
Reminisce for Securing Private-Keys
in Public

Shlomi Dolev1, Komal Kumari2, Sharad Mehrotra3, Baruch Schieber2,
and Shantanu Sharma2(B)

1 Ben-Gurion University of the Negev, Be’er Sheva, Israel
2 New Jersey Institute of Technology, Newark, USA

shantanu.sharma@njit.edu
3 University of California, Irvine, USA

Abstract. The private key associated with a blockchain is the sole
means of linking a cryptocurrency asset to its owner, and any loss or
compromise of this key could result in significant consequences. Gener-
ally, crypto-wallets suggest a private key created from a string of words,
which can be stored in a private record such as a piece of paper. The fact
that the private record holds the secret words and can leak the private
key poses security concerns. In addition, private records are susceptible
to the risk of getting lost or destroyed, resulting in loss of assets. Further-
more, clients lack complete control over generating their private key, as
the wallet itself creates it. Our approach enables clients to securely gen-
erate and manage their own private keys, minimizing the risk of key loss.
We developed an open-source technique allowing clients to employ mem-
orized secrets to store and retrieve their private keys. We utilize Bloom
filters using hash functions, such as SHA-256, to store and retrieve the
private key from the Bloom filter.

Keywords: Crypto-wallets · crypto-currency · bitcoin · blockchain ·
Bloom filter · public cloud · memorized secrets.

1 Introduction

The private keys of cryptocurrency systems, e.g., Bitcoin [1] and Ethereum [2],
are the only way to associate the ownership of a client/user to their digital
money. Loss/compromise of the private key can lead to severe implications, such
as loss of money [13,14,22]. To avoid the risk of losing the private key, a client
uses a crypto(graphic) wallet to store their private key. A crypto wallet (see,
e.g., [20] for a relevant survey), may be either a ‘cold/offline wallet’, e.g., a piece

This work was supported by the BGU-NJIT Institute for Future Technologies (seed
grant), the Israeli Science Foundation (Grant No. 465/22), the Rita Altura trust chair
in computer science, and by the Lynne and William Frankel Center for Computer Sci-
ence. The work of S. Mehrotra is supported by NSF grants 2420846,2245372, 2133391,
2008993, and 1952247. The work of S. Sharma is supported by NSF grant 2245374.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
S. Dolev et al. (Eds.): CSCML 2024, LNCS 15349, pp. 168–177, 2025.
https://doi.org/10.1007/978-3-031-76934-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-76934-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-76934-4_11

Reminisce for Securing Private-Keys in Public 169

of paper or a flash drive, or a ‘hot/online wallet’ [3], as offered by Coinbase [4],
Binance [5], and MetaMask [6]. Cold wallets, being offline, are harder to access
by an adversary; however, they run the risk of being lost or destroyed, disabling
the client from accessing their digital money.

In contrast, existing online wallets offer secure and easy access to digital
assets. These online wallets, for every client, create a private key (a deterministic
sequence of 256 bits [7]) that is a function of a string of secret words, called the
secret recovery phrase. The online wallet generates the secret recovery phrase
consisting of 12, 18, or 24 words, selected from a list of 2048 words [19,21].
The secret recovery phrase serves as an alternative to memorizing the 256-bit
private key and is required to be securely stored at the client. However, in this
process, the client neither generates the private key nor selects the secret recovery
phrase.To access the wallet, clients need to present the secret recovery phrase to
authenticate themselves. The use of these online wallets is problematic in two
significant ways:

– No control to the client. This major issue arises because the wallet generates
both the private key and the secret recovery phrase. For instance, in Coin-
base wallet [8], clients are presented with an automatically generated 12-word
secret recovery phrase, which represents the private key used by the clients
to access the wallet and perform transactions. Hence, the clients lack com-
plete control over the generation of the private key and the secret recovery
phrase. Moreover, the wallet shares only the secret recovery phrase and not
the private key with the client; hence, the private key is unknown to the
clients.

– Need to remember the secret recovery phrase. The scheme’s security comes
with the client’s ability to remember the secret recovery phrase presented by
the wallet. If clients fail to remember the secret recovery phrase, they lose
complete access to their crypto assets. Studies have indicated that humans
struggle to remember or store such a combination of words ffectively [24].
They often tend to store these on a private record, e.g., a personal computing
device, a piece of paper, or a cloud [23]. However, such private records run
the risk of getting misplaced, damaged, or compromised, resulting in the
loss of assets. The brain wallet approach [15] in which a user sets a phrase
to be remembered to serve as a key, yields choices of phrases that can be
guessed with high probability (as shown in [25], where researchers discovered
884 brain wallets having 1,806 bitcoins). Moreover, brain wallets suffer from
limited human memory, resulting in loss of bitcoins [22].

