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ABSTRACT

Federated analytics (FA) is a privacy-preserving framework
for computing data analytics over multiple remote parties
(e.g., mobile devices) or silo-ed institutional entities (e.g.,
hospitals, banks) without sharing the data among parties.
Motivated by the practical use cases of federated analytics,
we follow a systematic discussion on federated analytics in
this article. In particular, we discuss the unique characteris-
tics of federated analytics and how it differs from federated
learning. We also explore a wide range of FA queries and
discuss various existing solutions and potential use case ap-
plications for different FA queries.

Keywords: Federated analytics, distributed computing, privacy.

1 Introduction

Federated Analytics (FA) is a paradigm for collaboratively extracting
insights from distributed data that is owned by multiple parties (e.g.,
individual mobile devices or institutional organizations) under the co-
ordination of a central entity (e.g., a service provider) without any of
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the raw data leaving their local parties or revealing information be-
yond the targeted insights. The core principles of this paradigm allow
breaking the limitations for deriving analytics from limited centralized
data, in terms of privacy concerns and operational costs. In the last
decade, federated learning (Kairouz et al., 2021), a closely related area
to federated analytics, has received significant interest both in academic
and industry domains. Recently, the research community is extending
federation beyond learning settings to address more generalized ana-
lytics questions. In this work, we summarize the diversity of questions
within federated analytics and highlight research problems that can
have significant theoretical and practical interests.

The term federated analytics was first coined by Google in 20201

to represent “collaborative data science without data collection”. It
was first explored in support of federated learning as a way for Google
engineers to evaluate the quality of the learned machine learning models
against real-world data. Beyond model evaluation, FA implementations
have expanded to other applications with the flagship application being
the discovery of popular elements across devices, e.g., popular out-of-
dictionary words (Zhu et al., 2020) or most popular songs recognized
by phones. In these FA applications, the key challenge was to develop
protocols that are efficient at scale while taking into account the limited
communication bandwidth, as well as preserving the privacy of the
participating parties.

Even with the success of these initial FA solutions and the recent
interest in this collaborative paradigm, there is, unfortunately, no clear
definition for what constitutes federated analytics, what kind of inter-
esting analytical questions it can answer, and what are the possible
real-world domains that can benefit from its applications. Very recent
summarizing efforts in federated analytics have focused on queries of in-
terest to particular domain applications such as video analytics (Wang
et al., 2021). However, there exists a wide range of other queries that
can be supported (and are of interest) in an FA system. Summarizing
these different query classes and the potential approaches for answering
them in federated analytics provides a great starting point for new re-
searchers in this areas as well as the future development of generalized

1https://ai.googleblog.com/2020/05/federated-analytics-collaborative-
data.html
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Figure 1: The schematic structure of federated analytics and the relationship be-
tween different sections. The body of this survey mainly contains the fundamentals
of federated analytics, a taxonomy of different queries of federated analytics, feder-
ated analytics algorithms, applications, and discussions of challenges and opportu-
nities in federated analytics in the presence of cloud-based services.

solutions for serving these queries within an FA system.

This paper aims to provide an introductory guide to federated ana-
lytics as follows (Figure 1). We first define federated analytics and how
it relates to the more well-studied field of federated learning. Next,
we provide a taxonomy of typical data analysis queries of interest in
federated analytics and where they can find use in different domains.
For the presented queries, we also discuss different existing approaches
in the literature for addressing them. Finally, we discuss different chal-
lenges and opportunities within the federated analytics framework and
discuss potential solutions for addressing these challenges and open di-
rections. These open questions provide starting points for expanding
and developing more practical scenarios in federated analytics, where
research efforts are still needed.
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2 What is federated analytics?

In federated analytics, there is typically a central querier (the question
asker) who wants to learn some property or answer a question based
on data distributed across different clients (i.e., parties). Each of these
clients owns a subset of the data, representing their local dataset. We
will refer to these parties as clients or data owners interchangeably
throughout this survey.

From a generalized perspective, federated analytics can be de-
fined as a setting for data analysis where a querier wishes to answer a
data analysis query through the collaboration of multiple data owners
(clients) that own their local raw data. The raw data is not exchanged
or transmitted, but instead, intermediate query replies that are meant
for aggregation at the querier are transferred to answer the intended
query.

In particular, from this generalized view, the goal of federated an-
alytics is for a central querier to answer the following query Q

Q(D) = Fω(D1,D2, · · · ,DN ). (1)

Here D = {Di}mi=1 is the private datasets at the N data owners, and
Fω is the (potentially parameterized) function on the data describing
the target query. For instance, given a pre-trained machine learning
classification model parameterized by ω, the basic federated analytics
query to test the accuracy of the model ω on the distributed datasets
can be represented by the following query:

Qω(D) = Acc(ω; {D1,D2, · · · ,DN})

=

N∑
i=1

|Di|∑N
i=1 |Di|

Acc(ω;Di), (2)

with the query answer being the weighted average of each party’s local
test accuracy Acc(ω;Di). To compute the local accuracy, each party
applies the model to its local labeled dataset and computes the local
ratio of correct classifications.

2.1 Federated learning vs. federated analytics

Federated analytics is very similar to federated learning (Kairouz et
al., 2021) in the fact that both require collaborative use of distributed
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Figure 2: An example federated analytics setting where a querier is discovering
the most popular song in the collective datasets at the clients, where each client is
a data owner of its local subset. To preserve the privacy of the clients’ data the
system seeks to answer the query distributively with only focused replies being sent
back to the querier.

data without collecting the raw data at a centralized location. How-
ever, while federated learning, as a branch of distributed optimization,
is about training machine learning models at the edge and aggregating
learning outcomes back into the federated learning model, federated
analytics is more generalized to include applying basic data science
methods for data analysis but also includes optimization-based ques-
tions such as federated learning. Thus from a generalized perspective
using the formulation of (1), federated learning can be viewed as a
complex federated analytics query on the distributed datasets when
the function Fω is the following optimization empirical risk minimiza-
tion problem:

Fω(D1,D2, · · · ,DN ) = arg min
w

N∑
i=1

∑
x∈Di

`(w;x). (3)

The analytics branch of federated learning has been extensively studied
in recent years (Kairouz et al., 2021), while algorithms and approaches
for basic data science queries have not seen similar exploration, even
though they are critical to service federated learning models. In fact,
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Figure 3: Examples of federated analytics applications in the healthcare domain.

one of the first application examples of non-learning queries in federated
analytics is strongly coupled with federated learning, where engineers
at Google wanted to evaluate the inference performance (e.g. in terms
of accuracy) of trained federated learning models against real-world
data not available at the data centers.

