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Abstract—Existing secure data outsourcing systems offer users
ways to select from different cryptographic primitives supported
by the system to encrypt their data to strike a balance between
data confidentiality and query performance. Though prior work
have identified the danger of mixing cryptographic primitives,
they fall short of providing a systematic approach to guide
users to prevent such cross-cryptographic leakages. Inspired by
the database design theory, we envision Secure Normal Form,
a new approach to normalize encrypted databases such that
the leakages of the partitioned databases are limited to the
users’ specifications. In this work, we propose a new architecture
to support secure normal form. This system includes several
new components for secure data outsourcing: (i) an inference
mechanism that reasons about additional leakages from weaker
encryption techniques, based on semantic data properties (e.g.,
dependence between attribute values); (ii) a normalization mech-
anism that converts relational data into secure normal forms,
so that the information leaked by the representation is limited
to that specified by the user; and (iii) a secure query execution
approach over encrypted data in secure normal forms. Our initial
experimental results validate the performance improvement over
naı̈ve baseline and show that a careful data representation can
be allowed without compromising security. We believe that our
paper opens a new direction in secure data management.

Index Terms—Secure Data Management, Encryption, Holistic
Leakage Accounting, Inference Control.

I. INTRODUCTION

“A chain is only as strong as its weakest link.”

Thomas Reid, Essays on the Intellectual Powers of Man
Applicable to the security of data management systems.

A Retrospective of Secure Data Management: Twenty-Five
Years Later, Where Are We? The growing demand to store

and manage large (and increasing) amounts of private data

over the cloud has spawned an era of secure data management.

Nearly twenty-five years have passed since the first initiative

on outsourcing encrypted database as a service [1] and the

first cryptographic technique that allows search on encrypted

data [2]. System researchers, cryptographers, and practition-

ers have made significant progress in developing many new

algorithms or protocols for storing, transferring, and operating

on encrypted data. These advances include several encryption

techniques, e.g., deterministic encryption (DET) [3]–[5] for

equi-join queries [6], order-revealing encryption (ORE) [7],

[8] for range queries, homomorphic encryption [9]–[13] for

performing arbitrary computation, non-deterministic encryp-

tion (NDET) [14], multi-party computation [15], [16], just

to name a few. Hardware-oriented solutions, such as secure

enclave [17], [18], have been explored as well to address the

same problem. All such existing approaches exhibit trade-offs

among the nature of queries that can be executed, the efficiency

of query performance, and the security offered to the end users.

The emerging wisdom in the field is that no single approach

offers a silver bullet. As a result, diverse secure data manage-

ment systems have been built, adopting different encryption

technologies based on the discrepant use cases — needs

for efficiency, security, and the required database operators.

These include systems such as CryptDB [6], Seabed [19],

HE3DB [20], SDB [21], Jana [22], Microsoft Always En-

crypted [23], AWS Clean Room [24], and MongoDB Querable

Encryption [25]. Some systems focus on implementing a single

type of cryptographic technique, but they support only limited

queries efficiently [23], [25]. Others support a more general

class of queries by applying multiple cryptographic techniques

each offering different security guarantees to meet the perfor-

mance requirements of a data management system in practice.

For example, CryptDB [6] and Seabed [19] allow users to

encrypt different parts of data using different encryption mech-

anisms. Users can perform a “sensitivity analysis” [26] on the

schema specification to determine the encryption schemes —

highly sensitive columns can be encoded with a strong en-

cryption technique, such as the Advanced Encryption Standard

(AES) that ensures full confidentiality or a fully homomorphic

technique in case computation (e.g., aggregation) may need

to be performed on the field, while less sensitive attributes

are encrypted with weak encryption like DET or ORE to

make query processing more efficient. By allowing users to

encrypt different parts of the data using different cryptographic

techniques, such systems empower users to explore tradeoffs

between security and performance. Users can choose a rep-

resentation that delivers the best performance subject to the

security guarantee that the adversary, often the cloud server,

should not learn anything useful about the plaintext, other than

the necessary leakages specified by the weak(er) encryption

technique used.

Cross-Cryptographic Leakages. The final security offered by

systems that use multiple cryptographic techniques to encrypt

different parts of the database is less well understood. Prior

work [27]–[30] primarily analyzes the information leakage

within a single weakly encrypted database column. For ex-

ample, when employing DET on a column, the ciphertext’s

distribution may reveal the true value of the entire column
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Fig. 1: An example of lacking holistic leakage accounting in secure data management: (Left:) leakages can happen when

multiple encryption techniques are used in outsourced databases; (Right:) SNF Representation can avoid such leakages.

based on auxiliary knowledge on the data distribution [27].

Note such leakages may be permitted in practice for better

performance, but they can propagate to affect other parts of

the dataset, giving rise to unintended leakages, what we term

cross-cryptographic leakages. We illustrate such a leakage in

a simple example below.

Example 1. (Leakage Across DET and NDET). Consider a

database relation that contains two or more attributes, e.g., tid,

State and ZipCode, and consider three tuples in this relation;

see the left part of Figure 1. Suppose the data owner encrypts

tid (tuple id) and State columns with NDET, and ZipCodes

with DET to enable the equality test. Due to DET, the distri-

bution of ZipCode column is revealed. Although NDET itself

reveals nothing about the State column, ZipCode and State

columns are functionally dependent (i.e., ZipCode → State).

A semi-honest cloud server can thus learn more than what it

is allowed about State data. That is, as t218[ZipCode WE] =
t589[ZipCode WE], the cloud server can infer the plaintext

Dec(t218[State SE]) = Dec(t589[State SE]). Here, WE refers

to weak encryption techniques, such as DET that reveals data

distribution and ORE that reveals ordering of values. SE refers

to strong encryption techniques, such as NDET that does not

reveal anything. �
This toy example illustrates how functional dependency

between columns can lead to additional leakage. Prior work

such as [27], [31] have considered more subtle inference

attacks, showing that when systems use weak encryption

techniques general correlations between columns can prop-

agate the leakages from a weakly encrypted column to other

columns. In particular, prior work [27] shows that if a relation

represents an attribute using DET and another attribute using

ORE, it may reveal the entire tuple based on background

knowledge. [31] further shows that based on background

knowledge and property revealing encryption (e.g., ORE) on

a column of a table can reveal the data of another strongly

encrypted column encrypted of the table, if the columns are

dependent. Such prior work identify the challenges in mixing

multiple cryptographic approaches. However, they fall short

of providing a path forward wherein diverse cryptographic

techniques with different levels of security can be composed

while still ensuring provable security guarantees.

