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Abstract—Private set computation over multi-owner databases
is an important problem with many applications — the most
well studied of which is private set intersection (PSI). This arti-
cle proposes PRISM, a secret-sharing based approach to compute
private set operations (i.e., intersection and union, as well as ag-
gregates such as count, sum, average, maximum, minimum, and
median) over outsourced databases belonging to multiple owners.
PRISM enables data owners to pre-load the data onto non-colluding
servers and exploits the additive and multiplicative properties of
secret-shares to compute the above-listed operations. PRISM takes
(at most) two rounds of communication between non-colluding
servers (storing the secret-shares) and the querier for executing
the above-mentioned operations, resulting in a very efficient im-
plementation. PRISM also supports result verification techniques
for each operation to detect malicious adversaries. Experimental
results show that PRISM scales both in terms of the number of data
owners and database sizes, to which prior approaches do not scale.

Index Terms—Additive sharing, aggregation operation,
computation and data privacy, data and computation outsourcing,
multi-party computation, private set intersection, private set
union, result verification, set cardinality, shamir’s secret-sharing.

I. INTRODUCTION

DATABASE-AS-A-SERVICE (DaS) [34] has become in-
creasingly popular with the emergence of cloud comput-

ing. Initially, DaS focused on a single database (DB) owner
who submitted encrypted data to the cloud, allowing either the
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owner or their clients to query it. However, a more common
scenario involves multiple datasets, each belonging to a different
owner. These data owners do not trust one another but need to
execute queries on common attributes of the datasets. The query
execution must not reveal the content of the database belonging
to one DB owner to others, except for the leakage that may occur
from the answer to the query. The most common form of such
queries is the private set intersection (PSI) [27], [37], [42], [46],
[59], [60], [62]. An example use-case of PSI include syndromic
surveillance, wherein organizations, such as pharmacies and/or
hospitals, share information (e.g., a sudden increase in sales
of specific drugs such as analgesics or anti-allergy medicine,
tele-health calls, and school absenteeism requests) to enable
early detection of community-wide outbreaks of diseases. PSI
is also a building block for performing joins across private
databases — it essentially corresponds to performing a semi-join
operation on the join attribute [43].

Private set computations over datasets owned by different
DB owners/organizations can, in general, be implemented using
secure multiparty computation (SMC) [31], [52], [71], a well-
known cryptographic technique that has been prevalent since
more than three decades. SMC allows DB owners to securely
execute any function over their datasets without revealing their
data to other DB owners. However, SMC can be very slow,
often by order of magnitude [48]. As a result, techniques that
can be used to more efficiently compute private set operations
have been developed; particularly, in the context of PSI [27],
[37], [42], [59], [62] and private set union (PSU) [21], [45].
PSU refers to privately computing the union of all databases.
Several approaches using homomorphic encryption [14], poly-
nomial evaluation [27], garbled-circuit techniques [37], hash-
ing [26], [59], [67], hashing and oblivious pseudorandom func-
tions (OPRF) [47], Bloom-filter [55], and oblivious transfer [58],
[61] have been proposed to implement private set operations.

Recent work on private set operations has also explored
performing aggregation on the result of PSI operations. For
instance, [39] studied the problem of private set intersection
sum (PSI Sum), motivated by the internet advertising use-case,
where one party has information about customers who clicked
on specific advertisements during their web session, and another
party has a list of transactions about items listed in the advertise-
ments that resulted in a purchase by the customers. Both parties
may wish to securely learn the total sales attributed to customers
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clicking on the advertisements, without revealing their databases
to each other due to fair/competitive business strategies.

Existing approaches on private set computation (including
recent work on aggregation) are limited in several ways:
� Work on PSI or PSU has largely focused on the case of

two DB owners, with some exceptions that address more
than two DB owners scenarios, e.g., [15], [27], [36], [38],
[45], [48], [72]. There are several interesting use-cases,
where one may wish to compute PSI over multiple datasets.
For instance, in the syndromic surveillance example listed
above, one may wish to compute intersection amongst
several independently owned databases. Generalizing ex-
isting two-party PSI or PSU approaches to the case of
multiple DB owners results in significant overhead [48].
For instance, [2], which is designed for two DB own-
ers, incurs (nm)2 communication cost, when extended to
m > 2 DB owners, where n is the dataset size. Even recent
work supporting multiple DB owners incurred significant
computational overhead; e.g., [38] took ≈12 seconds for
PSI over 24 DB owners having 1024 values.

� Techniques to privately compute aggregation over set oper-
ations have not been studied systematically. In the database
literature, aggregation functions [54] are typically classi-
fied as: summary aggregations (such as count, sum, and
average) or exemplary aggregations (such as minimum,
maximum, and median). Existing literature has only con-
sidered the problem of PSI Sum [39] and cardinality de-
termination, i.e., the size of the intersection or union [21],
[24]. Techniques for exemplary aggregations (and even for
summary aggregations) that may compute over multiple
attributes have not been explored.

� Many of the existing solutions do not deal with a large
amount of data, due to either inefficient cryptographic
techniques or multiple communication rounds amongst DB
owners. For instance, recent work [48], [49], [72] dealt with
data that is limited to sets of size less than or equal to≈1 M
in size.