Thus, in the remainder of the paper, we limit our attention to simple
federated analytics queries that would not require optimization when
solved in a centralized scenario, in contrast to the federated learn-
ing branch which would require optimization of parameters to solve
in a centralized setting. Following this distinction, examples of simple
queries for federated analytics include questions of the form: what is
the mean or median value of a function applied on the distributed data;
while federated learning would be confined to learning a parameterized
function such as: what is the best model that maps features x to tar-
get variable y. In fact, each round of federated learning invokes the
simplest question in federated analytics after local training: what is the
sum of vectors (gradient updates) stored at the participating clients?.

2.2 Applications for federated analytics

We, next, discuss several canonical domains that benefit significantly
from applying federated analytics. Figure 3 highlights a number of
these applications of federated analytics in the healthcare domain.

• Evaluation analytics for machine learning models. The
poster application that started garnering interest in federated an-
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alytics was the collaborative evaluation of the quality of trained
machine learning models. For instance, Google uses federated an-
alytics to evaluate the accuracy of Gboard next-word prediction
models by using captured data from users’ typing activities on
their phones. Similar to accuracy evaluation, federated analyt-
ics can also be used to compute other evaluation metrics of the
trained machine learning models, e.g., model robustness to unseen
distributions/users as well as the fairness to different demographic
groups (Ezzeldin et al., 2021) (for example, how different is the
performance of an image tagging application to photos from the
black vs white communities).

• Analytics for medical studies and precision healthcare. A
key ingredient for realizing the full promise of precision medicine
is allowing research analytics and diagnostics on large amounts of
medical data that are not typically available through traditional
medical research procedures. This kind of information can origi-
nate from data collected at medical institutions (e.g., the efficacy
of applied treatments and onset symptoms associated with a di-
agnosis) to individual personal data such as location history of
individuals for contact tracing (e.g. during COVID-19), or mental
health studies based on bio-markers. Enabling these gains from
big medical data is challenged by the legal and regulatory barri-
ers for privacy that make collecting patient-level data outside a
healthcare provider complex and time-consuming.

• Guiding advertisement tactics. Advertisers are keen to know
whether their ads are attractive to their potential customers. For
example, in the case of video ads, they would like to collect sum-
mary ads viewership data from users to understand the effec-
tiveness of their advertisement concepts as well as guide future
advertisement expenditure.

The aforementioned domains can make use of a large number of sim-
ple federated analytic metrics beyond the promise of federated learning
models. In the following section, we give a taxonomy of different feder-
ated analytics queries and highlight to the reader some of their potential
use cases in the discussed application domains.
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Figure 4: A taxonomy of federated analytics queries presented in Section 3.

3 A taxonomy of federated analytics queries

As described in Section 2, a federated analytics query is a general
class that encompasses any question by a querer on distributed pri-
vate datasets. However, from this general class of queries, there exist
a number of queries that find greater exposure in different application
domains and are explored more deeply in the literature. We can divide
these queries of interest into three main categories: 1) Statistical test-
ing queries, 2) Set queries, and 3) Matrix transformation queries. The
statistical testing category includes different data science queries that
aim to discover key statistical properties of the distributed private data.
Examples of such queries would be the estimation of the mean median,
heavy hitters, key-valued data frequencies, hypothesis testing, . . . , etc.
The set queries, on the other hand, include analytics for discovering
data associations such as set intersection, set union, and intersection
cardinality. Matrix transformation queries include but are not limited
to operations such as dimensionality reduction using methods such as
principal component analysis, and projections. In this section, we for-
mally define the most popular queries in each of the aforementioned
query types and present some of their real-world applications. Figure 4
summarizes the queries presented in the remainder of this section.
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3.1 Statistical testing

We focus on four key statistical queries that have a wide variety of
real-world applications in different domains, such as health, business,
and user experience. For each of these statistical queries, we give its
mathematical definition, followed by one of its main applications. We
discuss some existing solutions in Section 4. We start by first assuming
having a set D = {D1, . . . ,DN} of N datasets, where each dataset
Di = {xi1, . . . , xini} consists of ni data points and is owned solely by
one distributed node, i.e., an FA client.

3.1.1 Heavy hitters

The objective of the heavy hitter problem is to construct a succinct his-
togram of the elements across the N parties datasets that contains only
the most popular (heavy-hitter) elements; other elements are treated
as if appearing with zero frequency. Typically, an element is denoted a
heavy-hitter if its frequency in the distributed dataset is greater than
or equal to a fraction φ of the dataset size. Formally the goal of the
query is to return the following:

Q(D) = {(x, freq(x))|x ∈ DHH}

where: DHH =

{
x

∣∣∣∣∣x ∈
N⋃
i=1

Di, freq(x) ≥ φ|D|

}
. (4)

Note that the heavy-hitters problem is closely related to another
succinct histogram problem formulation, the top-K problem, where the
goal is to find a succinct histogram with the K most frequent elements
instead of all elements exceeding a threshold. If we target the top-1,
this translates to the well-known mode statistic of the dataset.

Application (User Experience). One popular application of heavy
hitters is to learn trendy out-of-dictionary words generated by users’
devices. Learning trendy words is of high interest to service providers as
it allows them to improve the service they provide to their users. These
services could be the autocomplete feature in smart keyboards, or a
powerful advertisement engine that could leverage the current public
taste of people for more effective advertisement. A similar application is
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to learn the out-of-dictionary words, which can be used to improve the
smart keyboard spell-auto-correction feature by adding such words to
the keyboard’s dictionary. Apple has already used differential privacy
to protect the privacy of users’ input data while collecting the top
frequent emojis by users (Apple, 2017). Similarly, Google has also
proposed another differential privacy (DP) method to collect the out-
of-dictionary words (“Learning new words” n.d.).

3.1.2 k-percentile element

k-percentile element In the k-th percentile statistical query problem,
the objective is to find the smallest element that is greater than k
percent of the overall dataset available at the participating distributed
nodes. This statistical query problem can be formalized as follows.
Assuming the entries of the datasets in D are non-categorical values
(i.e., numerical values), then by denoting Ds to be the non-decreasing
sorted set of the elements of

⋃N
i=1Di, the k-percentile element xk in

this distributed parties datasets D = {D1,D2, · · · ,DN} is given by

Q(D) = xk = x such that rankDs(x) = k × |Ds|, (5)

where ranksD(x) is the order of element x in the dataset Ds. An example
of k-percentile values is the median, where k is 0.5.

Application (Business). It is well-known that the median is a more
robust metric to represent central tendency compared to the mean,
which is more sensitive to outliers. Hence, it is more useful in business
use cases to assess different components such as company salaries. For
instance, a possible application for federated median computation is for
an authority to compute the median salary (or any other percentile) of
all employees in a set of companies without revealing the exact salaries
of the employees or which companies they belong to.