Despite negative results in [27], [31], we would like

to devise a way forward to build provably secure cross-

cryptographic solutions that supports weaker cryptography

without any unintended cross-cryptographic leakage. Such an

approach would offer end-users ways to explore tradeoffs

between provable security and performance empowering them

to make informed choices. This paper offers the first step in

developing the theoretical underpinning to understand how

leakages can spread when multiple cryptographic primitives

are used and system designs that reduce/prevent unintended

leakages that may result when multiple primitives are used.

Research Questions. We articulate our goals in the form of

the following two research questions (RQs) that are necessary

to answer in building toward a secure cross-cryptographic

solution.

Preventing Cross-Cryptographic Leakages

RQ1. Is there a systematic approach to account for
cross-cryptographic leakages in encrypted databases?

RQ2. How can we build an efficient system to
holistically mitigate these leakages, thereby users can

use secure data management services carefree?

The first RQ aims to detect unintended cross-cryptographic

leakages within an encrypted database. Addressing it requires

us to explore theoretical principles to reason about all implicit

/explicit leakages that may occur given a relational data

representation that uses multiple cryptographic primitives to

encrypt different parts of the data. Given a way to reason about

leakages, the second RQ seeks solutions to prevent unintended

leakages1 while minimizing performance overheads. Next, we

will discuss the core idea for constructing our solution to these

two RQs.

Towards A Solution. To address RQ1 and RQ2, we take inspi-

ration from the relational design theory that has so successfully

led to developing a formal basis of reasoning about redundancy

1That is, leakages other than the permissible ones the user explicitly defined
by choosing a weaker cryptographic primitive that may reveal some property
of data.
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Our Vision: Secure Normal Form (SNF)

Normalizing the encrypted database, where the
leakages of each partition are restricted to only what
a user explicitly allows (by specifying encryptions).

in relational representations. Similar to a framework to reason

about database constraints (e.g., functional dependencies), we

envision a theoretical framework that given data semantics in

the form of constraints such as correlations, and cryptographic

primitives used to encrypt data, allows us to reason about

leakages that may ensue from the data representation. Once

such a theoretical framework has been established, just like

relational normalization that transforms a given representation

to an equivalent representation without redundancy by parti-

tioning relations into sub-relations, we envision transforming

encrypted representations into equivalent encrypted relational

representations such that the transformed representation pre-

vents unintended leakages2.

Secure Normal Form. We refer to such a transformed repre-

sentation (where leakages are restricted to only those permitted

directly by the choice of encryption technique specified by

user, and no other unintended leakage from inference) as

being in a secure normal form (SNF). That any relational

representation can be transformed into an equivalent SNF

can be easily seen by revisiting Example 1 which had an

unintended leakage about two ciphertext representations of the

State field representing the same plaintext through the DET

representation of the ZipCode field coupled with the functional

dependency between ZipCode and State fields. Consider a

different representation wherein we partition the table into

two sub-relations, one containing ZipCode and another State

with a new attribute identifier, strongly encrypted using non-

deterministic encryption to link the appropriate rows in the two

sub-relations. The original relation can be reconstructed by

performing a join over the identifier — of course, such a join

operator must be implemented carefully to prevent adversary

to learn correspondence between the tuples in the two sub-

relations. A partitoned representation such as above prevents

the leakage resulting from the DET encryption of ZipCode to

spread to other attributes and can be argued to be in SNF with

no unintended leakages. In general, for any relation with some

attributes encrypted using weak encryption techniques such

as ORE or DET, or cryptographic protocols over attributes

that may leak data, we can always transform the relation into

SNF by simply partitioning the table to store each column

separately with appropriate secure mechanism to reconstruct

the tuples by joining them using an identifier.

While such an approach will generate SNF, as we will see,

several SNF representations can exist for a given relation,

some more preferable than others (we will formally define

2Partitioning has also been studied in distributed system settings [32]–[34]
and serves different security or deduplication goals.

a criterion of how to rank representations in Section II). Our

goal, thus, becomes that of developing algorithms to transform

data representations that may contain unintended leakages into

desirable representations that are in secure normal form.
To build our approach to transforming encrypted repre-

sentations into SNF, similar to relational design theory, we

seek to define a sound and complete inference mechanism to

reason with leakages when data is converted into proper server-

side representations based on which partitioning algorithms

for SNF can be built. Such algorithms, in turn, can guide

the development of data outsourcing algorithms using which

data owners can explore tradeoffs between security and perfor-

mance, serving as a risk management and mitigation strategy

for outsourcing relational data.
In addition to leakage from ciphertext and corresponding

implementation of relational operators using the cryptographic

primitives, additional leakages can arise when queries are

executed over a normalized encrypted database when cross-

cryptographic primitives are used. To avoid such query-time

leakages, we need to support the encrypted database with a

new secure query processing schemes.

Roadmap. In this paper, in addition to achieving representa-

tions that are in SNF, we present a forward-looking system

architecture for query execution that is secure, as well as our

early results, and the opportunities and challenges toward a full

realization of our vision. We start with an analysis to obtain

a better understanding of leakages (Section II), and present

our proposed system architecture that allows encrypted data

representation based on secure normal forms (Section III). The

paper focuses on the following three aspects:

• Efficient Leakage Reasoning. An efficient inference engine

to automatically reason about additional leakages from the

representation of the outsourcing database.

• Efficient Normalization. A normalization mechanism with

heuristics that can efficiently find a partitioned represen-

tation in secure normal form, while achieving desired

optimization objectives.

• Secure Query Processing. A new query processing mecha-

nism, deployed on the server side, that can securely execute

queries across sub-relations in the secure normal form

representation.

In addition, we explore multiple dimensions to extend the

solution space for constructing SNFs (Section IV). Our pre-

liminary experimental results show promising evidence in

realizing our vision of provably secure representations that

exploit multiple cryptographic techniques simultaneously. We

discuss directions, opportunities, and challenges of building

a full-fledged system based on our vision in Section V.

