SELECT db.model_train(’wifi_train’,
7 ’location_dt’, ’decision_tree’,
8 ’location’, ’feature[]’, model_params);
9 -- Associating functions with ‘location’

10 SELECT db.assign_enrichment_functions(
11 ’wifi’, [[’location’,3,’loc_dt’,0.8,0.7],
12 [’location’,4,’loc_fo’,0.9,0.8],
13 [’location’,1,’loc_mlp’,0.95, 0.9]]);
14 -- Setting up decision table
15 SELECT db.learn_decision_table(’wifi’,
16 ’location’,’WifiValidation’);
17 --Adding data
18 SELECT db.enriched_insert
19 (’INSERT INTO wifi VALUES
20 (1,1051, "2021-05-18 10:02:05",
21 "clwa-1200-a", NULL)’);
22 -- Executing Queries
23 call db.exec_driver(’SELECT wifi.location
24 as p_loc, wifi.time as p_time FROM wifi
25 WHERE wifi.id<100 AND p_loc =’L1’ AND
26 p_time BETWEEN ("10:00","12:00")’,20,5);

Performance Evaluation. Figure 2 shows the quality
of results achieved by ENRICHDB with respect to time
for the query described above (Line 23). The results
are produced at the end of each epoch, where the epoch
duration is set to 5 seconds. The quality is measured using
normalized F1 measure, i.e., F1/Fmax

1 , where Fmax
1 is

the maximum F1 measure achieved during query execution.

0 200 400 600 800 1000
Time

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
. F

1
 m

ea
su

re

EnrichDB
Eager Enrichment

Figure 2: EnrichDB vs com-
plete enrichment at query time.

Figure 2 highlights that
ENRICHDB provides
high-quality query
results within the first
few epochs of a query
execution as compared
to the strategy of
eager enrichment that
enriches the tuples
completely and then
executes the query.

5. RELATED SYSTEMS
ENRICHDB can be viewed as a system similar to Extract-

Load-Transform (ELT) based systems [1], where the data

is extracted and loaded to a data warehouse/lake system
and enrichment is performed at the analysis time. However,
in contrast to such ELT systems, ENRICHDB provides a
powerful data model to application developers that make ap-
plication programming very easy. Query-driven approaches
of data cleaning has been studied significantly [18, 8]. How-
ever, such works were restricted to only data cleaning algo-
rithms of duplicate detection, duplication elimination, and
entity resolution, whereas ENRICHDB supports a general
class of enrichment functions such as classification func-
tions, clustering functions, and regression functions. Systems
for supporting ML using databases (e.g., Apache MADlib
[9], RIOT [21]) are designed to learn ML models inside or
on top of database systems; however, such systems do not
support semantic abstraction of specifying enrichment func-
tions and linking them to higher-level semantic observation
generated by them as supported by ENRICHDB.

6. CONCLUSION
In this paper, we proposed ENRICHDB — a new system

for supporting data enrichment inside a single data manage-
ment system. The cornerstone of ENRICHDB is a powerful
enrichment data model that encapsulates enrichment as an
operator inside a DBMS enabling it to co-optimize enrich-
ment with query processing. Furthermore, ENRICHDB
provides semantic abstraction, transparency of enrichment,
and progressive computation of queries to make application
programming very simple for the developers.
Acknowledgements. This material was partially funded by the research
sponsored by DARPA under agreement number FA8750-16-2-0021 and
NSF Grants No. 1527536, 1545071, 2032525, and 2008993.

7. REFERENCES
[1] Apache airflow. https://airflow.apache.org/.
[2] Full paper and code. https://github.com/DB-repo/enrichdb.
[3] IMV implementation of postgresql. github.com/sraoss/pgsql-ivm.
[4] Y. Altowim et al. Progressive approach to relational entity resolution. VLDB

2014.
[5] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised

learning algorithms. ICML ’06.
[6] W. Cheng et al. Bayes optimal multilabel classification via probabilistic

classifier chains. In ICML, 2010.
[7] S. Feng et al. Uncertainty annotated databases - A lightweight approach

for approximating certain answers. In SIGMOD, 2019.
[8] S. Giannakopoulou et al. Cleaning denial constraint violations through

relaxation. In SIGMOD, 2020.
[9] J. M. Hellerstein et al. The madlib analytics library or MAD skills, the SQL.

VLDB 2012.
[10] J. M. Hellerstein et al. Online aggregation. SIGMOD Rec., 1997.
[11] M. Lapin et al. Top-k multiclass SVM. In NIPS 2015.
[12] Y. Lin et al. LOCATER: cleaning wifi connectivity datasets for semantic

localization. VLDB 2014.
[13] T. Papenbrock et al. Progressive duplicate detection. TKDE, 2015.
[14] H. Plattner. The impact of columnar in-memory databases on enterprise

systems. Proc. VLDB Endow., 7(13):1722–1729, 2014.
[15] D. Suciu et al. Probabilistic databases. Synthesis lectures on data management,

2011.
[16] J. A. K. Suykens et al. Least squares support vector machine classifiers. Neural

Process. Lett., 9(3):293–300, 1999.
[17] X. Wang et al. An IDEA: an ingestion framework for data enrichment in

asterixdb. Proc. VLDB Endow., 12(11):1485–1498, 2019.
[18] S. E. Whang et al. Pay-as-you-go entity resolution. IEEE TKDE, 2013.
[19] D. H. Wolpert. Stacked generalization. Neural Networks, 1992.
[20] M. Zaharia et al. Discretized streams: fault-tolerant streaming computation at

scale. In SOSP, pages 423–438. ACM, 2013.
[21] Y. Zhang et al. I/o-efficient statistical computing with RIOT. In ICDE 2010.

https://airflow.apache.org/
https://github.com/DB-repo/enrichdb
github.com/sraoss/pgsql-ivm

	Introduction
	Data and Query Model
	Data Model
	Query Model
	Query Language
	Query Semantics
	Quality Measure of Query Results

	EnrichDB Implementation
	Use Case of EnrichDB
	Related Systems
	Conclusion
	References