3.1.3 Key-valued data

The Key-valued data is a statistical query problem in which each data
point is represented by a key (e.g., identifier) and value associated
with this key, while the objective is to learn the frequency of each
key and the mean (or aggregate) of the values that appear paired
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with this particular key. To formalize the objective, we assume that
the dataset Di, for i ∈ [N ] is a key-valued dataset such that Di ={
xij
∣∣xij = (kij , v

i
j), ∀j ∈ [ni]

}
. The objective is to find the following

Q(D) =


freq(ki),

1

|freq(ki)|
∑

vj :(ki,vj)∈D

vj

 , ∀ki ∈ D

 . (6)

Application (Business). A possible application can be in the busi-
ness market, where the objective is to privately learn the distribution
of the stocks and the investment amount of each stock from the private
data of the investors. Specifically, in this stock market application,
the key represents the stocks while the value represents the amount
that a person invests in a given stock. The statistical query goal takes
place when an analyst wants to learn how many agents invest in each
stock (e.g., frequency distribution stocks) and the amount invested in
each stock (e.g., average or aggregate amount) without collecting any
private data which can cause a breach to their privacy.

3.1.4 Histogram-based statistics

This can be considered a special case of the key-valued data problem,
where the objective is to learn only the frequency of each key.
Application (User experience). One real-world application of
histogram-based statistics is the Now Playing feature on Google’s Pixel
phones (Google, 2020). This feature uses an on-device database of song
fingerprints to show users what song is playing in the surrounding room
without an internet connection. The one-device database includes the
most frequently recognized songs, which are maintained and updated
by Google to ensure that the database contains only popular songs.
The way it works is that on each phone, the Now Playing application
computes the recognition rate (value) for each song (key) in its Now
Playing History. Once the phone is plugged in and connected to WiFi,
the users encrypt the rate of the songs and send them to the Google
servers so that they can only compute a histogram distribution of all
song counts. This allows Google to replace the less popular songs in
the database with the more popular ones.
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3.2 Private set queries

The distributed private set queries class can be broadly clustered into
three different categories; distributed sets intersection, distributed sets
union, and distributed cardinality computation. The main goal of this
analytic problem is to compute these queries in a way that protects
the privacy of the data owners being queried. Similar to the statistical
testing class, we consider having N parties where each party i has a
dataset Di of ni unique and private data points. Some of the existing
solutions to set queries are presented in Section 5.

3.2.1 Private Set Intersection

The private set intersection (PSI) is a private set query problem that
has a wide range of applications with the objective of computing the
intersection between the sets owned by the different clients and nothing
beyond that. This query is formally given as follows

Q(D) =

N⋂
i=1

Di. (7)

Application (Business). One famous application of PSI in the two-
party setting is the online-to-offline advertisement conversion (Ion et
al., 2020) in which a company would like to know how much of its
revenue can be attributed to an online advertisement in order to assess
the future payment it spends on a paid ad (e.g., Facebook ad). On
the other hand, the advertising company wants to know how successful
its advertising campaign is. In this setting, the advertising companies
have a database of the users and their status, whether they saw the
ad or not, while the company knows the users who purchased their
products as well as the amount they spent on their purchases. In other
words, the data needed to compute these statistics are split across the
two parties. In this setting, the two parties are typically unwilling to
share their customers’ data to protect the privacy of their business and
their customers, but both parties would want to collaboratively learn
how many users both saw an ad and made a corresponding purchase,
as well as the amount of money those users spent on the company’s
products.
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3.2.2 Union

Similar to private set intersection, the goal is to privately evaluate
the union of the input sets of two or more parties privately without
revealing anything about the sets beyond the union. This objective
can be formally given by

Q(D) =

N⋃
i=1

Di. (8)

Application (Security). One popular application is risk assessment
and management (Ramanathan et al., 2020). The goal of this appli-
cation is to aggregate the blacklists from different parties and across
various attack types. This could help in improving the individual black-
lists in identifying malicious sources.

3.2.3 Cardinality

The goal of this problem is to learn the cardinality of the intersection of
the data set of multiple parties in a private manner, which can formally
be given as follows

Q(D) = |
N⋂
i=1

Di|. (9)

Application (Public Safety) One popular real-world application of
PSI cardinality is the CSAM Detection system used by apple “Apple
for Child Sexual Abuse Material (CSAM)”. The main goal is to identify
and report iCloud users who store known Child Sexual Abuse Material
(CSAM) in their iCloud Photos accounts. The way it works is that
intersection cardinality testing is carried on between a known database
of CSAM images and individual iCloud users. When the cordiality of
intersection exceeds a predefined threshold, Apple can provide relevant
information to the National Center for Missing and Exploited Children
(NCMEC).

3.3 Matrix transformations

Singular value decomposition (SVD) is one of the most popular matrix
operations that have a wide range of applications in either data ana-
lytics or machine learning. The main objective of this problem is to
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compute SVD over a set of distributed data without collecting any raw
data or breaching the privacy of the data owners. This problem can be
formally defined as follows: assume there are n parties, and each party
i has a private data matrix Di ∈ Rm×ni . The n parties would like to
compute the SVD jointly on the combined dataset D = [D1, . . . ,Dn],
where D ∈ Rm×n and n =

∑n
i=1 ni. The private computation of SVD

on the combined dataset takes the following form

Q(D) = UΣ[vT1 , . . . ,v
T
n ] (10)

where U and Σ are shared across all the parties, while Vi, ∀i ∈ [n], is
kept secret by party i and never shared with any other parties. From
(10), each node i can get its SVD by using the shared matrices U and
Σ, and the secret matrix Vi as Di = UΣVi.

Another variant of SVD called Funk-SVD is applied to the sparse
rating matrix used in the recommendation systems (Chai et al., 2020)
such that it composes the sparse matrix into two embedding matrices
that can be used to predict the missing rating in the rating matrix.
Application (Machine Learning). SVD is an essential building
block in many studies and applications, such as principal component
analysis (PCA). PCA is used to reduce the feature space of the data
used in machine learning. Reducing dimensionality in statistical ma-
chine learning can prevent the model from overfitting, which reduces
the ability of the model to generalize beyond the examples in the train-
ing set. One challenge of performing PCA in a distributed setting is
having the data distributed across multiple nodes while collecting and
gathering the data is prevented by the law (e.g., GDPR (Voigt and
Von dem Bussche, 2017)). We discuss some existing solutions for the
matrix transformation query in Section 4.

4 Existing solutions to statistical testing queries

A taxonomy of the privacy-preserving techniques used for the statistical
testing queries is given in Table 1. We consider different variants of
privacy-preserving techniques represented by differential privacy (DP),
secure multi-party computing (MPC), and a combination of DP with
MPC.
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Query Privacy
technique Related works Noisy

response

Heavy hitters

Non-private (Charikar et al., 2004; Cormode et al., 2003) No

DP (Hsu et al., 2012; Bassily and Smith, 2015; Bassily et al., 2017)
(Apple, 2017; Acharya et al., 2019; Acharya and Sun, 2019; Zhu et al., 2020) Yes

MPC (Boneh et al., 2021) No
DP + MPC (Böhler and Kerschbaum, 2021) Yes

Median
Non-private (Iutzeler, 2017) No
DP (Boehler and Kerschbaum, 2022; Böhler and Kerschbaum, 2020) Yes
MPC (Aggarwal et al., 2010; Goldreich et al., 2019; Tueno et al., 2020) No

Key-valued data DP (Ye et al., 2019; Gu et al., 2020) Yes

Table 1: Taxonomy of the privacy-preserving techniques used in the statistical query.