Finally, we offer concluding remarks in Section VI. As future

work, we would like to complete/implement a prototype for a

system that supports data representation based on SNFs and

integrate such an approach with industrial cloud databases

such as Cisco’s Panoptica [35]. We believe, that once realized,

the SNF vision can usher in a novel design paradigm for

secure data management and reshape researchers’ perspectives
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within the community to address cryptographic leakages from

a more comprehensive and systematic standpoint. Hopefully,

this paper can inspire people to take the opportunity to solve

the open challenges with realizing systems that support data

representations based on SNF. These challenges include but

are not limited to, the need for a more precise characterization

of leakages, extending SNFs to prevent leakages from other

system components like logging or indexing, the integration

of probabilistic modeling into SNFs, and the development of

frameworks capable of sustaining SNFs across dynamically

growing databases or other database types beyond the tradi-

tional relational model.

II. SECURE NORMAL FORM

In this section, we formally define the notion secure nor-

mal form and discuss criteria for selecting amongst multiple

SNF representation of the encrypted relation. We begin by

first discussing the notion leakage including concepts of per-

missible and unintended leakages based on which SNF are

defined. In discussing leakage and SNF, we will consider a

setup in which a data owner outsources the database to a

public cloud. The data owner specifies different encryption

techniques that are used to protect each attribute while en-

abling functionalities to execute queries efficiently over the

outsourced encrypted database. We assume the cloud is a semi-

honest adversary, hosting the encrypted data and executing

user-submitted queries faithfully, but the cloud tries to gain

information about the data from both encrypted data at rest

and during query execution.

A. Information Leakage

Leakages can be viewed as the information about targeted
data objects that the adversary gains from seeing the cipher-

text, which is encrypted with a specific technique. An example

of a targeted data object could be a cell in a relation. Such

leakages that happen when data is stored at rest due to the

choice of encryption technique used. It could also happen

when queries are executed based on the access patterns,

intermediate computations, query patterns, output size – any

observation an adversary can make from the execution of

queries. We refer to the former as static leakages and the

latter as dynamic leakages. SNF definition deals with leakage

from ciphertext and so we focus for now on static leakages

and formally define it as follows:3

Definition 1 (Leakage): We say there is a leakage on a

collection of plaintext C from its ciphertext representation C,

iff, ∀ci ∈ C, such that,
∣
∣
∣PrA[Dec(ci) = v | C, b]−PrA[Dec(ci) = v | b]

∣
∣
∣ > negl(1η),

where Dec(ci) refers to the plaintext corresponding to the

ciphertext ci, v is any plaintext value ci can take, b denotes

the background knowledge that an adversary A can obtain. �
3Dynamic leakages can be equivalently defined by conditioning the adver-

sarial knowledge not just on the knowledge of ciphertext but other query-
specific leakages such as access patterns, output volume, etc. See [36] for
such an extended definition of leakages.

Plaintext DomainPlaintext Domain

Cipher Representation

Co-located 

Columns/Rows

Permissible 
Leakage

Permissible 
Leakage

Enc 1

Enc 2

Unintended 

Leakage!

Fig. 2: An illustration of permissible and unintended leakages,

and when unintended leakages can happen at the representa-

tion level.

This definition says a leakage happens when an adversary’s

probability of successfully guessing the plaintext value of a

data object increases by a non-negligible amount (w.r.t. a

security parameter η) with the knowledge of the ciphertext

as compared to only the background knowledge. We further

categorize leakages as permissible due to the nature of cryp-

tographic techniques used to enable database functionalities,

and unintended due to the dependencies among data.

Permissible Leakages LP . Let R be a relational scheme

with a set of permissible leakages, denoted by LP . Let R

be its corresponding representation with (possibly multiple)

cryptographic techniques used to encrypt data in R and store

it at the server4. Permissible leakages LP refer to the leakages

that the data owner is willing to accept. In our setup these

correspond to explicit leakages that result due to the choice

of cryptographic techniques the database owner has chosen

and are a result of the property revealing nature of the chosen

primitives.

Example 2. In Example 1, the user specifies to use DET

for the ZipCode column. Leakages on the ZipCode data

distribution through DET are permissible leakages. �

Unintended Leakages LU . Unintended leakages, denoted by

LU , are those leakages not specified by users but can be

inferred based on permissible leakages.

Example 3. In Example 1, due to the combined use of NDET

and DET, there is unintended leakage on the State column via

functional dependencies. This leakage has not been defined by

the user and is an unintended leakage. �
Figure 2 further illustrates permissible and unintended leak-

ages, where unintended leakages can occur at the representa-

tion level. The upper plane in the figure illustrates a cipher

representation that stores different parts/attribute values of the

data (dots and crosses). The lower plane is the underlying

plaintext data of the corresponding ciphertext. Permissible

leakages (blue arrows) of plaintext based on the corresponding

ciphertext are a property of the encryption schemes used

4In general, R may store some data at the local machines as well if that
storage scheme helps prevent leakage, though such a representation does not
fundamentally change the problem we study.

5563

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 31,2024 at 02:22:28 UTC from IEEE Xplore.  Restrictions apply. 



(“Enc 1” and “Enc 2”). The solid red arrow in the plaintext

domain denotes the correlation or dependencies between two

parts of the data, which leads to unintended leakages (dotted

red arrow) from one part of the ciphertexts to the other part

of the data.

B. Secure Normal Form

We can now provide a more formal definition of secure
normal form (SNF) representation of a relation.

Definition 2 (Secure Normal Form): Let R be a relation.

Let R = {R1,R2, . . . ,Rn} be a representation of R. R is said

to be in secure normal form (SNF) with respect to LP if and

only if the set of leakages that can be inferred from R about

relation R are limited to only those in LP . �
The representation R consists of a set of sub-relations

(of the original relation R), where each Ri contains one or

more attributes of R, encrypted using a specific cryptographic

technique. For R to be a SNF representation of R, it must

prevent any further leakage except for permissible leakage

specified in LP . Further, R satisfy the following properties:

• Sub-relations Unlinkability. Given any two sub-relations

Ri,Rj in SNF representation, one cannot link tuples from

Ri with tuples from Rj .

• Lossless Reconstructability. The original database can be

reconstructed by correctly performing a secure relational

operations (e.g., unions, joins, or a combination of the two)

over the sub-relations in secure normal forms.

To achieve the above two properties simultaneously, sub-

relations in SNF are associated with a tid attribute, encrypted

always with strong encryption, with different cryptographic

keys. We discuss in the following section how we perform se-

cure reconstruction and query execution over the sub-relations.