This paper tries to address the above-mentioned security concerns of the private
key of crypto-wallets in terms of the creation and maintenance of the private
key and asks the following question:

Is it possible to develop a mechanism that empowers the clients to create their
own totally random and never-revealed private keys and store them securely

without the risk of being lost?

170 S. Dolev et al.

1.1 Our Contribution

We develop a technique, entitled R2R (Reminisces to Rescue), that addresses
our question. The key advantage is that, unlike crypto wallets, our tech-
nique leverages the client to create and manage their own private key
without the risk of losing it. R2R uses memorized (possibly very long) secrets,
which are different from the private key, and Bloom filters to store/retrieve the
client’s private key.

Humans showcase a great ability to recall mem-
orized facts/reminisces/secrets that are unique and known only to
the individual , in contrast to remembering random strings of keywords, such
as those generated by existing crypto wallets, as explained above. [9,24] showed
that humans hardly remember random keywords compared to their own secrets.

Examples of memorized and/or owner-retrievable (typically long) secrets
could be the first stanza of your favorite song, the fourth paragraph of the
third chapter of your favorite book, or a dialogue from your favorite movie or
TV show. Unlike the traditional keyword-based secrets, e.g., the first name of
your favorite teacher, the name of your first pet, or the last four digits of SSNs,
these long-memorized secrets are insusceptible to dictionary attacks. R2R uses a
Bloom Filter to associate “any” true random private key to private memorized
secrets.

Specifically, R2R enables clients to create their own random bits as a private
key and use memorized secrets to store the private key. To do so, R2R appends
the private key at the end of the memorized secrets and stores the result, bit-
by-bit, in a Bloom filter. This results in a pseudorandom sequence of zeros and
ones. Such random bits hold no value unless the private memorized secrets of a
client are known to the adversary. A client can publish or store replicas of the
Bloom filter publicly in newspaper ads, clouds/Dropbox/local files, avoiding the
risk of losing this sensitive information. To extract their private keys, the client
performs lookup operations over the Bloom filter. We will discuss that even if
selecting memorized secrets from a relatively smaller domain, say 50, then the
adversary cannot learn the private key unless performing exponential operations.

1.2 Code and Demo Video of R2R Technique

https://tinyurl.com/R2R-Code provides code and demo video of R2R.

2 R2R Technique

This section develops R2R technique and explains it using an example. Pseu-
docode of R2R is given in Algorithms 1 and 2. We start by describing what the
client and adversary know.

Client and Adversarial View. A client generates its private key and knows
security questions provided by R2R and memorized secret answers to the ques-
tions. The client executes Algorithm 1 on its private key, resulting in a Bloom

https://tinyurl.com/R2R-Code

Reminisce for Securing Private-Keys in Public 171

filter, which is placed in the public domain, and executes Algorithm 2 over the
Bloom filter to retrieve the private key. Note that remembering these security
questions by the client implies the risk of the client forgetting the relevant ques-
tions. Thus, the questions and their order used by a client are also public (as
long as the answers are private). Sect. 2.4 develops a method to conceal questions
also from an adversary.

An adversary knows the security questions used by the client, their order,
and the Bloom filter. We call this as adversarial view. Based on the adversarial
view, an adversary wishes to learn the private key of the client. However, as will
become clear soon, the Bloom filter merely appears as a pseudorandom sequence
of zeros and ones to the adversary, with no meaningful information, unless all
private memorized secrets are known to the adversary.

Assumptions: R2R technique assumes that:

1. A client always remembers the memorized secrets.
2. The Bloom filter resides in a public domain, mitigating the risk of it getting

lost.
3. The security questions and their order of occurrence are publicly available.
4. A private key authentication mechanism exists within the online wallet to

authenticate client’s private key.

Algorithm 1: Storing a private key in a Bloom filter.

Inputs: q: # security questions, [ai]1≤i≤q: a list of memorized secret
answers, |B|: the length of a Bloom filter, K: a private key, and |K|: the
length of private key.
Function:
1. append(∗): Insert each of the K bits of the private key one-by-one, e.g.,
answer1, answer10, answer101, where 101 is the private key.