This paper introduces PRISM — a novel approach for comput-
ing collaboratively over multiple databases. PRISM is designed
for both PSI and PSU, and it supports both summary, as well
as, exemplar aggregations. Unlike existing SMC techniques
(wherein DB owners compute operations privately through a
sequence of communication rounds), in PRISM, DB owners
outsource their data in secret-shared form to multiple non-
colluding public servers. As will become clear, PRISM exploits
the homomorphic nature of secret-shares (both additive and mul-
tiplicative) to enable servers to compute private set operations
independently (to a large degree). These results are then returned
to DB owners to compute the final results. In PRISM, any operator
requires at most two communication rounds between DB owners
and servers, where the first round finds tuples that are in the in-
tersection or union of the set, and the second round computes the
aggregation function over the objects in the intersection/union.

By using public servers for computation over secret-shared
data, PRISM achieves the identical security guarantees as ex-
isting SMC systems (e.g., Sharemind [7], Jana [4], and Con-
clave [68]). The key advantage of PRISM is that by outsourcing
data in secret shared form and exploiting homomorphic prop-
erties, PRISM does not require communication among server

before/during/after the computation, which allows PRISM to
perform efficiently even for large data sizes and for a large
number of DB owners (as we will show in experiment section).
Since PRISM uses the public servers, which may act maliciously,
PRISM supports oblivious result verification methods.

In summary, PRISM offers the following benefits: (i)
Information-theoretical security: It achieves information-
theoretical security at the servers and prevents them to learn
anything from input/output/access-patterns/output-size. (ii) No
communication among servers: It does not require any commu-
nication among servers, unlike SMC based solutions. (iii) No
trusted entity: It does not require any trusted entity that performs
the computation on the cleartext data, unlike the recent SMC
system Conclave [68]. (iv) Several DB owners and large-sized
dataset: It deals with several DB owners having a large-size
dataset.

Outline: Different sections of this papers are organized as
follows:

1) Section II provides the definitions and examples of PSI,
PSU, and aggregation operations over PSI/PSU.

2) Section III-A provides an overview of existing tech-
niques (such Shamir’s secret-sharing, additive sharing,
cyclic group, permutation function, and pseudorandom
number generator) that we will use in developing our
algorithms. Section III-B provides details about entities
involved in PRISM. Section III-C provides an overview of
PRISM system. Section III-D provides security properties.

3) Section IV provides details of assumptions and parame-
ters related to different entities.

4) Section V provides PSI algorithm and PSI output verifi-
cation algorithm, respectively.

5) Sections VI-A and VI-A2 provide PSI sum algorithm
and PSI sum output verification algorithm, respectively.
Section VI-B extends PSI sum algorithm for computing
PSI average algorithm.

6) Section VI-C provides PSI maximum algorithms. Sec-
tion VI-D extends PSI maximum algorithm for comput-
ing PSI median algorithm.

7) Section VI-E provides PSI count and verification algo-
rithms.

8) Section VI-F extends PSI algorithm of Section V for
computing PSI over multiple columns and proposes
bucketization-based PSI.

9) Section VII provides PSU algorithm. Note: Aggregations
queries over PSU can be executed in a similar way
and by following the methods of aggregation over PSI
(Section VI). Also, using bucketization-based method,
PSU method can be executing over multiple columns.
Thus, we do not explicitly provide aggregation algorithm
over PSU and bucketization-based PSU.

10) Section VIII-A provides experimental evaluation of
PRISM. Section VIII-B compares PRISM against existing
PSI/PSU techniques.

II. PRIVATE SET OPERATIONS

We, first, define the set of operations supported by PRISM.
Let DB1, . . . , DBm be m > 2 independent DBs owned by m
DB owners DB1, . . . ,DBm. We assume that each DB owner isAuthorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 31,2024 at 02:19:10 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I
HOSPITAL 1

TABLE II
HOSPITAL 2

TABLE III
HOSPITAL 3

(partially) aware of the schema of data stored at other DB owners.
Particularly, DB owners have knowledge of the attribute(s) of the
data stored at other DB owners on which the set-based operations
(i.e., intersection or union) can be performed. Also, DB owners
know about the attributes on which aggregation functions (e.g.,
sum, min, max) be supported. Such an assumption is needed to
ensure that PSI/PSU and aggregation queries are well defined.
Other than the above requirement, the schema of data at different
databases may be different.

Now, we define the private set operations supported by PRISM

formally and their corresponding privacy requirements (corre-
sponding SQL statements are shown in Table IV). In defining the
operators (and in the rest of the paper), we will use the example
tables shown in Tables I, II, and III that are owned by three
different DB owners (in our case, hospitals).

1) Private Set Intersection (PSI) (Section V): PSI finds the
common values among m DB owners for a specific at-
tribute Ac, i.e., DB1.Ac ∩ . . . ∩DBm.Ac. For example,
PSI over disease column of Tables I, II, and III will return
{Cancer} as a common disease treated by all hospitals.
Note that a hospital computing PSI on disease should not
gain any information about other possible disease values
(except for the result of the PSI) associated with other
hospitals.

2) Private Set Union (PSU) (Section VII): PSU finds the
union of values among m DB owners for a specific at-
tribute Ac, i.e., DB1.Ac ∪ . . . ∪DBm.Ac. For example,
PSU over disease column returns {Cancer, Fever, Heart}
as diseases treated by all hospitals. Again, a hospital com-
puting PSU over other hospitals must not gain information
about the specific diseases treated by other hospitals, or
how many hospitals treat which disease.