Example 4. Referring to the right-side of Figure 1, the

outsourced database in secure normal form stores two sub-

relations R1 and R2. The leakages to the State and Zip-

Code columns are restricted to their own partitions. That is,

the equality information leaked from ZipCode WE does not

spread to the State column. �

C. Maximally Permissive SNF

SNFs could be more secure (i.e., leak less) than what the

user specifies in the schema annotated with encryption tech-

niques. For example, if the user annotates attribute ZipCode to

be encrypted with DET, it is allowed to encrypt ZipCode with

strong encryption in SNFs, even though it offers more security

than what the user asked for. Therefore, it is natural to ask what

is a “good” SNF representation among all feasible solutions.

A good candidate reduces the query execution overhead that

may result due to processing over partitioned relations. As

a criterion for choosing a good partitioning, we develop the

notion of maximally permissive SNFs. a good partitioning.

Definition 3 (Maximally Permissive SNFs): Let R be a

relation, LP be the set of permitted leakages on R, and

R = R1,R2, . . . ,Rn be its representation that is in SNF. We

say R is maximally permissive, if for any sub-relation Ri ∈ R,

adding any additional attribute a ∈ R to Ri, or weakening the

cryptographic approach used to represent any attribute in Ri

leads to the relation Ri not being in SNF. �
Maximally permissive representations are desirable, since

queries that are limited to a set of attributes that are stored

together can be implemented more efficiently compared to the

queries that span different sub-relations (and hence, require an

expensive join). Approaches to generating maximally permis-

sive SNFs will be discussed in Section IV.

III. SYSTEM DESIGN

In this section, we describe a possible design of a encrypted

database that exploits SNF to ensure security while supporting

multiple crytographic primitives. The envisioned system out-

sources data by transforming it into a corresponding secure

normal form. Queries are then transformed to execute over

the SNF representation. We discuss how the system generates

the SNF based data representation, followed by how queries

are processed in the system. We leave the discussion at a high

level and point out possible directions for realization while

deferring other interesting optimizations to Section V.

A. Transforming Relations into SNF

Given a relation R, a set of cryptographic techniques C over

attributes of R (which defines for us the set of permitted leak-

ages LP ), and a specification D of which attributes/attribute

values are independent (and hence cannot lead to leakage

through inference) or correlated (and could likely lead to

leakage), the system partitions R into a set of subrelations

that satisfy the SNF.

To compute SNF, first, a closure of a set of all leakages (both

permitted as well as unintended) that the current representation

may lead to, is computed (lines 1-2 of Algorithm 1). We

denote this closure by L+ and L+ = LP ∪ LU . Then,

a normalization algorithm is used to partition R (line 3)

to create a set of sub-relations {R1, . . . , Rn} such that the

only leakages in the partitioned representation correspond to

permissible leakages LP . Once a set of sub-relations have

been determined, a tid field is added to each sub-relation

Ri using which we can successfully reconstruct the original

relation (thus achieving the reconstructability requirement of

SNF). Finally, sub-relations are outsourced after attributes of

the relation have been suitably encrypted using cryptographic

techniques specified in C. The tid field added to each sub-

relation is encrypted using a strong encryption technique that

prevents unlinkability between sub-relations. We next discuss

several aspects of the above techniques further including how

to infer leakages and how to transform a relation into SNF.

Modeling Independence/Dependence in Data. Transforming

relation into an SNF requires as input specification of which

data/attributes are independent/correlated. Database literature

has a rich tradition of modeling dependence in the form of

data dependencies, such as functional dependencies, denial

constraints, conditional dependencies, aggregation constraints,

etc. In addition, probabilistic graphical models have been
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extensively used to represent dependence and independence in

data. These include use of graphoids to describe conditional

independence [37], directed graphs (e.g., Bayesian model [38])

or undirected models (e.g., Markov model [39], [40]). Any

of these models, including their combination, could be used

in our context of representing data dependence/independence.

Furthermore, either data owners could specify data dependen-

cies using such models as part of specifying data semantics,

or data dependencies could be learnt/inferred from data [41].

While SNF-based approach for secure data processing works

either way, it does require that the specification of data

dependence/independence be complete — i.e., for any two data

objects, it should be algorithmically determinable if the data

items are independent or dependent.

Inferring Leakages. The Step 2 of our approach to trans-

forming data into SNF calls ANALYZELEAKAGECLOSURE

that takes as input the knowledge of (in)dependencies, the

schema, and the database, and outputs a closure of leakages

(i.e., L+ := LP ∪LU ). Implementing such a function requires

careful analysis of the properties of each encryption technique.

In particular, given the property revealing aspect of a weaker

encryption technique on one attribute, we need to carefully un-

derstand how it combines with the data dependencies to reveal

semantics of other attributes. For now, we do not differentiate

among different types of leakages and make a conservative
assumption that whenever an attribute is dependent upon

another weakly encrypted attribute, the leakage spreads to the

dependent attribute as well. Based on this assumption, we only

need to know the cryptographic technique for each column

and the dependencies between columns to derive the leakage

closure. Then, we can parse the schema specified originally

to obtain the permissible leakages based on the encryption

properties and determine if a given representation contains any

unintended leakages. Thus, determining unintended leakages

in a given representation reduces to the problem of determining

if two columns are independent or not which can be achieved

through algorithms discussed above.

Normalization/Partitioning Algorithms. The PARTITIONING

component takes as input the database R and a set of leakage

rules L+ obtained from the inference component and returns

a normalized database consisting of sub-tables {R1, . . . ,Rn}
that are in SNFs. A naı̈ve way to implement the normalization

algorithm is to use the chase [42] to generate every possible

partitioning and iterate over them by calling ANALYZELEAK-

AGECLOSURE function to determine the ones in SNF (i.e., if

for all sub-relation in a partition, L+ = LP , then this partition

is in SNF). However, this approach incurs an exponential

number of cases. We will design heuristics for partitioning,

based on the input leakage closure L+ in Section IV. Note

partitioning a database into SNF might, highly possibly, not be

unique. Among all candidates, we select maximally permissive
SNFs (see Definition 3), as our outputs of partitioning.

