
Brief Announcement: Make Master
Private-Keys Secure by Keeping It Public

Shlomi Dolev1, Komal Kumari2, Sharad Mehrotra3, Baruch Schieber2,
and Shantanu Sharma2(B)

1 Ben-Gurion University of the Negev, Be’er Sheva, Israel
dolev@cs.bgu.ac.il

2 New Jersey Institute of Technology, Newark, NJ, USA
sbar@njit.edu , shantanu.sharma@njit.edu

3 University of California at Irvine, Irvine, CA, USA

sharad@ics.uci.edu

Abstract. The private key associated with a blockchain is the sole
means of linking a cryptocurrency asset to its owner, and any loss or
compromise of this key could result in significant consequences. Typi-
cally, crypto-wallets generate a private key from a string of words, which
users are advised to store in a private record, such as a piece of paper.
This method poses several security risks, as the private record holding
the secret words can leak the private key. Additionally, private records
are vulnerable to being lost or destroyed, leading to the potential loss of
assets. Moreover, clients have limited control over the generation of their
private key, as the wallet generates it. Our approach empowers clients
to securely generate and manage their own private keys, minimizing the
risk of key loss. We have developed an open-source technique that allows
clients to use memorized secrets to store and retrieve their private keys.
Our method employs Bloom filters with hash functions, such as SHA-256,
to store and retrieve the private key from the Bloom filter securely.

1 Introduction

Private keys of cryptocurrency systems, such as Bitcoin and Ethereum, are the
only means of associating the ownership of a client/user with their digital assets.
Loss or compromise of the private key can lead to severe consequences, including
the permanent loss of funds.1 To mitigate the risk of losing the private key,
clients use cryptographic wallets to store their keys. A crypto wallet can be
either a “cold/offline wallet,” such as a piece of paper or a flash drive, or a
“hot/online wallet,” as offered by services like Coinbase and MetaMask. While

1
https://tinyurl.com/yvxkpk95.

This work was supported by the BGU-NJIT Institute for Future Technologies (seed grant), the Israeli
Science Foundation (Grant No. 465/22), the Rita Altura trust chair in computer science, and by the
Lynne and William Frankel Center for Computer Science. The work of S. Mehrotra is supported by
NSF grants 2420846, 2245372, 2133391, 2008993, and 1952247. The work of S. Sharma is supported
by NSF grant 2245374.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
T. Masuzawa et al. (Eds.): SSS 2024, LNCS 14931, pp. 338–343, 2025.
https://doi.org/10.1007/978-3-031-74498-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74498-3_24&domain=pdf
https://tinyurl.com/yvxkpk95
https://doi.org/10.1007/978-3-031-74498-3_24

Brief Announcement: Make Master 339

being offline, adversaries cannot access cold wallets; however, they have the risk
of being lost/destroyed, preventing the client from accessing their digital assets.

In contrast, existing online wallets provide secure and easy access to digi-
tal assets. For every client, these wallets create a private key (a deterministic
sequence of 256 bits) derived from a string of secret words, known as the secret
recovery phrase. The online wallet generates the secret recovery phrase, consist-
ing of 12, 18, or 24 words, selected from a list of 2048 words [3]. This secret
recovery phrase serves as an alternative to memorize the 256-bit private key and
must be securely stored by the client. However, in this process, the client nei-
ther generates the private key nor selects the secret recovery phrase. To access
the wallet, clients need to present the secret recovery phrase to authenticate
themselves. The use of these online wallets presents two significant problems:

– No control to the client. This major issue arises because the wallet generates
both the private key and the secret recovery phrase. For instance, in Coinbase
Wallet, clients are provided with an automatically generated 12-word secret
recovery phrase, which represents the private key used to access the wallet
and perform transactions. Consequently, clients lack complete control over
the generation of their private key and secret recovery phrase.