3) Aggregation over private set operators (Section VI): Ag-
gregation Ac

Gθ(Ax) computes the aggregation function
θ on the attribute Ax (Ac �= Ax) for the groups cor-
responding to the output of set-based operations (PSI

or PSU) on attribute Ac. For example, the aggregation
function sum on cost attribute corresponding to PSI over
disease attribute (i.e., diseaseGsum(cost)) returns a tuple
{Cancer,1400}. The same aggregation function over PSU
will return {〈Cancer,1400〉, 〈Fever,120〉, 〈Heart,800〉}.
Likewise, the output of aggregation diseaseGmax(age) over
PSI would return {Cancer,8}, while the same over PSU
would return{〈Cancer,8〉, 〈Fever,5〉, 〈Heart,5〉}. Note that
the count operation does not require specifying an ag-
gregation attribute Ax and can be computed over the
attribute(s) associated with PSI or PSU. For example,
count over PSI (PSU) on disease column will return 1 (3)
respectively. From the perspective of privacy requirement,
in case of PSI on disease column, a hospital executing an
aggregation query (maximum of age or sum of cost) should
only gain information about the answer, i.e., elements in
the PSI and the corresponding aggregate value. It should
not gain information about other diseases that are not
in the intersection. Likewise, for PSU, the hospital will
gain information about all elements in the union and their
corresponding aggregate values, but will not gain any
specific information about which database contains which
disease values, or the number of databases with a specific
disease.

III. PRELIMINARY

This section describes the cryptographic concepts that serve
as building blocks for PRISM, provides an overview of PRISM

approach, and discusses its security properties.

A. Building Blocks

PRISM is based on additive secret-sharing (SS), Shamir’s
secret-sharing (SSS), cyclic group, and pseudorandom number
generator. We provide an overview of these techniques, below.

Additive Secret-Sharing (SS): Additive SS is the simplest type
of the SS. Let δ be a prime number. Let Gδ be an Abelian
group under modulo addition δ operation. All additive shares
are defined over Gδ. In particular, the DB owner creates c
shares A(s)1, A(s)2, . . . , A(s)c over Gδ of a secret, say s,
such that s = A(s)1 +A(s)2 + . . .+A(s)c. The DB owner
sends share A(s)i to the ith server (belonging to a set of c
non-communicating servers). These servers cannot know the
secret s until they collect all c shares. To reconstruct s, the
DB owner collects all the shares and adds them. Additive SS
allows additive homomorphism. Thus, servers holding shares of
different secrets can locally compute the sum of those shares.
Let A(x)i and A(y)i be additive shares of two secrets x and
y, respectively, at a server i, then the server i can compute
A(x)i +A(y)i that enable DB owner to know the result of
x+ y. The precondition of additive homomorphism is that the
sum of shares should be less than δ.

Example: Let G5 = {0, 1, 2, 3, 4} be an Abelian group under
the addition modulo 5. Let 4 be a secret. The DB owner may
create two shares, such as 3 and 1 (since 4 = (3 + 1) mod 5),
and sends them to two servers.
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TABLE IV
SQL SYNTAX OF OPERATIONS SUPPORTED BY PRISM

Shamir’s Secret-Sharing (SSS) [65]: The DB owner randomly
selects a polynomial of degree c′with c′ random coefficients, i.e.,
f(x) = a0 + a1x+ a2x

2 + · · ·+ ac′x
c′ , where f(x) ∈ Fp[x],

p is a prime number, Fp is a finite field of order p, a0 = s,
and ai ∈ N (1 ≤ i ≤ c′). The DB owner distributes the secret s
into c shares by computing f(x) (x = 1, 2, . . . , c) and sends
an ith share to the ith server (belonging to a set of c non-
communicating servers). The secret can be reconstructed using
any c′ + 1 shares using Lagrange interpolation [18].

SSS, also, allows additive homomorphism, i.e., if S(x)i and
S(y)i are SSS of two secrets x and y, respectively, at a server i,
then the server i can compute S(x)i + S(y)i, which will result
in x+ y at DB owner.

Cyclic Group Under Modulo Multiplication: Let η be a prime
number. A group G is called a cyclic group, if there exists an
element g ∈ G, such that all x ∈ G can be derived as x = (gi)
(where i in an integer number Z) under modulo multiplicative
η operation. The element g is called a generator of the cyclic
group, and the number of elements in G is called the order of
G. Based on each element x of a cyclic group, we can form a
cyclic subgroup by executing xi mod η.

Example: g = 2 is a generator of a cyclic group un-
der multiplication modulo η = 11 for the following group:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Note that the group elements are
derived by 2i mod 11. By taking the element 5 of this cyclic
group, we form the following cyclic subgroup {1, 3, 4, 5, 9},
under multiplication modulo η = 11, by 5i mod 11.

Permutation Function PF: Let A be a set. A permutation
function PF is a bijective function that maps a permutation of
A to another permutation of A, i.e., PF : A→ A.

Pseudorandom Number Generator PRG: A pseudorandom
number generator is a deterministic and efficient algorithm that
generates a pseudorandom number sequence based on an input
seed [6], [30].

B. Entities and Trust Assumption

PRISM assumes the following four entities:
1) The m database (DB) owners (or users), who wish to

execute computation on their joint datasets. We assume
that each DB owner is trusted and does not act maliciously.