4.1 Heavy hitters

The heavy hitter problem has been well studied in the literature either
in the centralized setting with no privacy requirements where the data
is already collected and stored at a central server or in a distributed
federated setting where the queerer wishes to learn the “heavy hitters”
in the clients’ data while guaranteeing the privacy of each contributing
client at minimal computation/communication costs (Charikar et al.,
2004; Cormode et al., 2003; Charikar et al., 2004; Cormode et al., 2003;
Hsu et al., 2012; Bassily and Smith, 2015; Bassily et al., 2017; Apple,
2017; Fanti et al., 2015; Acharya et al., 2019; Acharya and Sun, 2019;
Zhu et al., 2020)).

4.1.1 Non-private centralized setting

In the non-private centralized setting, the main objective is to develop
efficient heavy hitters algorithms with low storage requirements and
provable error bound. The low storage requirement is of significant im-
portance when dealing with a large online data stream that memory-
intensive solutions such as sorting the stream or keeping a counter for
each distinct element are infeasible (e.g., (Charikar et al., 2004; Cor-
mode et al., 2003)). The work in (Charikar et al., 2004) proposes an ap-
proximate heavy hitter algorithm that is memory efficient with proven
theoretical error bound. The algorithm is based on sketch counting
that relies on using a set of hashes that map each element in the data
stream to different bins, such that when running the sketch counting
algorithm along with a max-heap data structure, the algorithm can
find the k heavy hitters in a stream of d unique items with storage cost
logarithmic in d (e.g., O(K log d)) instead of being linear in d.
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4.1.2 Private distributed setting

There is a rich body of works on private heavy hitters and frequency
estimation in the distributed setting while ensuring users’ privacy by
leveraging DP (Hsu et al., 2012; Bassily and Smith, 2015; Bassily et al.,
2017; Apple, 2017; Acharya et al., 2019; Acharya and Sun, 2019; Zhu
et al., 2020), MPC (Boneh et al., 2021), or combine DP with MPC
(Böhler and Kerschbaum, 2021).

Heavy hitters with differential privacy. Researchers have pro-
posed multiple efficient private heavy hitter algorithms that have a
computation time, communication cost, and storage cost polynomial
in n (number of users) and logarithmic in d, log(d), where d is the size
of the data universe (dictionary of the data points to check). (Hsu et al.,
2012) proposed several efficient (ε, δ)-differentially private algorithms
for the heavy hitter problem for n parties, each of which possesses a
single element from a universe of size d. However, their algorithms
experience high error between the estimated frequency for the heavy
hitter items and their true frequency, where the error rate is given by

O
6
√

log(d)log( 1
δ
)

ε2n
, which does not match their error lower bound Ω( 1√

n
).

In contrast to (Hsu et al., 2012), (Bassily and Smith, 2015) provide
the first polynomial time local (ε, 0)-differentially private protocol for

heavy hitters that has worst-case error O(
√

log(d)
ε2n

). They also show
that using the public coin model, each user can send only one bit to
the server. However, one of the main limitations of their approach
is the high time complexity, where their algorithm requires a server
running time of O(n5/2) and a user running time of O(n3/2). In later
work, (Bassily et al., 2017) have proposed two algorithms, TreeHist
and Bitstogram, which require a server running time of O(n) and a
user running time of O(1). The TreeHist algorithm is based on a noisy,
compressed version of the count sketch proposed in (Charikar et al.,
2004). From the practical point of view, in a concurrent work (Ap-
ple, 2017), Apple has proposed the Sequence Fragment Puzzle (SFP)
algorithm, a state-of-the-art sketching-based algorithm for discovering
heavy hitters using local DP and an unknown dictionary. In this work,
they have proven expressions for balancing the trade-offs among pri-
vacy, accuracy, transmission cost, and computation cost, allowing a
trade-off of these parameters in different practical use cases. There are
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some other works (e.g., (Fanti et al., 2015)) that propose a heuristic
algorithm that can be used for finding the heavy hitter with an un-
known dictionary. While the work in (Bassily et al., 2017) requires
public randomness and coordination between the server and users, the
authors in (Acharya et al., 2019) have proposed an algorithm based on
Hadamard Response (HR) that is used in general for frequency esti-
mation and does not require any public randomness, but at the cost of
a per-user communication cost of log(d), while working for all privacy
regime (e.g., ∀ε). In contrast to (Acharya et al., 2019) that trades the
need for public randomness with more per-user communication cost,
(Acharya and Sun, 2019) proposes an algorithm that requires only 1-
bit per user while not requiring any public randomness. However, their
algorithm gives an optimal error rate only at the high privacy regime,
i.e., ε < 1.

The previously mentioned works utilize local DP to ensure privacy,
yet it is known that local DP often leads to a significant reduction in
utility (Kairouz et al., 2014; Kairouz et al., 2016; Duchi et al., 2013).
On the other hand, the choice of using central DP requires having a
trusted server that can first collect the clean data and then perturbs
it. Since in the central DP setting, noise is only applied once by a
trusted server, central DP has better utility than local DP. To over-
come the limitations of central DP and local DP, (Zhu et al., 2020)
propose trie-based heavy hitters (TrieHH) algorithm that is interactive
(e.g., multi-round algorithm) and leverages its interactivity to achieve
central DP without the need to centralize raw data while also avoid-
ing the significant loss in utility incurred by local differential privacy.
The DP privacy guarantee of their algorithm is achieved by leveraging
the randomness from the user sampling and the anonymity properties
of their distributed algorithm, which make their algorithm inherently
differentially private without requiring additional noise. This is differ-
ent from the previously discussed works that are non-interactive and
achieve local DP using the randomized response. It is also different
from the work in (Bassily et al., 2017) that relies on public random-
ness. They have also studied the trade-off between privacy and utility
and shown that their algorithm can achieve good utility while ensuring
strong privacy guarantees, compared with the works that rely on DP,
such as (Apple, 2017).
Secure Multi-party Computing. Leveraging secure multiparty com-
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puting primitives is another direction for privately computing the heavy
hitters without impacting the utility (Boneh et al., 2021) or requir-
ing a large number of users as in (Zhu et al., 2020) to get reason-
able utility. The proposed protocol by (Boneh et al., 2021) for solving
the private heavy-hitter problem leverages a lightweight cryptographic
tool called incremental distributed point functions instead of using DP,
which could reduce the utility. The proposed protocol relies on the
assumption of having two non-colluding servers, which is one of the
main limitations of this work. Additionally, it requires at least one
of the two servers to not collude with any client. Apart from these
limitations, this protocol can guarantee correctness in the presence of
malicious clients who can manipulate its input string to alter the proto-
col execution. The proposed protocol is interactive, requiring all users
to participate only once in the protocol execution, where each client
can send only a single message of size linear in the length of the input
string to the servers. Similar to most works that utilize DP, the pro-
posed protocol requires any public-key cryptographic operations except
for establishing secret channels between the parties.
Secure Multi-party Computing with DP. By combining MPC and
DP, (Böhler and Kerschbaum, 2021) have proposed a heavy hitters
protocol that provides high utility even for a small number of users,
which is the most challenging regime for DP (Zhu et al., 2020). The
proposed algorithm, in contrast to (Boneh et al., 2021), considers the
existence of only one server that wishes to compute the K-heavy hitters
on the input strings of the clients.