2. InsertIntoBloom(∗): Execute hash function to insert elements in Bloom
filter.

Outputs: B: Bloom filter.
1 Generate K as a sequence of random bits of length |K|
2 Initialize B of size |B| filled with all zeros
3 answer ← Concatenate a1||a2|| . . . ||aq
4 for j∈(1, |K|) do
5 B←InsertIntoBloom(answer .append(Kj))

6 return B and place it into a public domain

2.1 Storing Client’s Private Key—Algorithm 1

Our idea is to use public storage and still benefit from the state-of-the-art pseu-
dorandomness implied by the cryptographic hash function, such as the Secure
Hash Algorithm (SHA) [16,18]. Algorithm 1 encodes the client’s private key
using memorized secrets and stores the private key in a Bloom filter, which can
be published in a public domain. Let K be a private key of a client. Let q be

172 S. Dolev et al.

the number of security questions, and let ai be the memorized secret answers
to the ith question. Let B be a Bloom filter using hash function H. The client
first concatenates all q memorized secret answers as: a1||a2|| . . . ||aq, resulting in
answer (Line 3). Then, each bit of K is appended at the end of answer , one
by one, and the resultant sequences are inserted into B using hash function H

(similar to Bloom filter-based lookup table BFLUT [17]) (Lines 4–5). Finally, B
is placed in the public domain.

Example of Algorithm 1. Suppose, Lisa is a client who wants to store
private key 110, selects two questions, and the memorized secrets answers:
(i) the first stanza of your favorite song, e.g., “You are somebody...” from
the song “You Need to Calm Down” by Taylor Swift, and (ii) the fourth
paragraph of the third chapter of the favorite book, e.g., “Thorndike tracked
the behavior...” from the book “Atomic Habits”. For simplicity, we are pro-
viding a few words from each memorized secret; however, in practice, these
memorized secrets will comprise a complete stanza or paragraph. Lisa concate-
nates the two memorized secret answers as “You...Thorndike...”. Then, Lisa cre-
ates a Bloom filter B, as: H(“You...Thorndike...1”), H(“You...Thorndike...11”),
H(“You...Thorndike...110”) by setting one at the corresponding indices. Finally,
B is placed in a public domain. Note that the adversary knows only the two
security questions used by Lisa, but not the corresponding secret answers.

Aside. An alternative is just to use the output of hash digest, say SHA(answer),
as the private key; however, the result may not be a valid private key for pub-
lic/private key systems, which is used in the current crypto-wallets, where answer
is the concatenated sequence of memorized secrets; see Line 2 of Algorithm 1.
Another alternative to the Bloom filter-based solution could use SHA(answer)
to generate a key for AES512, which in turn is used to encrypt and decrypt the
signing private key—a private key that is coupled with a paired public key. The
Bloom filter solution is more memory efficient when several private keys (say,
one for each of the cryptocurrencies) have to be supported.

2.2 Retrieving Client’s Private Key—Algorithm 2

The client uses Algorithm 2 to retrieve their private key by downloading B

from the public domain for performing lookup operations over B. Similar to
Algorithm 1, the client first concatenates the q memorized secret answers as:
a1||a2|| . . . ||aq, resulting in answer (Line 2). To the answer , the client appends
bit zero and then bit one and performs a lookup in B for the appended sequence
(Lines 7–8)—note that bits zero and one can be appended and checked in any
order. For each successful lookup (B outputs as one), the client further appends
bit zero, and then bit one and performs a lookup for the updated sequence (Line
9). In case of an unsuccessful lookup (B outputs zero), the process is termi-
nated for the corresponding sequence. The process continues until the number
of appended bits equals |K|, to produce K (Lines 5–6).

Reminisce for Securing Private-Keys in Public 173

Algorithm 2: Retrieving a private key from a Bloom filter.

Inputs: B: Bloom filter, q: # security questions, [ai]1≤i≤q: a list of memorized
secret answers, |K|: the length of private key.
Function:
append(∗): Insert each of the K bits of the private key one-by-one, e.g.,
answer1, answer10, answer101, where 101 is the private key.

BloomLookup(∗): Execute hash to check the presence of elements in Bloom
filter.