2) A set of c ≥ 2 servers that store the secret-shared data
outsourced by DB owners and execute the requested
computation from authenticated DB owners. The data
transmission between a DB owner and a server takes place
in encrypted form or by using anonymous routing [32] to
prevent the locations of servers and the shares from an

adversary, eavesdropping on the communication channel
between DB owners and servers.
We assume that servers do not maliciously communicate
(i.e., non-colluding servers) with each other in violation
of PRISM protocols. Unlike other MPC mechanisms [7],
(as will be clear soon), PRISM protocols do not require the
servers to communicate before/during/after the execution
of the query. The security of secret-sharing techniques
requires that out of the c servers, no more than c′ < c com-
municate maliciously or collude with each other, where c′

is a minority of servers (i.e., less than half of c). Thus,
we assume that a majority of servers do not collude and
communicate with each other, and hence, a legal secret
value cannot be generated/inserted/updated/deleted at the
majority of the servers.
It should be noted that the assumption of the collusion
of servers in violation of the protocol is a common re-
quirement for secret-sharing based protocols, and has been
made in prior work [7], [16], [65], [70]. This assump-
tion is based on factors such as economic incentives (as
violating the protocol goes against their financial inter-
ests), legal restrictions (as collusion may be illegal), and
jurisdictional boundaries. To further increase the realism
of the assumption, servers can be selected from different
cloud providers. For the purpose of simplicity, we assume
that none of the servers collude with each other – that
is they not communicate directly. Thus, to reconstruct
the original secret value from the shares, two additive
shares suffice. In the case of PSI sum (as will be clear
in Section VI-A), we need to multiply two shares (each of
degree one) and that increases the degree of the polynomial
to two. To reconstruct the secret value of degree two,
we need at least three multiplicative (Shamir’s secret)
shares.
While we assume that servers do not collude, we will con-
sider two types of adversarial models for the servers in the
context of the computation that they perform: (i) Honest-
but-curious (HBC) servers that correctly compute the as-
signed task without tampering with data or hiding answers.
It may, however, exploit side information (e.g., the internal
state of the server, query execution, background knowl-
edge, and output size) to gain as much information as pos-
sible about the stored data/computation/results. The HBC
adversarial model is considered widely in many crypto-
graphic algorithms and in DaS model [12], [34], [69].
(ii) Malicious adversarial servers that can delete/insert tu-
ples from the relation, and hence, is a stronger adversarial
model than HBC.
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Fig. 1. PRISM model.

3) A initiatoror oracle is a trusted entity who is aware of
m DB owners and servers. Prior to outsourcing data by
DB owners, the initiator shares the identities of servers
with DB owners and vice versa. Additionally, the initiator
conveys the desired parameters (such as a hash function,
Abelian and cyclic group parameters, PF , and RRG) to
both servers and DB owners. The initiator’s role is similar
to that of a trusted certificate authority in a public-key
infrastructure, and is trusted by all other entities. The
initiator does not have access to any data or results, as it
does not store any data, and data/results are not provided
to servers via the initiator. The role of the initiator has also
been studied in existing PSI work [63], [73].

4) An announcer Sa that participates only in maximum,
minimum, and median queries to announce the results.
Sa communicates (not maliciously) with servers and the
initiator (and not with DB owners).

C. PRISM Overview

Let us first understand the working of PRISM at the high-level.
PRISM contains four phases (see Fig. 1), as follows:

PHASE 0: Initialization: The initiator sends desired parameters
(see details in Section IV) related to additive SS, SSS, cyclic
group, PF , and PRG to all entities and informs them about the
identity of others from/to whom they will receive/send the data.

PHASE 1: Data Outsourcing by DB owners: DB owners create
additive SS or SSS of their data, by following the methods given
in Section V for PSI and PSU, Section VI-A for PSI/PSU-sum,
and Section VI-C for PSI/PSU-maximum/minimum. Then, they
outsource their secret-shared data to non-colluding servers. Note
that for the purpose of explanations, we will write the data
outsourcing method with query execution. However, it is not
required to outsource the data at the time of query.

PHASE 2: Query Generation by the DB owner: A DB owner
who wishes to execute SMC over datasets of different DB own-
ers, sends the query to the servers. For generating secret-shared
queries for PSI, PSU, count, sum, maximum, and for their
verification, the DB owner follows the method given in Sections
V and VI.

PHASE 3: Query Processing: The servers process an input
query and respective verification method in an oblivious man-
ner, such that neither the query nor the results satisfying the

query/verification are revealed to the adversary. Finally, servers
transfer their outputs to DB owners.

PHASE 4: Final processing at the DB owners: The DB owner
either adds the additive shares or performs Lagrange interpola-
tion on SSS to obtain the answer to the query.

The complexity of algorithms is presented in Table V.

D. Security Property

As mentioned in the adversarial setting in Section III-B, an
adversarial server wishes to learn the (entire/partial) input and
output data, while a DB owner may wish to know the data of
other DB owners. Hence, a secure algorithm must prevent an
adversary to learn the data (i) from the ciphertext representation
of the data, (ii) from query execution due to access-patterns (i.e.,
the adversary can learn the physical locations of tuples that are
accessed to answer the query), and (iii) from the size of the
output (i.e., the adversary can learn the number of tuples satisfy
the query). The attacks on a dataset based on access-patterns
and output-size are discussed in [13], [40]. In order to prevent
these attacks, our security properties are identical to the standard
security definition as in [11], [12], [28]. An algorithm is privacy-
preserving if it maintains DB owners’ privacy, data/computation
privacy from the servers, and performs identical operations
regardless of the inputs.

Privacy from servers requires that datasets of DB owners
must be hidden from the server, before/during/after any compu-
tation. To prevent frequency analysis, the protocol must ensure
that two or more occurrences of the same value in the dataset are
represented differently at the server. In the case of PSI/PSU, the
servers must not know if a value is common or not, or the number
of DB owners who have a particular value in the result set. In the
case of aggregation operations, the output of aggregation over
an attribute Ax corresponding to the attributes Ac involved in
PSI or PSU should not be revealed to servers. In the case of
maximum/median/minimum query, the servers must not learn
the maximum/minimum value or the identity of the DB owner
who possesses such values. The protocol must ensure that the
server’s behavior is identical for a particular type of query (e.g.,
PSI or PSU), thereby hiding access patterns and output sizes
to prevent the servers from learning anything from the query
execution.