B. Executing Queries over SNF
We now turn our attention to executing secure query execu-

tion when data is represented using SNF. Let qi(Ai, . . . , Aj)

Algorithm 1: System Overview

Input: Database R(tid, A1, A2, . . . , An), A set of

cryptographic techniques C specified over the

schema of R
/* Data owner performs locally: */

1 D ← DEPENDENCYINFERENCE(R)

2 L+ ← ANALYZELEAKAGECLOSURE(R, C,D)

3 {R1, . . . , Rn} ← PARTITIONING(R,L+)

4 SNF := {R1, . . . ,Rn} ← ENCRYPTION({R1, . . . }, C)

/* Outsourcing SNF to the cloud, and the cloud

executes the following: */

5 Receive query qi(Ai, . . . , Aj)
6 if {Ai, . . . , Aj} ⊆ Rt then
7 return QUERYANSWERING(qi,Rt)

8 else
9 {Ri, . . . ,Rj} ← QUERYMATCHING(SNF, qi)

10 R ← OBLIVIOUSJOIN({Ri, . . . ,Rj})

11 return QUERYANSWERING(qi,R)

12 end

be the query that the semi-honest cloud server receives from

a client, where Ai refers to an attribute. If all the attributes

referred to in the query qi(Ai, . . . , Aj) occur in a single sub-

relation, the system can directly execute the query. This is

the same situation as in existing encrypted database systems

wherein all fields in the query are collocated in the same

relation (lines 6-7). In contrast, if the attributes in the query

qi(Ai, . . . , Aj) do not exist in a single sub-relation, the sys-

tem may need to access fields across multiple sub-relations

Ri, . . . ,Rj (that together cover all attributes in the query) and

join the records in those sub-relations (lines 9-10) using the

tid column to reconstruct the necessary parts of the partitioned

records. After such a reconstruction the original query can

be executed and answers are returned to the user (line 11).

As mentioned in Section II, query execution can lead to

leakage by an adversary observing the execution of the query.

The query-time leakages or dynamic leakages can occur and

reveal which ciphertext is accessed during query execution

(i.e., access pattern attacks [43]) and/or observing the volume

of intermediate or final outputs produced [44]. Such leakages

coupled with background knowledge often can result in se-

mantic leakage. In the context of SNF representation, when the

query requires data stored in more than one sub-relation to be

accessed, unless the reconstruction is done carefully, adversary

may gain knowledge of the correspondence between records

stored across different sub-relations, leading to leakage. To

ensure that no leakage occurs due to SNF representation, we

need to prevent linkability among sub-relations from being

leaked during reconstruction. We, thus, need to perform the

reconstruction carefully to ensure that the adversary does not

gain insight on which tid values across two sub-relations

are equal. We can protect against adversary learning about

linkability in one of the following two ways:

Oblivious Reconstruction. We could use secure hardware such
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as SGX [17], [18] in conjunction with oblivious random access

memory (ORAM) [45], [46] to reconstruct the original relation

from sub-relations. In particular, when tuples matching a user’s

query (e.g., selection on a particular attribute) have been

determined over a given sub-relation, the corresponding tid

of the relation can be decrypted in the secure hardware and

ORAM used to retrieve the corresponding parts of the tuple

stored in other sub-relations. Since ORAM techniques such as

[15], [36], [47]–[49] prevent the adversary from learning the

access pattern, linkability of records across sub-relations will

be prevented.

Query Binning. We could also prevent linkability among ta-

bles by using a query binning technique [50] developed in the

context of secure joint query processing over partially sensitive

data where sensitive and non-sensitive data was partitioned

into separate sub-relations. Retrieving a query, say a selection

query (e.g., a predicate such as A = 5) separately on sensitive

(stored in an encrypted representation) and non-sensitive data

(stored in plaintext) would clearly break the scheme since

the adversary would immediately learn which encryped tuples

refer to the plaintext in the query. To protect against such

a leakage, [50] explored a binning approach that carefully

retrieves data from both sensitive and non-sensitive tables

to prevent the adversary from gaining knowledge of such

correspondences. Depending upon the encryption technique

used for sensitive data, the percentage of data that is sensitive

versus which is not, [50] showed significant advantages in

terms of performance of the binning approach compared to

techniques such as Path-ORAM or oblivious computation.

The technique of binning, while designed to support secure

computation when data is partially sensitive, can nevertheless,

be generalized to our setting when reconstructing tuples from

different sub-relations.

Note that above, we have only discussed potential ap-

proaches to reconstruct records when data is stored in SNF.

How the reconstruction operation, executed obliviously, can

be integrated into a full-fledged query execution to prevent

dynamic leakage from the overall query execution remains an

important challenge going forward.

IV. SOLUTION SPACE FOR CONSTRUCTING SNFS

The core of SNF is the normalization algorithm. A database

relation can be partitioned vertically or horizontally, or via a

mixture of both. We first restrict our sight to only vertical par-

titioning to describe a few possible normalization algorithms

in this scope. We then describe the possibilities in considering

horizontal partitioning also to broaden the solution space for

better optimizations.

A. Preliminary Discussions on Partitioning Strategies

Given R and L+ on R, our goal is to transform R into a

representation R such that R is in SNF w.r.t. LP . To do so,

we perform partitioning over the relation R.

Vertical Partitioning. We say vp(R) = {R1, R2, . . . , Rk} is

a vertical partition of a relation R, if:

• ∀i ∈ [k] : attr(Ri) ⊆ attr(R), and

• R = R1 �� . . . �� Rk.

Each sub-relation with vertical partitioning contains the tid
attribute strongly encrypted with different cryptographic keys.

This ensures that we can reconstruct the original relation

R from the sub-relations, while the linkability among sub-

relations will not leak when data is stored at rest. Note that

there is always a trivial algorithm for vertical partitioning, as

follows:

Trivial Strategy. We represent R(A1, . . . , An) as a set of

n sub-relations: R(tid SE(ki),Ai), ∀i ∈ [n], where ki is

the encryption key. Each attribute Ai is encrypted using an

appropriate cryptographic technique that is specified in the

pool of specified cryptographic techniques C.

While generating SNF for a given relation is simple with

the trivial strategy, our objective, as discussed in the previous

section, is to support a maximally permissive property. The

two naı̈ve approaches – encrypting all attributes of R using

strong encryption, or over-split R into sub-relations with a

single attribute from R – both are in SNF, but neither might

be maximally permissive. We consider the following two

normalization strategies, which are based on variants of the

hill climbing heuristic.