Outputs: K: Private key/s.
1 Download B from the public domain
2 answer ← Concatenate a1||a2|| . . . ||aq

3 K ← [], bits ← φ
4 Function RetrievePrivateKey(answer , bits) begin
5 if |bits| == |K| then
6 K.append(bits) and return K

7 for j∈[0, 1] do
8 if BloomLookup(answer .append(j)) then
9 RetrievePrivateKey(answer .append(j), bits.append(j))

Example of Algorithm 2. Consider, Lisa wants to retrieve the private
key 110 from B, using the same memorized secret answers, mentioned in
the example of Algorithm 1. Lisa performs lookups: H(“You...Thorndike...0”),
H(“You...Thorndike...1”). Suppose, H(“You...Thorndike...1”) results in one.
Then, Lisa appends zero and one to perform lookup for H(“You...
Thorndike...10”), H(“You...Thorndike...11”). Note, since the lookup of
H(“You...Thorndike...0”) outputs zero, Lisa discontinues the append/lookup
process for these sequences. Suppose, H(“You...Thorndike...11”) results in
one. The append/lookup continues until finally Lisa gets the output of
H(“You...Thorndike...110”) as one. Thus, Lisa retrieves K as 110.

2.3 Making False Positives to Zero

Bloom filter lookup comes with false positives with some probability. To avoid
false positives, we can append a long sequence of ones or concatenate the mem-
orized secret answers at the end of the private key. In particular, apart from
performing insertions depicted in Algorithm 1, we append either a sequence of
ones or answer at the end of answer ||K that results in either answer ||K||111. . .
or answer ||K||answer . The sequence of ones is inserted bit-by-bit into B, while
answer is inserted word-by-word. Note that this insertion will increase the size of
B. During retrieval, once we extract all the candidate private keys, say candidate,
using Algorithm 2. We check all candidate appended with ones or answer bit by
bit, and discard the candidate whose lookup operation results zero. The process
continues until the client is left with a single candidate that is the private key
of the client.

174 S. Dolev et al.

2.4 Hiding Questions

The client might consider not disclosing the questions and obfuscating these
questions using reminisces in the questions too; e.g., using nicknames or pol-
ysemous words. For instance, a question “What is best in Israel” could have
multiple answers such as a city (Haifa), food (Shakshuka), beach (Beit Yanai),
actress (Gal Gadot), or TV series (Fauda). The client remembers only one thing
that they really like. Suppose, for the client, the best in Israel is Haifa. Based on
the keyword “Haifa,” the client selects the publicly-known questions 〈8, 1, 9, 6, 1〉
provided by the R2R technique. This method enhances the concealing of the pub-
lic questions used by clients, hence yielding a practically impossible search for
the right answers.

2.5 Security Analysis

The adversarial view constitutes the security questions and the order used by
the client; however, it does not include the memorized secret answers. Thus, the
adversary will have to try all possible combinations for stanzas of all the songs
and the fourth paragraph from the third chapter of every book. Note that using
only one question, such as the first stanza of your favorite song, may make the
technique less secure, since an adversary can focus and invest efforts to find this
information and learn the private key. In contrast, using more than one question,
enhances the security of the technique, as the adversary needs to learn all the
correct answers to learn the private key. In particular, there are over 100M songs
on Spotify [10] and over 5M English novels [11]. The adversary needs to try all
possible 100M × 5M ≈ 225 combinations to retrieve client’s private key. As the
client uses q security questions, such that each question has at least a domain
of size of 1M, the complexity to learn the memorized secret answers will be at
least (1M)q or 220q.

Selecting memorized secrets from a large domain is not a restriction of R2R.
A client can also select memorized secrets from a smaller-sized domain, say 50. In
this case, the client needs to select multiple questions. Recall that since questions
and their order are available in public, it does not pose a risk of forgetting them.
For example, for memorized secrets, each with a domain of size 50, a client may
select 20 questions. Here, the adversary needs to try 2215 combinations, which
is computationally infeasible, to learn the memorized secret and then the key.

In general, the adversary, to learn the private key, has to exhaust all pos-
sibilities to produce the correct memorized secret (i.e., answer , see Line 2 of
Algorithm 1) in a reasonable time.

2.6 Desiderata

We may avoid copying the Bloom filter to local memory by hiding the probe
sequence (i.e., the Bloom filter positions accessed by the lookup operation).
We can (i) randomly select the next bit extension to lookup, deciding between
querying the zero extension or the one extension, (ii) interleave queries with fake

Reminisce for Securing Private-Keys in Public 175

queries, (iii) split the Bloom filter into several parts, and query the server that
holds the part we need to query according to the addresses it maintains.