DB owner privacy requires that the DB owners must not
gain any knowledge about other datasets except their own and
the final result of the computation. In the case of PSI/PSU, the
DB owners should only learn about the intersection/union set,
and they must not know how many DB owners do not have
a particular value in their datasets. In the case of aggregation
operations, the DB owners should only learn the output of the
aggregation operation, and not the individual values on which
the aggregation was performed.

Properties of verification: A verification method must be
oblivious and find any misbehavior of servers when comput-
ing a query. We follow the verification properties from [41]
that the verification method cannot be refuted by the majority
of the malicious servers and should not leak any additional
information.
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TABLE V
COMPLEXITIES OF THE ALGORITHMS

TABLE VI
FREQUENTLY USED NOTATIONS IN THE PAPER

IV. ASSUMPTIONS & PARAMETERS

Different entities in PRISM protocols are aware of the follow-
ing parameters to execute the desired task, and commonly used
parameters in this paper are presented in Table VI:

Parameters known to the initiator: The initiator knows all
parameters used in PRISM and distributes them to different
entities (only once) as they join in PRISM protocols. Note that
the initiator can select these parameters (such as η, δ) to be large
to support increasing DB owners over time without updating
parameters. Thus, when new DB owners join, the initiator simply
needs to inform DB owners/servers about the increase in the
number of DB owners in the system, but does not need to change
all parameters.

Additionally, the initiator does the following: (i) Selects a
polynomial (F(x) = am+1x

m+1 + amxm + . . .+ a1x+ a0,
where ai > 0) of degree more than m, where m is the number
of DB owners, and sends the polynomial to all DB owners.
This polynomial will be used during the maximum computation.
Importantly, this polynomial F(x) generates values at different
DB owners in an order-preserving manner, as will be clear

in Section VI-C, and the degree of the polynomial must be
more than m to prevent an entity, who has m different values
generated using this polynomial, to reconstruct the secret value
(a condition similar to SSS); and beyond m+ 1, the degree
of the polynomial does not impact the security, in this case.
(ii) Generates a permutation function PF i, and produces four
different permutation functions that satisfy Eq. (1):

PFs1  PFdb1 = PFs2  PFdb2 = PF i (1)

Here, the symbol represents composition of the permutations,
and these functions can be selected over a permutation group.
The initiator providesPFs1 andPFs2 to all servers andPFdb1

and PFdb2 to all DB owners.
Parameters known to the announcer: The announcer Sa

knows δ, a prime number used to define modulo addition for
an Abelian group (Section III-A). The announcer helps in max-
imum and median algorithms.

Parameters known to DB owners: All DB owners know the
following parameters: (i) m, i.e., the number of DB owners. (ii)
δ > m, (iii) η, where η is a prime number used to define modular
multiplication for a cyclic group (Section III-A). Note that DB
owners do not know the generator g of the cyclic group. (iv)
A common hash function. (v) The domain of the attribute Ac

on which they want to execute PSI/PSU. Note that knowing the
domain of the attribute Ac does not reveal that which of the DB
owner has a value of the domain or not. (Such an assumption
is also considered in prior work [37].) (vi) Two permutation
functions PFdb1 and PFdb2. (vii) The polynomial F(x) given
by the initiator. (viii) A permutation function PF , and the same
permutation function will also known to servers.

PSI, PSU, sum, average, count algorithms are based on the
assumptions 1-5. PSI verification, sum verification, count, and
count verification algorithms are based on the Assumptions 1-6.
Maximum, maximum verification, and median algorithms are
based on the Assumptions 1-8.

Further, we assume that any DB owner or the initiator provides
additive shares of m to servers for executing PSI, and the DB
owners have only positive integers to compute the maximum.
Since the current PSI maximum method uses modular operations
(as will be clear in Section VI-C), we cannot handle floating
point values directly. Nevertheless, we can find the maximum
for a large class of practical situations, where the precision of
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decimal is limited, say k > 0 digits by simply multiplying each
number by 10k and using the current PSI maximum algorithm.
For example, we can find the maximum over {0.5, 8.2, 8.02}
by computing the maximum over {50, 820, 802}. Designing a
more general solution that does not require limited precision is
non-trivial.

Parameters known to servers: Servers know the following pa-
rameters: (i) m, δ > m, the generator g of the cyclic (sub)group
of order δ and η′ = α× η and α > 1. Also, based on the group
theory, η − 1 should be divisible by δ. Note that servers do not
know η. (ii) A permutation function PF , and recall that the
same permutation function is also known to DB owners. (iii)
Two permutation functions PFs1 and PFs2. (iv) A common
pseudo-random number generator PRG that generates random
numbers between 1 and δ − 1. Note that PRG is unknown to
DB owners. PSI, sum, and average algorithms are based on the
Assumptions 1. Maximum, maximum verification, and median
algorithms are based on the assumptions 1,2. Count and its
verification are based on the Assumptions 1,3. PSU and its
verification are based on the Assumptions 1,4.

V. PRIVATE SET INTERSECTION (PSI) QUERY

This section, first, develops a method for finding PSI among
m > 2 different DB owners on an attributeAc (which is assumed
to exist at all DB owners. Later in Section VI-F, we develop a
method to execute PSI over multiple attributes and a method to
reduce the communication cost of PSI.

Before going into details of PSI method, we first describe our
proposed idea to compute PSI.