4.2 Median

Similar to the heavy hitter problem, the works for distributed median
computation are also broadly classified from the perspective of privacy
into works that leverage MPC primitives and DP.
Secure Multi-party Computing. As pointed out by (Aggarwal et
al., 2010), the problem of private computing of the k-th ranked element
on the private dataset of several parties can be solved by constructing
a combinatorial circuit that is evaluated securely by the parties (e.g.,
(Goldreich et al., 2019)). However, the main limitation of these generic
protocols is the communication overhead. In particular, for a two-party
setting, where the combined data set size is n, and the elements of the
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dataset are drawn from a field of sizeM , the communication cost of this
circuit-based solution is Ω(n logM). For applications where the data
size is large, these generic solutions are impractical. By using an inter-
active protocol that relies on the binary search and secure comparison
using Yao’s garbled circuit, (Aggarwal et al., 2010) have provided the
first specialized protocols for computing the k-th ranked element with
sublinear communication and computation overhead for the two-party
setting and the multi-party setting where parties in both settings are
interested in knowing the k-th ranked element. In the two-party case,
the cost of computing the k-th ranked element is O(logM · log k) com-
pared to O(log2M) in the multi-party setting. The number of rounds
of the proposed algorithm for the two-party is logarithmic in the num-
ber of input items, whereas the number of rounds of the multi-party
algorithm is logarithmic in the size of the domain of possible input
values (e.g., logM). The proposed protocol provides security against
malicious parties. One of the main limitations of this work for the
multi-party setting is that it requires lots of coordination between all
pairs of parties for establishing pairwise communication channels, thus
impacting its practicality. Another practical limitation is that it is
very interactive, where the number of rounds to complete the protocol
scales logarithmic with the field size. To overcome such limitations,
(Tueno et al., 2020) have proposed efficient algorithms that leverage
the client-server architecture. In this client-server setting, there are
communication channels only between each client and the server, while
only clients provide inputs to the computation. The rule of the server
in this setting is to make their computational resources available for
the computation but have no input to the computation and receive no
output. By using this setting, their proposed algorithm is less interac-
tive, as it only requires a fixed number of rounds with the server (e.g.,
at most four rounds) compared to O(log2M) for the algorithm in (Ag-
garwal et al., 2010). The highest computation cost of their algorithms
is O(log2M).
Differential Privacy. Computing the exact median value and reveal-
ing it to the clients using the algorithms proposed by (Goldreich et al.,
2019; Aggarwal et al., 2010; Tueno et al., 2020) can violate the pri-
vacy of the parties that own this median value. To overcome such a
challenge, (Boehler and Kerschbaum, 2022) proposes an efficient algo-
rithm for computing a differential private median between two parties
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by utilizing the exponential mechanism. The proposed algorithm has
a computation complexity sublinear in the size of the data universe
(e.g., logM). (Böhler and Kerschbaum, 2020) proposed another algo-
rithm for private median computation in the multi-party setting while
using the exponential mechanism. Their algorithm for the multi-party
setting also has a computation complexity sublinear in the data size.
The threat model considered in this setting is the semi-honest (non-
malicious) clients. They also discuss how to extend their algorithm to
malicious clients, and implement it using the SCALE-MAMBA frame-
work (Aly et al., 2020).
Non-private. From the distributed optimization perspective, (Iutzeler,
2017) has proposed distributed synchronous and asynchronous algo-
rithms for computing median and other elements of specified ranks of
the clients’ data. Unlike the works in (Aggarwal et al., 2010; Boehler
and Kerschbaum, 2022; Böhler and Kerschbaum, 2020) that connect all
nodes as a fully connected graph, this work considers a general undi-
rected connected graph. To distributedly solve the median problem,
they first design a convex optimization problem whose solution meets
the median or the quantile to compute. They solve the problem using
the distributed formulation of ADMM proposed by (Lions and Mercier,
1979; Boyd et al., 2011).

4.3 Key-Valued data

The objective of this problem is to collect two fundamental statistics
of key-value pairs, including frequency of keys and mean of values.
One naive solution is to apply local DP independently at the keys and
values. Since keys are categorical data, some existing DP methods
(e.g., (Erlingsson et al., 2014; Kairouz et al., 2014)) can be applied
to each key, while each value can be perturbed using (e.g., (Duchi
et al., 2014; Nguyên et al., 2016)). However, the main challenge for
this naive approach of applying local DP is to achieve a good utility-
privacy trade-off, since the data contains two dimensions, and a user
may have multiple key-value pairs. Additionally, this naïve indepen-
dent perturbation does not preserve the correlation between the keys
and values. To address this challenge, (Ye et al., 2019) proposed the
first specialized LDP algorithms for this problem by modifying the
Harmony randomized response-based protocol (Nguyên et al., 2016)
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to better maintain the relationships between the keys and values to
improve the accuracy of statistics while still achieving local differen-
tial privacy. Their first proposed algorithm, PrivKV, is a non-iterative
(non-interactive) algorithm that is suitable for low communication cost
scenarios. Additionally, they have proposed another two interactive
protocols (PrivKVM and PrivKVM+) to iteratively improve the es-
timation of a key’s mean value PrivKVM trades the communication
cost with the accuracy while PrivKVM+ balances between accuracy
and communication bandwidth. The main limitation of their non-
interactive algorithms is the large number of rounds required to get
an unbiased mean estimation and to improve the estimation of a key’s
mean value. In general, their key limitations, which have also been
highlighted by (Gu et al., 2020) include (1) A large number of rounds
requires all users to be always online, thus limiting its practicality. (2)
The privacy budget increases with the number of rounds. For a fixed
privacy budget, the budget for each round decreases as the number of
rounds increases. This decrease in per-round privacy budget increases
the amount of noise added, which can negatively impact performance.
(3) Their privacy analysis lacks improved budget composition for local
differential privacy that can capture the correlation between key and
value given by their algorithms. (4) Finally, their proposed random key
sampling method, which is part of their algorithms, does not work well
for a large key domain. Follow-up work by (Gu et al., 2020) introduced
a non-interactive framework called PCKV with a better utility-privacy
trade-off that overcomes the aforementioned limitations. In particular,
they apply an advanced sampling procedure to enhance utility over the
naive random sampling done by PrivKVM. They also require only a
single iteration and provide a tighter analysis of the privacy budget
consumption.