– Need to remember the secret recovery phrase. The scheme’s security relies
on the client’s ability to remember the secret recovery phrase presented by
the wallet. If clients fail to remember this phrase, they lose complete access
to their crypto assets. [5] shows that humans struggle to remember such
combinations of words effectively. Humans often store these phrases on a
personal computing device, a piece of paper, or in the cloud [4]. However, these
options are prone to being misplaced, damaged, or compromised, leading to
asset loss. The brain wallet [1], where a user sets a memorable phrase serving
as a key, results in choices that can be easily guessed. [6] discovered 884 brain
wallets containing 1,806 bitcoins that were compromised due to predictable
phrases. Also, brain wallets suffer from the limitations of human memory,
which can result in the loss of bitcoins.

This paper tries to address the above-mentioned security concerns of the
private key of crypto-wallets in terms of the creation and maintenance of
the private key and asks the following question:

Is it possible to develop a mechanism that empowers the clients to create their
own totally random and never-revealed private keys and store them securely

without the risk of being lost?

Our contribution. We develop a technique, entitled R2R (Reminisces to Res-
cue), that addresses our question. The key advantage is that, unlike crypto
wallets, our technique leverages the client to create and manage their
own private key without the risk of losing it . R2R uses memorized (pos-
sibly very long) secrets, which are different from the private key, and Bloom
filters to store/retrieve the client’s private key. Humans showcase a great abil-
ity to recall memorized facts/reminisces/secrets that are unique and

340 S. Dolev et al.

known only to the individual , in contrast to remembering random strings
of keywords, such as those generated by existing crypto wallets, as explained
above. Examples of memorized and/or owner-retrievable (typically long) secrets
could be the first stanza of your favorite song, the fourth paragraph of the third
chapter of your favorite book, or a dialogue from your favorite movie or TV
show. Unlike the traditional keyword-based secrets, e.g., the first name of your
favorite teacher, the name of your first pet, or the last four digits of SSNs, these
long-memorized secrets are insusceptible to dictionary attacks. R2R uses Bloom
Filter to associate “any” true random private key to private memorized secrets.

R2R enables clients to create their own random bits of private keys, use
memorized secrets to store, and (later) extract their private keys. R2R appends
a private key after memorized secrets and stores bit-by-bit in a Bloom filter. This
results in a pseudorandom sequence of zeros and ones. Such random bits hold no
value, unless private memorized secrets of the client are known to adversaries.
The client can publish/store replicas of the Bloom filter publicly in newspa-
pers/clouds/local files, avoiding the risk of losing the private key.
Full version, pseudocode, code in Python, and demo video of R2R
technique: are given in https://tinyurl.com/R2R-Code.

2 R2R Technique

Client and adversarial view. The client generates its private key, knows
security questions provided by R2R, and knows memorized secret answers to
the questions. The client executes Insert Algorithm on its private key, resulting
in a Bloom filter, which is placed in the public domain, and executes Retrieve
Algorithm over the Bloom filter to retrieve the private key. Note that remember-
ing these security questions by the client implies the risk of the client forgetting
relevant questions; thus, questions and their order used by the client are also
public (as long as the answers are private). An adversary knows the security
questions used by client, their order, and the Bloom filter. We call this as adver-
sarial view. Based on the adversarial view, an adversary wishes to learn the
private key of client. As will become clear soon, the Bloom filter merely appears
as a pseudorandom sequence of zeros and ones to adversary, with no meaningful
information, unless all private memorized secrets are known to adversary.
Assumptions: R2R technique assumes that: (i) a client always remembers the
memorized secrets, (ii) the Bloom filter resides in a public domain, mitigating
the risk of it getting lost, (iii) the security questions and their order of occurrence
are publicly available, and (iv) a private key authentication mechanism exists
within the online wallet to authenticate client’s private key.