High-level idea: Each of m > 2 DB owners uses a publicly
known hash function to map distinct values of Ac attribute in
a table of cells at most |Dom(Ac)|, where |Dom(Ac)| refers
to the size of the domain of Ac. This ensures that if a value
aj ∈ Ac exists at any DB owner, it is mapped to the same cell
in the table by all DB owners. Then, all values of the table are
outsourced in the form of additive shares to two non-colluding
serversSφ,φ ∈ {1, 2}. These servers use an oblivious algorithm
to determine the common items/intersection and return a shared
output vector of the same length as the received shares from DB
owners. Finally, each DB owner adds the results to know the
final answer.

Construction: We create the following construction over the
elements of a group under addition and the elements of a cyclic
group under multiplication. Note that we can select any cyclic
group such that η > m.

(x+ y) mod δ = 0, (gx × gy) mod η = 1 (2)

Based on this construction, below, we explain PSI finding algo-
rithm:

STEP 1. DB owners: Each DB owner finds distinct values
in an attribute (Ac, which exists at all DB owners, as per our
assumption given in Section IV) and executes the hash function
on each value ai to create a tableχ = {x1, x2, . . . , xb} of length
b = |Dom(Ac)|. The hash function maps the value ai ∈ Ac to
one of the cells of χ, such that the cell of χ corresponding to the
value ai holds 1; otherwise 0. It is important that each cell must
contain only a single one corresponding to the unique value of
the attribute Ac, and note that if a value ai ∈ Ac exists at any

TABLE VII
DB1

TABLE VIII
DB2

TABLE IX
DB3

DB owner, then one corresponding to ai is placed at an identical
cell of χ at the DB owner. The table at DBj is denoted by χj .
Finally, DBj creates additive secret-shares of each value of χj

(i.e., additive secret-shares of either one or zero) and outsources
the φth, φ ∈ {1, 2}, share to the server Sφ. We use the notation
A(xi)

φ
j to refer to φth additive share of an ith element of χj

of DBj . Recall that before the computation starts, the initiator
informs the locations of servers to DB owners and vice versa
(Section III-B).

STEP 2. Servers: Each server Sφ (φ ∈ {1, 2}) holds the φth

additive share of the table χ (denoted by A(χ)φj ) of jth (1 ≤
j ≤ m) DB owners and executes Eq. (3):

output
Sφ
i ←g((⊕

j=m
j=1 A(xi)

φ
j )�A(m)φ) mod η′, (1 ≤ i ≤ b) (3)

where ⊕ and � show the modular addition and modular sub-
traction operations, respectively. We used the symbols⊕ and�
to distinguish them from the normal addition and subtraction.
Particularly, each server Sφ performs the following operations:
(i) modular addition (under δ) of the ith additive secret-shares
from all m DB owners, (ii) modular subtraction (under δ) of the
result of the previous step from the additive share of m (i.e.,
A(m)φ), (iii) exponentiation by g to the power the result of the
previous step and modulo by η′, and (iv) sends all the computed
b results to the m DB owners.

STEP 3. DB owners: From two servers, DB owners receive two
vectors, each of length b, and perform modular multiplication
(under η) of outputs outputS1i and outputS2i , where 1 ≤ i ≤ b,
i.e.,

fopi ← (outputS1i × outputS2i ) mod η (4)

This step results in an output array of b elements, which may
contain any value. However, if an ith item of χj exists at all DB
owners, then fopi must be one, since Sφ have added additive
shares of m ones at the ith element and subtracted from additive
share of m that results in (g0 mod η′) mod η = 1 at DB owner.
Please see the correctness argument below after the example.

Example V.A: Assume three DB owners: DB1, DB2, and
DB3; see Tables I, II, and III. For answering a query to find the
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common disease that is treated by each hospital, DB owners cre-
ate their tablesχ as shown in the first column of Tables VII, VIII,
and IX. For example, in Table VIII, 〈1, 1, 0〉 corresponds to
cancer, fever, and heart diseases, where 1 means that the dis-
ease is treated by the hospital. We select δ = 5, η = 11, and
η′ = 143. Hence, the Abelian group under modulo addition
contains {0, 1, 2, 3, 4}, and the cyclic (sub)group (with g = 3)
under modulo multiplication contains {1, 3, 4, 5, 9}. Assume
additive shares of m = 3 = (1 + 2) mod 5.

STEP 1: DB Owners. DB owners generate additive shares as
shown in the second and third columns of Tables VII, VIII,
and IX, and outsource all values of the second and third columns
to S1 and S2, respectively.

STEP 2: Servers. Server S1 will return the three values 27,
27, 81, by executing the following computation, to all three DB
owners:

3((((4+3+2) mod 5)−1) mod 5) mod 143 = 27

3((((2+4+3) mod 5)−1) mod 5) mod 143 = 27

3((((3+3+4) mod 5)−1) mod 5) mod 143 = 81

Server S2 will return values 9, 1, and 1 to all three DB owners:

3((((−3−2−1) mod 5)−2) mod 5) mod 143 = 9

3((((−2−3−3) mod 5)−2) mod 5) mod 143 = 1

3((((−2−3−3) mod 5)−2) mod 5) mod 143 = 1

STEP 3: DB owners. The DB owner obtains a vector 〈1, 5, 4〉,
by executing the following computation (see below). From the
vector 〈1, 5, 4〉, DB owners learn that cancer is a common disease
treated by all three hospitals. However, the DB owner does not
learn anything more than this; note that in the output vector,
the values 5 and 4 correspond to zero. For instance, DB1, i.e.,
hospital 1, cannot learn whether fever and heart diseases are
treated by hospital 2, 3, or not.