5 Existing solutions to set queries

Private set intersection/union computations have had a number of prac-
tical use cases that is large enough to garner the attention of researchers
over the last two decades (Pinkas et al., 2018). Below, we discuss a
number of key approaches to solving these set query problems, mainly
from the MPC community. A taxonomy of the privacy-preserving tech-
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Query Privacy technique Related works

Private set intersection

Homomorphic encryption
(Huberman et al., 1999; De Cristofaro et al., 2010; Meadows, 1986)
(Ion et al., 2017; Freedman et al., 2016)
(Chen et al., 2017; Hazay and Venkitasubramaniam, 2017)

Oblivious polynomial evaluation (Freedman et al., 2004; Dachman-Soled et al., 2009)

Oblivious transfer (Pinkas et al., 2014; Pinkas et al., 2015; Rindal and Rosulek, 2017)
(Kolesnikov et al., 2017; Pinkas et al., 2019)

Garbled circuit (Huang et al., 2012; Dong et al., 2013; Inbar et al., 2018)

Private set union Homomorphic encryption (Kissner and Song, 2005; Frikken, 2007)
Oblivious polynomial evaluation (Kolesnikov et al., 2019; Jia et al., 2022)

Private cardinality testing Homomorphic encryption (Ghosh and Simkin, 2019; Badrinarayanan et al., 2021)
Oblivious transfer (Branco et al., 2021)

Table 2: Taxonomy of the privacy-preserving techniques used in the set queries.

niques used for these set queries is given in Table 2.

5.1 Private set intersection

The existing approaches for the two-party setting include works based
on homomorphic encryption (HE) (Huberman et al., 1999; De Cristo-
faro et al., 2010; Meadows, 1986; Ion et al., 2017; Freedman et al.,
2016; Chen et al., 2017), works based on Oblivious Polynomial Evalua-
tion (Freedman et al., 2004; Dachman-Soled et al., 2009), works based
on Oblivious Transfer (Pinkas et al., 2014; Pinkas et al., 2015; Rindal
and Rosulek, 2017; Pinkas et al., 2019), and works based on garbled
circuit (Huang et al., 2012; Dong et al., 2013). Although these tech-
niques are for the two-party setting, some of them were extended to
the multi-party setting. Specifically, (Kolesnikov et al., 2017) have
proposed oblivious programmable pseudo-random functions that are
based on the idea of using oblivious transfer. Garbled bloom filter has
been used in (e.g., (Inbar et al., 2018)), and HE has been used in (e.g.,
(Hazay and Venkitasubramaniam, 2017)).

5.2 Private set union

(Kissner and Song, 2005) have proposed the first protocol for the pri-
vate set union, which leverages threshold additively HE and polynomial
representation. Another approach (Frikken, 2007) that adopts a simi-
lar technique can reduce the communication/computation complexity
of (Kissner and Song, 2005). Instead of using polynomial representa-
tion, (Davidson and Cid, 2017) uses an inverted Bloom Filter. While
the above works use public key operations, which result in increasing
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Query Privacy technique Related works

Matrix factorization
Homomorphic encryption (Liu and Tang, 2019; Chai et al., 2020)
MPC (Chai et al., 2022)
DP (Berlioz et al., 2015)

Table 3: Taxonomy of the privacy-preserving techniques for matrix transformation.

their computation complexities, (Kolesnikov et al., 2019) proposed the
first scalable PSU protocol using only symmetric-key techniques while
using polynomial representation for computing the private set unions.
However, their protocol requires repeated high-degree polynomial in-
terpolations on the parties’ datasets. To overcome such limitation, (Jia
et al., 2022) proposed an algorithm that relies on using data shuffling
and avoids using HE and repeated operations.

5.3 Private cardinality testing

The problem of cardinality testing has been considered in the two-
party setting by (Ghosh and Simkin, 2019; Bhowmick et al., 2021),
and in different works for the multi-party setting by (Branco et al.,
2021; Badrinarayanan et al., 2021) where these different works have
developed efficient solutions in terms of the computation and commu-
nication costs while preserving the privacy of the users’ data.

6 Existing solutions to matrix transformation

To solve the problem in (10), (Chai et al., 2022) proposed an efficient
lossless federated SVD solution over billion-scale data called FedSVD
ensures the accuracy of the SVD computation is not impacted. This is
guaranteed by avoiding using DP methods; instead, they rely on mask-
ing their data in a way such that the masks are canceled out when the
response from the different parties is aggregated by the server. Thus,
this approach guarantees the same performance as the centralized case
where all the data are located in one place. (Liu and Tang, 2019) have
proposed an algorithm that uses additive HE. On the other hand, (Chai
et al., 2020; Berlioz et al., 2015) have proposed distributed privacy-
preserving algorithms for recommendation systems that rely on matrix
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factorization. The proposed algorithm by (Chai et al., 2020) is based
on HE, while the one proposed by (Berlioz et al., 2015) leverages dif-
ferential privacy. The taxonomy of the privacy-preserving techniques
used for the set queries is summarized in Table 3.

7 Challenges and Open Opportunities

7.1 Algorithmic security and privacy

In the previous Sections 4-6, we presented a number of privacy-preserving
approaches to compute the FA queries. However, unlike FL, there does
not exist a single common framework or algorithm for privately com-
puting a diverse number of queries. A unifying approach to evaluate FA
queries without leaking unnecessary information is an open question of
great importance for deploying FA systems, as it will allow them the
flexibility to deal with a wide range of queries. Note that if the tar-
get is to solve the query while disregarding privacy, then a number
of queries discussed earlier can be computed and then used to derive
answers for other queries. For example, the mode, mean and median
statistical queries can all be computed by first computing the FA his-
togram query and then deriving the target answers (e.g. median) from
it. This, however, leaks unnecessary information to the querer beyond
the intended goal.

One solution to address this information leakage is to employ secure
enclaves (Costan and Devadas, 2016) at the querer to isolate a code ex-
ecution and memory in a trusted environment where the code can be
attested and verified while keeping its state a secret until it publishes
an output. Using this in our previous example, the querer can run a
code to aggregate the histogram and then extract the required target
query from it. Although secure enclaves can theoretically address the
security challenges arising from using a non-specialized analytics algo-
rithm, current secure enclave models are only limited to CPU resources
and provide limited memory resources, which limits their potential uni-
versal deployment.

With these limitations, it remains an open problem when and how
much to make use of these trusted secure enclaves in the logic for com-
puting the target query, and whether there exists a universal approach
to securely and privately computes federated analytics queries that does
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not need to use secure enclaves.