2.1 Storing Client’s Private Key—Insert Algorithm

Our idea is to use public storage and still benefit from the state-of-the-art pseu-
dorandomness implied by the cryptographic hash function, e.g., Secure Hash

https://tinyurl.com/R2R-Code

Brief Announcement: Make Master 341

Algorithm (SHA). Insert Algorithm encodes the client’s private key using mem-
orized secrets and stores the private key in a Bloom filter, which can be published
in a public domain. Let K be a private key of a client. Let q be the number of
security questions. Let ai be the memorized secret answers to the ith question.
Let B be a Bloom filter using hash function H. The client first concatenates all
q memorized secret answers: answer ← a1||a2|| . . . ||aq.2

Then, each bit of K is appended at the end of, one by one, and the resultant
sequences are inserted into B using hash function H (similar to Bloom filter-based
lookup table BFLUT [2]). Finally, B is placed in the public domain.
Example of Insert Algorithm. Suppose, Lisa is a client who wants to store
private key 110, selects two questions, and the memorized secrets answers:
(i) the first stanza of your favorite song, e.g., “You are somebody...” from
the song “You Need to Calm Down” by Taylor Swift, and (ii) the fourth
paragraph of the third chapter of the favorite book, e.g., “Thorndike tracked
the behavior...” from the book “Atomic Habits”. For simplicity, we are pro-
viding a few words from each memorized secret; however, in practice, these
memorized secrets will comprise a complete stanza or paragraph. Lisa concate-
nates the two memorized secret answers as “You...Thorndike...”. Then, Lisa cre-
ates a Bloom filter B, as: H(“You...Thorndike...1”), H(“You...Thorndike...11”),
H(“You...Thorndike...110”) by setting one at the corresponding indices. Finally,
B is placed in a public domain. Note that the adversary knows only the two
security questions used by Lisa, but not the corresponding secret answers.

2.2 Retrieving Client’s Private Key—Retrieve Algorithm

The client uses Retrieve Algorithm to retrieve their private key by download-
ing B from public domain for performing lookup operations over B. Similar
to Insert Algorithm, client first concatenates q memorized secret answers as:
a1||a2|| . . . ||aq, resulting in answer . To answer , the client appends bit zero and
then bit one and performs a lookup in B for the appended sequence—note that
bits zero and one can be appended and checked in any order. For each successful
lookup (B outputs as one), the client further appends bit zero, and then bit one
and performs lookup for the updated sequence. In case of an unsuccessful lookup
(B outputs zero) the process is terminated for the corresponding sequence. The
process continues until the number of appended bits equals |K|, to produce K.
Example of Retrieve Algorithm. Consider that Lisa wants to
retrieve the private key 110 from B, using the same memorized secret
answers, mentioned in the example of Insert Algorithm. Lisa per-
forms lookups: H(“You...Thorndike...0”), H(“You...Thorndike...1”). Suppose,

2
An alternative is just to use the output of hash digest, say SHA(answer), as the private key; how-
ever, the result may not be a valid private key for public/private key systems, which is used in the
current crypto-wallets. Another alternative to Bloom filter-based solution could use SHA(answer)
to generate a key for AES512, which in turn is used to encrypt and decrypt the signing private
key—a private key that is coupled with a paired public key. The Bloom filter solution is more
memory efficient when several private keys (say, one for each of the cryptocurrencies) have to
be supported. Moreover, the access pattern for retrieving a particular key is less tractable when
compared to the access of an entry in a table of encrypted keys.

342 S. Dolev et al.

H(“You...Thorndike...1”) results in one. Then, Lisa appends zero and one to
perform lookup for H(“You...Thorndike...10”), H(“You...Thorndike...11”). Note,
since the lookup of H(“You...Thorndike...0”) outputs zero, Lisa discontinues the
append/lookup process for these sequences. Suppose, H(“You...Thorndike...11”)
results in one. The append/lookup continues until finally Lisa gets the output
of H(“You...Thorndike...110”) as one. Thus, Lisa retrieves K as 110.