Strategy 1: Non-Repeating. We start with an unintended

leakage or a dependency that causes a leakage. We put the

corresponding attributes in the dependency into separate sub-

relations. For the rest of the attributes in the schema, we take

each attribute and iterate over the leakages closure. The goal

is to identify a candidate set of existing sub-relations for this

attribute. A sub-relation is put into this candidate set, if the

encrypted attribute does not incur unintended leakages with

existing attributes in this sub-relation. If the candidate set is

not empty, we add the attribute into any of the sub-relations

in it; otherwise, we create a new sub-relation to place this

attribute. This process will end when every attribute in the

schema is properly allocated to the sub-relations.

Strategy 2: Max-Repeating. This strategy is a variant of the

previous one, where the only difference is that each attribute

will be put into every sub-relation in the candidate set, such

that every sub-relation will be in SNF.

Note that the maximal permissiveness does not specify how

many times an attribute from R can repeat in R in SNF.

The two aforementioned strategies are at the far ends of the

solution space w.r.t. repetition of attributes. We empirically

evaluate them next in Section IV-B and discuss opportunities to

improve via workload-dependent optimizations in Section V.

Horizontal Partitioning. Implicitly, so far, we have assumed

that the notion of permissible leakages is defined at the

level of columns and data is encrypted at that level. Such

an assumption is not necessary. Consider the scenario when

data values are independent/dependent is an outcome of not

only the semantic meaning of the attributes but their actual

values. For instance, typically, one would expect income

level of a person and their education level to be correlated.
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TABLE I: Preliminary experimental results. Query costs are

measured in terms of the number of oblivious joins required,

normalized by the number according to the Naı̈ve baseline.

Methods Storage #Partitions Query Cost
Naı̈ve 731 MB 231 1
SNF (non-repeating) 626 MB 66 0.726
SNF (max-repeating) 14110 MB 66 0.13
Strawman 461 MB 1 0
Plaintext 30 MB 1 0

However, such a correlation may not hold for people in certain

professions, such as a stockbroker. Likewise, data owners may

have different levels of tolerance to leakages for different

subsets of data belonging to the same column/attribute based

on its sensitivity. For instance, leakage of the name of a

disease such as cancer may be deemed significantly more

sensitive than say common cold. Given the above, data owners

may be willing to choose different encryption mechanisms to

protect different parts of the data. Both these observations

lead us to consider partitioned representation not just based

on a vertical partitioning of attributes, but also horizontal

partitioning. In particular, a relation may be partitioned into

a subset of sub-relations which may correspond to horizontal

or vertical partitioning. A partitioning would be valid as long

as we can reconstruct the original relation via a sequence of

join (based on the tid as discussed earlier in the context of

vertical partitioning) or union operators (in case of horizontal

partitioning). Such an expanded scope of partitioning signif-

icantly increases our repertoire of data representations. For

instance, we may partition a table horizontally based on a

data value, if it results in a given sub-relation to have a lesser

number of data dependencies (e.g., two attribute values are

dependent in general, but are independent based on a value

of some attribute, and the relation is horizontally partitioned

based on that attribute value). Now we may need to vertically

partition only one of the sub-relations leaving the attributes

collocated in the other horizontally partitioned subrelation.

Likewise, horizontal partitioning can also be exploited to keep

parts of data collocated if data’s sensitivity level depends upon

its value or that of other collocated attributes. In general, a

data representation may correspond to a partially ordered set

of horizontal and vertical partitioning and can be represented

as a tree and the space of partitioning becomes that of all

such trees. To handle horizontal partitioning in conjunction

with vertical partitioning, we need to extend the reasoning

of leakages, the definition of SNF, and also the concept of

maximally permissive leakage to such representations.

B. Preliminary Experimental Results

As a proof-of-concept, we implement and evaluate different

partitioning strategies in our system (as described in Algo-

rithm 1) to pitch the feasibility and potential interests of our

vision on secure normal forms.

Dataset. We present our preliminary empirical results on

the 2013 U.S. Census American Community Survey (ACS)

dataset [51]. The ACS dataset contains one-year survey re-

Fig. 3: Estimated query execution time cost over the joins

required, comparison among different partitioning algorithms.

sponses of individuals of 231 attributes and 153,589 records,

a larger version of this dataset being used in prior research [31]

to demonstrate the effectiveness of the inference attacks.

Partitioning Algorithms. The partitioning algorithms we im-

plement over ACE dataset are the trivial/naı̈ve partitioning and

the non-repeating and max-repeating strategies discussed in

the previous section. These algorithms are compared against

storing the database in plaintext and the strawman solution.

In the strawman solution, we have all encrypted-as-specified

columns in one single relation (simulating the naı̈ve usage of

CryptDB [6]). To do so, we randomly sample 172 attributes

to encrypt with weak encryption techniques such as DET and

OPE, and the rest of the attributes are encrypted with AES.

Query workload. For simplicity, we assume the queries in

the workload have the following template:

SELECT attr_1,
FROM relations(attr_1, attr_2, attr_3,..)
WHERE predicate(attr_2, attr_3)

To generate this query, which we call a 2-way point query,

we randomly select two columns that are weakly encrypted

and project to another random attribute. Likewise, we create

3-way point queries. We choose 100 different 2-way point

queries and other 100 different 3-way point queries to form

the workload.

Goals. With our experiments, we would like to discuss the

following:

• Overhead of the Partitioning Strategies. We first investigate

the storage overhead, incurred by encryption and different

partitions. Particularly, in this early study, we focus on

showing the tradeoffs among different partitioning methods

in the solution space, while comparing with strawman

solutions and trivial/naı̈ve baselines, (to inspire more future

research in this field). We relatively simplify the data

correlation and inference model of leakages by considering

only functional dependencies as the inference channel.

• Query Execution Cost. The query cost model estimates the

cost of executing the queries over the dataset in terms of

the number of oblivious “join” operations.

Exp 1: The Cost of Partitioning Strategies. Enabling encryp-

tion over ACS dataset using the “Strawman” solution incurs
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15x storage overhead compared to storing the plaintext table

(“Plaintext”). As expected, the naı̈ve normalization strategy

almost doubles the storage cost than the strawman solution,

because it partitions every attribute into a single sub-relation

and properly adds the encrypted tid column, which results in

231 sub-relations. The two SNF strategies reduce the number

of partitions greatly from 231 to 66, and the storage overhead

varies between 626 MB to 14110 MB (0.85x – 19x compared

to the naı̈ve baseline), leaving a large space for optimization

and future improvement.