7.2 Robustness to system failures

The quality of computed analytics in a federated analytics system can
be prone to performance degradation due to a number of malicious
or non-malicious system failures. Malicious failures can arise due to
attempts by some system parties to alter their data or responses in
order to either degrade the system performance or targets its devia-
tion towards a premeditated result. In addition to malicious failures,
the distributed nature of federated analytics and its reliance on par-
ties that are not co-owned can cause it to suffer from party dropout
or straggling which can potentially happen during the execution of the
federated analytics algorithm. The use of privacy-preserving mecha-
nisms in federated analytics such as secure aggregation (Bonawitz et
al., 2016) as well as other MPC protocols, can hinder the detection or
recovery from these malicious or non-malicious faults. How to make
federated analytics robust to such failures without giving up any or
little privacy is an interesting open problem in the area.

Although a universal solution for robustness in federated analytics
is still open, there exist some approaches for handling failures in feder-
ated learning that can lend themselves easily to the federated analytics
framework. The non-malicious failure of clients was an overarching
limitation of the vanilla secure aggregation protocol (Bonawitz et al.,
2016). While the protocol design was inherently able to recover from
these failures and compute the sum (mean) from the surviving clients,
a huge recovery cost is incurred that is can grow quadratically with the
number of clients. Recent advances Kadhe et al., 2020; So et al., 2022
have proposed more efficient approaches for designing secure aggrega-
tion keys that allow for a more efficient recovery. These techniques
lend themselves to algorithms that rely on aggregating from all clients
simultaneously. Some federated queries, however, require structured
responses where a particular subset of clients need to be active in each
round. In this case, recovering the aggregate response from the sur-
viving clients may be useless in some cases, and more sophisticated
secure aggregation protocols are in great need. For example, one sim-
ple method would be checking if the subset of surviving clients does not
satisfy particular properties, and if so, abandon the aggregation over
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this subset of clients in this round.
For malicious failures that try to poison a client’s dataset, data

sanitization (Cretu et al., 2008; Steinhardt et al., 2017) and anomaly-
detection (Blanchard et al., 2017) techniques, which aim to detect or
remove anomalous data, have typically been used to address this. How-
ever, these techniques typically rely on access to some subset of the
clients’ data at the server or the availability of data that is sampled from
the same distribution, which makes them incompatible with privacy-
preserving approaches employed in federated analytics. It remains an
open problem whether we can use these failure mitigation techniques
in federated analytics without giving up privacy or if new defense ap-
proaches need to be developed to address malicious failures in federated
analytics.

7.3 Participation incentive mechanisms

In parallel to the development of efficient and secure approaches for
federated analytics, developing appropriate mechanisms to incentivize
participation is a critical open question for federated analytics systems.
This is particularly important in scenarios where the data owners are
competitive entities such as financial institutions or enterprises, where
the default strategy is not to collaborate with other competitors. Forms
of incentive in the cross-silo setting can be regulatory by a governing
entity (for example, the FDIC wants to detect fraudulent activity across
different banks (Elkordy et al., 2022a)), or for shared operational stabil-
ity, by jointly computing the salary quantiles across a cohort of compa-
nies (Kenthapadi et al., 2017). In the case of cross-device (individual)
clients, incentives can include provided services, and/or monetary gain.
From a service perspective, federated analytics promises users potential
improvement in the quality of their service experience, e.g., a higher
accuracy word predictor in Gboard or better estimation of travel times
in navigation applications. In other scenarios, the incentive can be
individual welfare, similar to the contact tracing analytics performed
using private set intersections during the COVID-19 pandemic.

In either cross-silo or cross-device, a central challenge is balancing
incentive with the heterogeneity of data and contribution (e.g., in terms
of the data size). To address this, careful design should be taken into
account to ensure clients with more data are not discouraged due to the
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non-proportionality of the incentives to their contributions, as well as,
not pushing away clients with less data by not implementing worthwhile
incentives.

7.4 Decentralized and trust

Our discussions so far always considered a central querier that poses
intermediate questions to the clients and aggregates their responses
in order to arrive at the query answer (this can be in one-shot or it-
eratively). Such a model makes sense for queries where the question
implies an authoritative entity (for fraud detection for instance) or a
large company (for product analytics) is asking the query. However,
for a population of clients that wish to collaboratively learn a property
of their joint dataset, handling the query computation distributively
can be more desirable. The key idea of decentralized analytics is to
rely on peer-to-peer communications between the clients to answer the
query, while still maintaining the privacy and security of exchanged
information about the local datasets. Computing decentralized analyt-
ics can find application in scenarios such as the evaluation of trained
models that are stored on the blockchain (Shayan et al., 2020) or to
crowd-source the computation of percentiles (e.g., median) of employee
salaries of the technology sectors without the pre-requisite of having
the parent companies agree to perform this federated computation.

There has been a wide array of works in MPC that develop decen-
tralized solutions for secure computation, particularly for private set
intersection problems (see §5.1). However, such solutions assume that
the communication graph of clients is fully-connected and undirected.
This can lead to inefficient protocols, particularly as the number of par-
ties increases. Furthermore, sparse and directed communication graphs
can model more diverse scenarios, for instance, when the clients are not
co-located or when communication goes in a single direction (e.g., due
to different social network connection tiers).

An interesting aspect of decentralized federated analytics is its de-
creased robustness to system failures (see the discussion in §7.2) due to
the absence of a centralized entity that can potentially filter out ma-
licious contributions or recover the system in the case of party drops.
The design of incentive mechanisms for participation in a decentral-
ized scenario is also a critical open research direction, as coordinating
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incentives is also impacted by the absence of a central coordinator.
One recent promising approach to address decentralized analytics

challenges is to use blockchains to keep track of intermediate updates
and verify that intermediate clients in the communication graph do not
act maliciously during the aggregation of updates. The Biscotti frame-
work (Shayan et al., 2020) in the context of federated learning can
be easily extended to mechanisms that rely on iterative updates and
secure aggregation. In Biscotti, the blockchain ledger uses verifiable
random functions to ensure that the aggregation contributed by a user
is truly the resultant of the stored encoded intermediate updates. It
also uses DP to ensure the privacy of these stored encodings. An adap-
tation of a blockchain solution for decentralized federated analytics can
lead to more flexible algorithms that are crowd-operated without the
requirement to trust a centralized aggregator/querier entity.

7.5 Cross-silo federated analytics on the cloud

In previous sections, we assume that FA clients own their data and
process the data in local and trusted environments when responding to
a query. However, in real-world deployments, instead of maintaining
local data centers and keeping the data on the local side, FA clients
typically would use third-party public cloud services such as Microsoft
Azure, Google Cloud, Amazon Web Services, IBM Cloud, and Alibaba
Cloud, to store and process their data. Outsourcing data to such third-
party clouds has emerged as the de facto model for data storage and
processing for numerous benefits, such as improved availability, lower
cost, and improved service.