(27× 9) mod 11 = 1

(27× 1) mod 11 = 5

(81× 1) mod 11 = 4 �

Correctness: When we plug Eq. (3) into Eq. (4), we obtain:

fopi = (g(⊕
j=m
j=1 A(xi)

1
j )�A(m)1

× g(⊕
j=m
j=1 A(xi)

2
j )�A(m)2 mod η′) mod η

= (g(⊕
j=m
j=1 (xi)j−m) mod η′) mod η

We utilize the modular identity, i.e., (x mod αη) mod η =

x mod η; thus, fopi = g(
∑j=m

j=1 (xi)j−m) mod η. Only when∑j=m
j=1 (xi)j = m, the result of above expression is one. Oth-

erwise, it is a nonzero number.
Information leakage discussion: is provided in Appendix A,

available online.
PSI Result Verification: is provided in Appendix F.1, available

online.

VI. AGGREGATION OPERATION OVER PSI

PRISM supports both summary and exemplar aggregations.
Below, we describe how PRISM implements sum Section VI-A,
average Section VI-B, maximum Section VI-C, median Section
VI-D and count operations Section VI-E. Also, in our discussion
below, we will consider set-based operation PSI on a single
attribute Ac. Section VI-F will extend the discussions to support
PSI over on multiple attributes and over a large-size domain.

A. PSI Sum Query

A PSI sum query computes the sum of values over an at-
tribute corresponding to common items in another attribute; see
example given in Section II. This section develops a method for
computing PSI-sum query using both additive and multiplicative
shares. Specifically, we use additive shares to identify common
items over an attribute Ac, and then employ multiplicative
shares (SSS) to compute the sum of shares of an attribute Ax

corresponding to the common items in Ac.
STEP 1. DB owners: DBj creates their χj table over the

distinct values of Ac attribute by following STEP 1 of PSI;
see Section V. Here, χj = {〈xi1, xi2〉}, where 1 ≤ i ≤ b and
b = |Dom(Ac)|, i.e., the ith cell of χj contains a pair of values,
〈xi1, xi2〉, where (i) xi1 = 1, if a value ai ∈ Ac is mapped to
the ith cell, otherwise, 0; and (ii) xi2 contains the sum of values
of Ax attribute corresponding to ai; otherwise, 0. DBj creates
additive shares of xi1 (denoted by A(xi1)

φ
j , φ = {1, 2}) and

sends to two servers S1 and S2. Also, DBj creates SSS of xi2

(denoted by S(xi2)
φ
j , φ = {1, 2, 3}) and sends to three servers

S1, S2, and S3.
STEP 2. Servers: Servers S1 and S2 find common items using

additive shares by implementing Eq. (3) and send all computed
b results to all DB owners. Since the result is in additive shared
form, it cannot be multiplied to SSS. Thus, servers send the
output of PSI to one of the DB owners selected randomly and
wait to receive multiplicative shares corresponding to common
items. The reason of randomly selecting only one DB owner is
just to reduce the communication overhead of sending/receiving
additive/multiplicative shares, and it does not impact the secu-
rity. Note that all DB owners can receive the PSI outputs and
generate multiplicative shares.

STEP 3. DB owners: On receiving b values, the DB owner finds
the common items by executing Eq. (4) and generates a vector
of length b having 1 or 0 only, where 0 is obtained by replacing
random values of fop. Finally, the DB owner creates three SSS
of each of the b value, denoted by S(zi)

φ, φ = {1, 2, 3}, and
sends to three servers.

STEP 4. Servers: Servers Sφ,φ={1,2,3}, execute the following:

sum
Sφ
i ←

∑j=m
j=1 S(xi2)

φ
j × S(zi)

φ, 1 ≤ i ≤ b (5)

Each server multiplies S(zi)
φ by S(xi2)

φ
j of each DB owner,

adds the results, and sends them to all DB owners.
STEP 5. DB owners: From three servers, all DB owners receive

three vectors, each of length b, and perform Lagrange interpola-
tion on each ith value of the three vectors. Thus, the DB owner
knows two things: (i) the common item in Ac attribute, and (ii)
the sum of the value in Ax corresponding to the common items
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TABLE X
DB1 SHARES FOR PSI SUM

TABLE XI
DB2 SHARES FOR PSI SUM

TABLE XII
DB3 SHARES FOR PSI SUM

TABLE XIII
DB1 CREATING MULTIPLICATIVE SHARES OF PSI OUTPUTS

in Ac. Section VI-A1 will extend this method in which we will
reveal to DB owners only the sum of the values corresponding
to the common items, but not the common items.

Example VI-A: Consider the three DB owners:DB1,DB2, and
DB3; see Tables I, II, and III, and consider a query to find the sum
of the cost corresponding to the common disease that is treated
by each hospital. In this example, we select δ = 5, η = 11,
and η′ = 143. Hence, the Abelian group under modulo addition
contains {0, 1, 2, 3, 4}, and the cyclic (sub)group (with g = 3)
under modulo multiplication contains {1, 3, 4, 5, 9}. Assume
additive shares of m = 3 = (1 + 2) mod 5.

STEP 1. DB Owners: DB owners generate additive shares
corresponding to the diseases, as we did in Example V.1, and
shown in the second and third columns of Tables X, XI, and XII.
Also, DB owners find the cost group by diseases, as shown in the
fourth column of Tables X, XI, and XII. Then, DB owners select
polynomials of the same degree and create three multiplicative
shares of the cost, as shown in sixth, seventh, and eighth columns
of Tables X, XI, and XII. Additive shares and multiplicative
shares are outsourced to the servers.