Exp 2: Query Execution Cost. From the workload per-

spective, every query executed over the naı̈ve partitioning

requires a 2-way or 3-way oblivious join. In contrast, the SNF

strategies (non-repeating and max-repeating) satisfy maximal

permissiveness and reduce the query execution cost to only

0.726x – 0.13x compared to the naı̈ve solution. We further

plot the estimated execution time, based on existing oblivious

join algorithms [52], for the join operators over the three

partitioning methods (see Figure 3). The discrepancy in terms

of the time cost between partitioning methods is observed

to be large, which shows opportunities for workload-aware

optimizations, discussed in the next section. We note that the

discussion only includes very preliminary results of SNFs.

Designing and implementing an optimal query execution plan

with respect to a given SNF which avoids any unintended

dynamic leakages is critical to the system performance and

security Opportunities to further optimize the system perfor-

mance when incorporating SNFs are observed and discussed

in the next section.

V. OPPORTUNITIES AND CHALLENGES WITH SNFS

The SNF vision opens the following opportunities for secure

data management and outsourcing, and challenges for the full

realization of a practical system.

A. Leakage Characterization

While in this paper, we do not distinguish leakages from

different weak encryption techniques but focus on the spread-

ing of leakages, the information leaked by different encryption

techniques can be measured in different ways. Prior work

in cryptography [53]–[55] has studied and listed a number

of syntactic leakages based on the structural properties of

different cryptographic algorithms (e.g., data volume, query

length, response size, etc.). However, such definitions, in

nature, are not compatible with database inferences based on

data semantics (e.g., functional dependencies, correlations).

While being difficult, we would like to develop an overarching

system to connect two types of leakages altogether through a

holistic modeling of leakages.

One way to achieve this is to characterize the leakages as

the result of cryptography precisely in the semantics sense.

We can define the leakages from the perspective of associ-
ation, relationship, and distribution. An association leakage

arises when the adversary is able to associate a ciphertext

representation with one plaintext value more confidently than

with another. Relationship leakages measure the leakage of

the l-ary relationship of any subset of plaintext values from

their ciphertext representations, whereas distribution leakages

characterize the leakage of plaintext distributions. Other types

of leakages can be developed as well. The leakage from one

cryptographic technique could comprise one or more leakages

from the ones defined above. Having this characterization can

devise a more fine-grained leakage analysis to replace the

simplified conservative assumption in the leakage inference

module and thus improve the final SNF representation.

Quantifying Leakages. Rather than measuring a leakage as

a boolean value, we can quantify it by the exact amount of

information learned by the adversary. Such quantification can

potentially speed up query execution or incur less number of

sub-relations in SNF when secure. Our previous work [56],

[57] on inference control over access control protected data,

based on a plausible deniability model, establishes a threshold

on how many elements of the domain could be allowed to leak.

Similar ideas could be explored in SNFs if leakages from dif-

ferent encryption techniques could be uniformly characterized.

With precisely captured partial leakages, SNF could provide

the knob to users who wish to tune between security and

desired functionalities/efficiency. And then, we may leverage

the state-of-the-art inference attacks [27], [31] to simulate an

adversary to measure the extent to which the data can be

recovered.

Acquisition of Knowledge. The correctness of our system

depends on the knowledge of dependence or independence.

Acquiring such knowledge, as discussed earlier, could be an

automatic learning process from data or human-generated rules

based on schema, or a mixture of both. Note that there could

be exponentially many dependencies among attributes in the

schema. Missing a dependency may leak more than required.

Therefore, an incomplete acquisition can affect the system’s

security or performance, depending on whether the system

assumes full dependence or full independence by default. We

would like to initiate a user interface or mechanism in the

system that opts to the user to choose to be pessimistic or

optimistic. It is interesting to explore the impact on how well

the adversary can perform an inference attack between these

two modes.

B. Partitioning and Enumeration

While our secure normalization is similar to database parti-

tioning [32], [33], [42], [58] in spirit, there are huge opportu-

nities in designing optimal secure normalization algorithms.

First, unlike partitioning in database design, SNFs allow

repetitions of data attributes to be encrypted using different

cryptographic techniques. This enlarges the solution space

even for vertical partitioning only. Furthermore, if we consider

vertical and horizontal partitioning, the solution space becomes

super-exponential. Our early experiments only empirically

demonstrate the two partitioning strategies, especially limited

to vertical partitioning only. While it remains exploration on

a normalization algorithm to perform vertical and horizontal

partitioning, the trade-off (i.e., a trade-off between 0.85x –
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19x storage overhead and 0.726x – 0.13x workload execution

overhead) between the two vertical strategies has shown op-

portunities for optimization for a given workload.

Workload-Aware Partitioning. If we know in advance a rep-

resentative workload W that captures the queries to be asked

on the outsourced database in the future, we can partition the

database with the aid of this query workload. This is likely

to happen because, in the data outsourcing scenario, the data

owner is usually the same as the queried. Then the partitioning

process becomes solving an optimization problem

{R1, . . . , Rn} = argmin
Pi∈P

Cost(W,Pi), s.t. SNF properties

where Pi is a candidate partitioning representation from all

possibilities P . We would like to find a set of sub-relations

that minimize the estimated cost of executing the workload

over them while satisfying the properties of no unintended

leakages.

Migration to Other Workloads. However, chances are the rep-

resentative workload may change over time after the database

is outsourced. A natural research question is how to migrate

the partitioned database in SNFs to another SNF representation

optimized for the new workload. A naı̈ve answer to this

question may be re-doing the partitioning entirely and updating

the outsourced database, which will inevitably incur overhead.

While this leaves future exploration on algorithmic design to

solve the problem, it is noteworthy that the adversary can

observe the update process in which the query information

could be leaked. It remains an open question to defend against

such adversaries in the migration process.

SNF over Dynamic Databases. The data outsourced can

change over time (i.e., the database can grow or shrink when

data is imported, updated or deleted). Dynamic data update

is a challenging problem for encrypted databases. The current

design of SNF may require recasting and re-partitioning of

the encrypted data to be securely outsourced. Updating SNF

without such operations is an interesting open question for

future work.