Using clouds in an FA system, however, poses additional security
and privacy challenges due to the untrusted nature of public clouds. A
public cloud may be curious and wish to learn some information about
the data of the FA clients. To protect data from such adversarial clouds,
FA clients can use two classes of solutions for secure data outsourcing.
The first is called single cloud-based solutions, in which clients encrypts
their data and use a single cloud to store the data. The second is
calledmulti-cloud-based solutions, in which a client partitions their data
into several parts, e.g., secret-sharing shares, and stores those parts in
different clouds so that no single cloud can get the complete data.

In the following subsections, we will discuss solutions in the litera-
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ture that address security and privacy challenges in the two aforemen-
tioned outsourcing settings. We will use the set intersection query as
the running example throughout our discussions, since it is difficult,
complex, and important in query processing, and most existing works
focus on this type of query.

7.5.1 Single cloud-based solutions.

In single cloud-based solutions, clients encrypt their local data and use
a single cloud to store the data. (Abadi et al., 2016; Abadi et al., 2017;
Kamara et al., 2014; Kerschbaum, 2012; Liu et al., 2014; Qiu et al.,
2015; Abadi et al., 2020; Zhang et al., 2017) allow clients to outsource
their private datasets and process Private set Intersection (PSI) tasks
without downloading the datasets. (Abadi et al., 2017) ensures that
the cloud can only compute set intersection after obtaining the permis-
sion of all the clients, and the computation results will be protected
from the cloud. (Abadi et al., 2016; Kamara et al., 2014) provided a
watermark-based verification approach for queries over outsourced en-
crypted datasets. (Abadi et al., 2016) can also detect malicious cloud
(i.e., an adversarial cloud that may tamper the data stored on it) by
inserting secret values in the real datasets to the cloud each time to
process a PSI query. By checking whether the result set contains the
secret values, the clients will know whether the query result is correct
or not. (Kerschbaum, 2012) shares secrets between the cloud and the
clients to pre-process datasets when outsourcing the datasets. This
approach is collusion-resistant if one client and the public cloud col-
lude. However, it requires a client to encrypt the datasets with dif-
ferent encryption keys for set intersections with different clients. (Liu
et al., 2014) delegates PSI computation over randomized datasets to
a cloud. Each client computes the hash value of its dataset using a
general-purpose hash function, then randomizes each hashed data with
a random integer. (Qiu et al., 2015) applied fine-grained authorization
that enables the cloud to perform queries without leaking any data.
When a client A asks for a matching request with another client B, A
first negotiates a token with B so that A can delegate the computation
over the outsourced encrypted datasets to the cloud server, and such
operations require a trusted third party to generate a token on behalf
of the clients.
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With the exception of (Kamara et al., 2014), the aforementioned
techniques have quadratic/exponential complexity or use expensive cryp-
tographic techniques (Qiu et al., 2015), and as a result, do not support
large-sized datasets at the FA clients. While (Kamara et al., 2014)
scales better, it does not support aggregation, and, moreover, reveals
which item is in the intersection set. Fed-K-PSI (Elkordy et al., 2022a)
is a different variant of the server-based federated PSI. Each record on
the client’s side is represented by a key-value pair, and the server is the
entity that is interested in knowing the set of identifiers that appears
associated with the same value at least K times. One of the main com-
ponents of Fed-K-PSI is the secure aggregation protocol that has been
widely used in FL setting (So et al., 2022; Jahani-Nezhad et al., 2022;
Elkordy et al., 2022b; Elkordy and Avestimehr, 2022; Bonawitz et al.,
2016)

7.5.2 Multi-cloud-based solutions.

In multi-cloud-based solutions, a client partitions his/her local data
into several parts, i.,e., shares, and stores each share at different clouds.
Each cloud only has partial information, thus a single cloud can not
learn actual dataset (Bater et al., 2017; Volgushev et al., 2019; Li et
al., 2021; Corrigan-Gibbs and Boneh, 2017). To partition data into
shares, Shamir’s secret-sharing (Shamir, 1979) is the most widely-used
technique.

Prio (Corrigan-Gibbs and Boneh, 2017) is a privacy-preserving sys-
tem for collecting statistics that allows multiple clients to upload their
data in shares to multiple clouds, and these clouds execute only ag-
gregation operations – count, max/min/median. Prio allows servers to
verify the data they receive before storing it at their end. However,
Prio only offers a mechanism for confirming the maximum number if
the maximum number is known while does not provide any mechanism
to compute the maximum/minimum number. Concalve (Volgushev et
al., 2019) is an additive sharing-based system that allows to execute
SQL queries over multiple clients. Conclave allows partitioning the
computation such that parts of the computation can be executed at
the client over cleartext and the remaining parts can be executed over
additive shares. For example, a join query with selection can be parti-
tioned such that the selection condition can be executed at clients, and
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then the clients create additive shares of the data that qualifies the se-
lection condition. On the additive shares, a join query over the additive
shared data belonging to multiple clients can be executed. Two other
systems similar to Conclave are Senate (Poddar et al., 2021), which al-
lows collaborative SQL processing among multiple clients without using
the cloud, and SMCQL (Bater et al., 2017), which is a garbled cir-
cuit based system supporting PSI via join and aggregation operations.
However, these systems are inefficient when processing large datasets
due to either potential memory outage and/or multiple communica-
tion rounds in the cloud. For example, SMCQL takes ≈ 23 hours over
23M values, while Conclave takes 8 mins over 4M values. Furthermore,
to execute PSI via join operation, Conclave needs to reveal the join-
ing column in cleartext to a trusted third party. Helen (Zheng et al.,
2019) and Cerebro (Zheng et al., 2021) are two recent systems that
perform collaborative machine learning tasks without using the cloud.
Another recent system for executing queries in the multi-cloud-based is
Prism (Li et al., 2021). Prism uses both additive shares to support Pri-
vate Set Intersection (PSI)/Union (PSU) operations and multiplicative
shares to offer aggregation. Furthermore, Prism (Li et al., 2021) is able
to support query executions over large datasets and multiple clients.
To securely execute a computation, Prism needs at most three non-
colluding cloud servers. Prism does not require communication among
servers during/after/before the computation, and, consequently, is able
to support PSI/PSU over 20 million values in 8 seconds. Furthermore,
Prism is the only system that supports result verification operations.

8 Conclusion

In this article, we provide an overview of federated analytics, a privacy-
preserving paradigm to solve queries over distributed data owned by
multiple clients. We discussed the unique properties of federated ana-
lytics and how it relates to FL. We also provide a proposed taxonomy
for different classes of queries in federated analytics and a survey of
existing solutions in classical areas of distributed computing and se-
cure computation. Finally, we discussed several challenges and open
directions for the application and deployment of FA systems at scale.
Addressing these challenges can help bring FA systems closer to being
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deployed in more practical scenarios to answer a wider range of queries.
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