3 Experimental Evaluation

We conducted experiments on a Mac machine having 10 cores and 64GB RAM
and implemented R2R in (≈500 lines of) Python. We leveraged Python’s hashlib
library (supporting SHA-256, SHA-512) to create Bloom filter using SHA-256.
The Bloom filter, B, parameters: the number of hash functions h and size of B
(denoted by |B|), are computed based on the formula given in [17], as follows:
|B| = −(nlnf)/(ln 2)2 and h = (|B|/n)ln2, for false positive rate f (set as 10−65),
where n is the number of values to be inserted into B. For experiments, we used
five questions, but R2R client can select at most twelve questions. Streamlit
framework [12] is used to design our client interface.

Exp 1: Time Taken to Store/Retrieve K from B. We present the time
taken to store/retrieve a 256-bit key K to/from B, using five memorized
secret answers, denoted by ai∈{1,5}. In this experiment, n is calculated as
|K| +

∑q
i=1WordCount(ai), where |K| is the length of the key K and func-

tion WordCount calculates number of words in ai. Based on this, we obtain
n=256+438=694. Note that

∑q
i=1 WordCount(ai) denotes the number of words

added at the end of answer ||K to avoid false positives (we called them as pad
in this and next experiments), as discussed above in Sect. 2.

For n = 694, R2R results in B of size ≈26.3KB and h = 215 to store K. The
time taken to store K in B is ≈271.3 milliseconds (ms) and the time taken to
retrieve K from B is ≈139.6 ms. The time to store the K is higher compared to
the retrieval of K from B, since we are also storing answer ||K appended with pad
of size 438 to avoid false positives, while we terminate our retrieval algorithm
when we get only one key without checking 438 positions in B.

Exp 2: Variation in the Size of B as a Function of the Padding. We
perform this experiment to find the size of B as a function of the padding. We
increase padding from 100 to 438 and compute |B|, the time to create B, and
the time to fetch the key; see table below:

Padding size 100 200 300 438

Size of B 13.6 KB 17.3 KB 21.1 KB 26.3 KB

Time to create B 141.5 ms 183 ms 214.8 ms 271.3 ms

Time to retrieve key from B 138.6 ms 138 ms 139.7 ms 139.6 ms

176 S. Dolev et al.

4 Conclusion

We presented R2R technique that empowers the clients to create their own
totally random and never-revealed private keys and store them securely without
the risk of being lost. Allow the key generation by the client avoids using trusted
entities in producing a private key, which hinder the main purpose and promise
of a private key. R2R stores the client’s private key into a Bloom filter with
the help of memorized (possibly very long) secrets, which are different from the
private key, and keeps the Bloom filter in public.

R2R offers security against alphabetically exhaustive search. Using long
answers to publicly available question prevents alphabetically exhaustive search,
preventing an adversary to learn the key. Further, clients do not need to remem-
ber the questions used, as they will become public, as well as, long answers (e.g.,
a book chapter). The only need is to remember which chapter and then the
client can find the chapter. Making questions and Bloom filter public avoids the
possibility of losing the private storage in keeping the key secure and avoid the
use of a password manager, which could be lost or corrupted.

References

1. Bitcoin. https://bitcoin.org/en/
2. Ethereum. https://ethereum.org/
3. Hot Wallet vs. Cold Wallet. https://www.investopedia.com/hot-wallet-vs-cold-

wallet-7098461
4. Coinbase. https://www.coinbase.com/
5. Binance. https://www.binance.com/en
6. Metamask. https://metamask.io/
7. How Do Crypto Wallets Work. https://medium.com/@hamilton 21385/how-do-

crypto-wallets-work-3ca749464f87
8. Coinbase: Create a Coinbase Wallet. https://help.coinbase.com/en/wallet/getting-

started/create-a-coinbase-wallet
9. How Chunking Pieces of Information Can Improve Memory. https://tinyurl.com/