C. Secure Query Execution

Data-Aware Sub-Relation Matching. Given a query, there

may be multiple collections of sub-relations in SNF to execute

on. For example, a database R(A,B,C,D) can be partitioned

in to R1(A,B), R2(B,D), R3(A,C). For query q(A,D), it

could be executed over R1 ⊗ R2 or R2 ⊗ R3. Selecting one

collection rather than the other may reduce some execution

costs, which would be preferred. This question is related to the

query-view answering problem [59] of finding a materialized

view to answer a given query. However, in our context, design-

ing proper data structures and protocols to enable an optimized

matching without leakage still requires further exploration.

Towards Multi-Relational Queries. We have considered SNF

when considering a relation being stored using multiple cryp-

tographic primitives. When data is stored in SNF, adversaries

cannot learn anything other than what the data owner specified

as permissible leakages based on the choice of encryption

they used. Furthermore, we have discussed how queries can

be executed by reconstructing (parts of) a relation needed to

answer the query without leaking linkability and thus ensuring

that no further leakage occurs other than those permissible.

A full solution, however, requires generalizing our approach

to support multiple tables, each in SNF based on appropriate

choice of cryptography, and moreover, to support techniques to

compose relational operators over multiple encrypted relations.

Our discussions have focused on preventing leakages in the

context of reconstructing a single relation from its partitioned

storage. We will need to generalize the approach to further

explore and prevent leakages when dealing with general multi-

relation queries.

Optimization and Trade-offs in Query Execution. As shown

in previous work [15], [48], [49] and our early results, execut-

ing the oblivious join operators is time-costly. Independent of

the oblivious processing and query binning thoughts, another

optimization may be enabling some local data structures that

help the server obliviously shrink the table sizes to be joined

with a few rounds of communication trade-off.

D. Towards Real-World Deployment

In the future, we would like to extend our SNF vision to

a fully functioning system that can be deployed in real-world

use cases. We identify a few challenges toward a usable and

practical system.

Visualizing Leakages. Understanding permissible leakages as

the nature of cryptographic techniques and how unintended

leakages can happen through data dependencies requires

domain knowledge. It may be challenging for non-domain

experts to explore data outsourcing or correctly specify the

amount and types of leakages they can tolerate. Building a vi-

sual interface that can allow users to specify database operators

and cryptographic techniques, and compare the leakages with

immediate system feedback through inference would make the

system more usable.

Language for Leakage on Representations. To visualize

leakages, one may require a uniform language to represent

leakages, given the heterogeneous nature of leakages from

different cryptographic techniques, as discussed earlier. We

envision such a language to bridge the gap between the

leakage/cryptography specification and the symbolic inference

rules for leakage reasoning.

Leakage as Indexing. From the query execution perspective,

the information leaked through the cryptographic technique

enforced over a column enables faster or cheaper database

operations on encrypted data. That said, leakages can be

viewed as “indexing” that user can explore to enforce in their

outsourcing database. Exploring this functionality may be able

to be implemented in our envisioned system.

Other Types of Leakages. We have so far discussed leakages

due to using multiple encryption techniques on data. To build

an end-to-end system, we need to deal with different types of

leakages, such as leakages from metadata [60], leakages from
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the timing of the operations (e.g., inserting new data) [61],

leakages from database logs [62]–[64], leakage from authen-

tication algorithms [29], [30], leakages form commitment

algorithms [65], etc. Building new primitives for encrypted

meta-data to mitigate such leakages would make the system

more robust. How such techniques interact and compose with

SNF-based representation of data when multiple cryptographic

primitives are used in the same system would be an interesting

direction for exploration.

Beyond Relational Databases. The modern database designs

have gone beyond the relational tables. Data can be stored as

documents, key-value pairs, geo-location [66]–[68] node-edge

adjacency representations [69], or even vectorized embeddings

[69]–[72] in the databases. While the design of SNFs is

much inspired by the theoretical development of relational

database (integrity) constraints, the secure representation of

data should be independent of how data is stored. How to

answer queries securely over SNFs with data stored in a

non-relational database is still an unanswered and interesting

research question for future development.

System Deployment. Once a full prototype system is imple-

mented, deploying it in real-world use cases would be interest-

ing. In future work, we would like to integrate our system as a

middle-ware framework into Cisco’s cloud database product,

Panoptica [35], and test the system’s performance with real-

world query workloads. Panoptica supports cloud-based secure

solutions and several use cases. Extensive experimentation

may provide evidence of whether the system can efficiently

detect leakages, execute the partitioning algorithm, and answer

queries over SNFs. Thus, we can answer more research

questions, such as which cryptographic techniques can be used

under different leakages and database operators (e.g., SPJA

queries), given constraints on available system resources.

E. Relationship to Differential Privacy.

The connection between SNF and DP for databases [73]

can be seen in two dimensions. Firstly, prior work [74]–[76]

investigates weak encryption techniques with a differentially

private leakage, which can be easily quantified and composed.

Hence, we can build our SNFs on top of similar cryptographic

techniques with differential privacy guarantees. Secondly, ex-

isting effort in building a DP query processing system [77],

[78] has explored a differentially private representation of data

(i.e., a DP synopsis) so that queries can be processed without

consuming additional privacy budgets (i.e., post-processing).

Such a representation can leverage the correlations among

attributes [79], [80] or representative query workloads [77],

[81], which has a connection with our SNF. Unifying these

two lines of thought can be a charming direction for building

a database system.

VI. CONCLUDING REMARKS: LOOKING BACK AND

LOOKING AHEAD

Looking back on the past two decades of research on

encrypted databases, we believe the moment has arrived for

our community to embark on a new phase of integrating

piecemeal solutions into end-to-end systems. As additional,

and severe, leakages can happen in this integration process,

we call for special attention to this important topic, especially

approaches to systematically controlling leakages whilst not

much affecting system efficiency or functionalities, in this

new chapter of research. This paper describes our vision and

early research on understanding leakages when outsourcing

encrypted databases with different cryptographic techniques.

We propose secure normal form, a principled approach that

prevents unintended leakages through inference and restricts

leakage to only what the user explicitly specifies. A new

system is architected to support our secure normal form vision,

with a modular design of replacing several parts of the cur-

rent database, including partitioning, outsourcing, and query

answering. Our early empirical results show the potential

interests and usefulness of secure normal forms. Opportunities

and challenges are discussed toward fully realizing this system

so that it can be practically deployed in the current secure

cloud outsourcing industry.
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