2.3 Making False Positives to Zero

Bloom filter lookup comes with false positives with some probability. To avoid
false positives, we can append a long sequence of ones or concatenate memorized
secret answers at the end of private key. Besides performing insertions as per
Insert Algorithm, we append either a sequence of ones or answer at the end of
answer ||K that results in either answer ||K||111. . . or answer ||K||answer . The
sequence of ones is inserted bit-by-bit into B, while answer is inserted word-by-
word. Note that insertion will increase size of B. During retrieval, once we extract
all candidate private keys, say candidate, using Retrieve Algorithm. We check
all candidate appended with ones or answer bit by bit, and discard candidate
whose lookup operation results zero. The process continues until the client is left
with a single candidate that is the private key of the client.

2.4 Security Analysis

The adversarial view constitutes the security questions and their order used by
client; however, not the memorized secret answers. Thus, the adversary needs
to try all possible combinations for stanzas of all the songs and the fourth
paragraph from the third chapter of every book. Note that using only one ques-
tion, such as the first stanza of your favorite song, may make the technique less
secure, since an adversary can focus to find this information and learn private
key. In contrast, using more than one question, enhances the security of the tech-
nique, as adversary needs to learn all the correct answers to learn the private
key. In particular, there are over 100M songs on Spotify and over 5M English
novels. The adversary needs to try all possible 100M × 5M ≈ 225 combinations
to retrieve client’s private key. As the client uses q security questions, such that
each question has at least a domain of size of 1M, the complexity to learn the
memorized secret answers will be at least (1M)q or 220q.3 Further, the client
might consider not disclosing the questions and obfuscating these questions using
reminisces in the questions too; e.g., using nicknames or polysemous words. For
instance a question “what is best in Israel,” could have multiple answers such
as city (Haifa), food (Shakshuka), beach (Beit Yanai), actress (Gal Gadot), or
TV series (Fauda). The client remembers only one thing that they really like.
3

Selecting memorized secrets from a large domain is not a restriction of R2R. A client can also
select memorized secrets from a smaller-sized domain, say 50. In this case, the client needs to
select multiple questions. Recall that since questions and their order are available in public, it
does not pose a risk of forgetting them. For example, for memorized secrets, each with a domain
of size 50, a client may select 20 questions. Here, the adversary needs to try 2215 combinations,
which is computationally infeasible, to learn the memorized secret and then the key.

Brief Announcement: Make Master 343

Suppose, for the client, the best in Israel is Haifa. Based on the keyword “Haifa,”
the client selects the publicly-known questions 〈8, 1, 9, 6, 1〉 provided by the R2R
technique. This method enhances the concealing of the public questions used by
clients, hence yielding a practically impossible search for the right answers.

3 Conclusion

R2R technique empowers the clients to create their own totally random and
never-revealed private keys and store them securely without the risk of being
lost. R2R offers security against alphabetically exhaustive searches, preventing
an adversary from learning the key. Further, clients do not need to remember
the questions used, as they will become public, as well as, long answers (e.g.,
a book chapter)—the only need is to remember which chapter and then the
client can find the chapter. Making questions and Bloom filters public avoids
the possibility of losing the private storage, keeping the key secure.

References

1. Brainwallet. Available at https://en.bitcoin.it/wiki/Brainwallet
2. Dolev, S., et al.: BFLUT bloom filter for private look up tables. In: CSCML (2022)
3. Everything you need to know. https://tinyurl.com/4v682pu
4. What’s in the Cloud? Available at https://tinyurl.com/yux3y3yd
5. Ur, B., et al.: “i added ‘!’ at the end to make it secure”: Observing password creation

in the lab. In: SOUPS, pp. 123–140 (2015)
6. Vasek, M., et al.: The bitcoin brain drain: examining the use and abuse of bitcoin

brain wallets. In: FC, pp. 609–618 (2016)

https://en.bitcoin.it/wiki/Brainwallet
https://tinyurl.com/4v682pu
https://tinyurl.com/yux3y3yd

	Brief Announcement: Make Master Private-Keys Secure by Keeping It Public
	1 Introduction
	2 R2R Technique
	2.1 Storing Client's Private Key—blueInsert Algorithm
	2.2 Retrieving Client's Private Key—blueRetrieve Algorithm
	2.3 Making False Positives to Zero
	2.4 Security Analysis

	3 Conclusion
	References