4aewnnb2
10. How Many Songs are There in the World? https://www.musicianwave.com/how-

many-songs-are-there-in-the-world/
11. How many novels have been published in English? http://tinyurl.com/37dkf8k4
12. Streamlit. https://streamlit.io/
13. Compromised Private Keys: Primary Targets and Upcoming Solutions. https://

tinyurl.com/yvxkpk95
14. $35 million stolen in attacks on Atomic Wallet cryptocurrency customers. https://

therecord.media/millions-stolen-in-atomic-wallet-attack
15. Brainwallet. https://en.bitcoin.it/wiki/Brainwallet
16. Dang, Q.: Secure hash standard (2015). 04 Aug 2015
17. Dolev, S., Gudes, E., Segev, E., Ullman, J.D., Weintraub, G.: BFLUT bloom filter

for private look up tables. In: Dolev, S., Katz, J., Meisels, A. (eds.) CSCML 2022.
LNCS, vol. 13301, pp. 499–505. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-07689-3 35

https://bitcoin.org/en/
https://ethereum.org/
https://www.investopedia.com/hot-wallet-vs-cold-wallet-7098461
https://www.investopedia.com/hot-wallet-vs-cold-wallet-7098461
https://www.coinbase.com/
https://www.binance.com/en
https://metamask.io/
https://medium.com/@hamilton_21385/how-do-crypto-wallets-work-3ca749464f87
https://medium.com/@hamilton_21385/how-do-crypto-wallets-work-3ca749464f87
https://help.coinbase.com/en/wallet/getting-started/create-a-coinbase-wallet
https://help.coinbase.com/en/wallet/getting-started/create-a-coinbase-wallet
https://tinyurl.com/4aewnnb2
https://tinyurl.com/4aewnnb2
https://www.musicianwave.com/how-many-songs-are-there-in-the-world/
https://www.musicianwave.com/how-many-songs-are-there-in-the-world/
http://tinyurl.com/37dkf8k4
https://streamlit.io/
https://tinyurl.com/yvxkpk95
https://tinyurl.com/yvxkpk95
https://therecord.media/millions-stolen-in-atomic-wallet-attack
https://therecord.media/millions-stolen-in-atomic-wallet-attack
https://en.bitcoin.it/wiki/Brainwallet
https://doi.org/10.1007/978-3-031-07689-3_35
https://doi.org/10.1007/978-3-031-07689-3_35

Reminisce for Securing Private-Keys in Public 177

18. Dworkin, M.J.: Sha-3 standard: permutation-based hash and extendable-output
functions, 2015. National Institute of Standards and Technology, NIST FIPS 202.
https://doi.org/10.6028/NIST.FIPS.202

19. Everything you need to know about your 12-word secret recovery phrase. https://
tinyurl.com/4v682pu

20. Houy, S., Schmid, P., Bartel, A.: Security aspects of cryptocurrency wallets - A
systematicliterature review. ACM Comput. Surv. 56(1), 4:1–4:31 (2024)

21. What is a 12 word seed phrase?. https://tinyurl.com/3btynyx9
22. This man owns $321M in bitcoin — but he can’t access it because he lost his

password. https://tinyurl.com/hzp8stav
23. What’s in the Cloud? https://tinyurl.com/yux3y3yd
24. Ur, B., et al.: “i added ‘!’ at the end to make it secure”: observing password creation

in the lab. In: Cranor, L.F., Biddle, R., Consolvo, S., (eds.), Eleventh Symposium
On Usable Privacy and Security, SOUPS 2015, Ottawa, Canada, July 22-24, 2015,
pp. 123–140. USENIX Association (2015)

25. Vasek, M., Bonneau, J., Castellucci, R., Keith, C., Moore, T.: The bitcoin brain
drain: examining the use and abuse of bitcoin brain wallets. In: Grossklags, J.,
Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 609–618. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54970-4 36

https://doi.org/10.6028/NIST.FIPS.202
https://tinyurl.com/4v682pu
https://tinyurl.com/4v682pu
https://tinyurl.com/3btynyx9
https://tinyurl.com/hzp8stav
https://tinyurl.com/yux3y3yd
https://doi.org/10.1007/978-3-662-54970-4_36

	Reminisce for Securing Private-Keys in Public
	1 Introduction
	1.1 Our Contribution
	1.2 Code and Demo Video of R2R Technique

	2 R2R Technique
	2.1 Storing Client's Private Key—Algorithm 1
	2.2 Retrieving Client's Private Key—Algorithm 2
	2.3 Making False Positives to Zero
	2.4 Hiding Questions
	2.5 Security Analysis
	2.6 Desiderata

	3 Experimental Evaluation
	4 Conclusion
	References