STEP 2. Servers: Servers S1 and S2 compute PSI as we did
in STEP 2 of Example V.1 and send the output to one of the DB
owners, say DB1.

STEP 3: DB owner. DB1 finds PSI as we did in STEP 3 of
Example V.1, replaces random values (the output of STEP 3
computation in Example V.1 by zero), and creates multiplicative
of one and zero, as shown in Table XIII:

STEP 4. Servers: On receiving multiplicative shares of PSI
outputs fromDB1, servers execute the following computations.
S1 executes the following computation and returns 2808, 862,

2559 to all DB owners.

2× (301 + 102 + 1001) = 2808

2× (300 + 121 + 10) = 862

3× (302 + 50 + 501) = 2559

S2 executes the following computation and returns 4224,
2968, 5436 to all DB owners.

3× (302 + 104 + 1002) = 4224

4× (600 + 122 + 20) = 2968

6× (304 + 100 + 502) = 5436

S3 executes the following computation and returns 4224,
2968, 5436 to all DB owners.

4× (303 + 106 + 1003) = 5648

6× (900 + 123 + 30) = 6318

9× (306 + 150 + 503) = 8631

STEP 5. DB owner: DB owners perform Lagrange
interpolation over 〈2808, 4224, 5648〉, 〈862, 2968, 6318〉,
〈2559, 5436, 8631〉, and it results in values 1400, 0, 0, i.e., the
sum of the cost corresponding to the common disease, i.e.,
cancer, is 1400.

Note. Sum of values corresponding to common items: In sit-
uations where there are multiple common values (e.g., diseases
such as cancer and flu are common diseases in our example), the
DB owner may want to know the sum of cost corresponding to all
common items/disease. It means that the DB owner wish to learn
the sum of the cost corresponding to cancer and flu. However,
to do so, the DB owner need not know the cost of individual
diseases separately and add them up. Doing so will reveal the
cost of individual common items. In our approach, the servers
can directly add up the values corresponding to all common
items after executing the STEP 4 mentioned above and send the
final output to the DB owners. The DB owners will receive the
desired answer through interpolation under complete security
requirements. For instance, the DB owner will learn the sum of
the cost corresponding to cancer and flu. It is possible because
the cost is stored using multiplicative sharing techniques that are
additive homomorphic.

1) A Variant of PSI Sum: One variation of the PSI sum prob-
lem involves revealing only the sum of values in attributeAx that
correspond to common items, without disclosing the common
items themselves. For instance, if we want to determine the cost
of treatment for the common disease treated by all hospitals in
Tables I,II, and III, the output should be 1400, without the DB
owner learning that this value corresponds to cancer. Such a
problem has been motivated and considered in [39].

Our PSI sum method can be easily extended to support such
a query, as follows: In STEP 2 of Section VI-A, severs S1 and S2
perform a permutation function, sayPFs1 on the output of STEP

2 before sending them to one of the DB owners. In STEP 4, on
receiving the multiplicative shares from the DB owners, servers
first permute back the multiplicative shares and then execute the
computation given in STEP 4 of Section VI-A. Finally, before
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sending the output of STEP 4, servers perform a permutation
function, say PFs2. Thus, in STEP 5 of Section VI-A, after
executing Lagrange interpolation, DB owners only learn the sum
of values corresponding to the common items in Ac.

2) PSI Sum Information Leakage and Verification: Correct-
ness and information leakage of PSI Sum are provided in Ap-
pendix B, available online, and the PSI Sum correctness is given
in Appendix F.2, available online.

B. PSI Average Query

A PSI average query on cost column corresponding to the
common disease in Tables I, II, and III returns {Cancer, 280}.
PSI average query works in a similar way as PSI sum query. In
short,DBj createsχj = {〈xi1, xi2, xi3〉}, where 1 ≤ i ≤ b, b =
|Dom(Ac)|, and xi1, xi2 are identical to the values we created in
STEP 1 of PSI sum (Section VI-A). The new value xi3 contains
the number of tuples atDBj corresponding to xi1. For example,
in case of Table I, one of the values of χ1 will be {〈Cancer, 300,
2〉}, i.e., Table I has two tuples corresponding to Cancer and
cost 300. All values xi3 are outsourced in multiplicative share
form. Then, we follow STEPS 2 and 3 of PSI sum. In STEP 4, the
servers also multiply the received ith SSS values corresponding
to the common value to xi2, xi3 and add the values. Finally, in
STEP 5, DB owners interpolate vectors corresponding to all b
values of xi2, xi3 and find the average by dividing the values
appropriately.

Correctness: can be argued similar to PSI sum.
Information leakage: can be argued similar to PSI sum. Note

that here we reveal the total number of tuples and the sum of
values corresponding to the common values.

C. PSI Maximum Query

This section develops a method for finding the maximum
value in an attribute Ax corresponding to the common values
in Ac attribute; refer to Section II for PSI maximum example.
Here, our objective is to prevent the adversarial server from
learning: (i) the actual maximum values outsourced by each DB
owner, (ii) what is the maximum value among DB owners and
which DB owners have the maximum value. We allow all the DB
owners to know the maximum value and/or the identity of the
DB owner(s) having the maximum value. We use pick color to
highlight the part that is used to reveal the identity of DB owners
having maximum to distinguish which part of the algorithm can
be avoided based on the security requirements.

In this method, each DB owner uses the polynomial F(x)
given by the initiator; see Section IV to find how we created
F(x). Note that we use this polynomial to generate values at
different DB owners in an order-preserving manner by executing
the following STEP 3 and Eq. (6).

The method contains at most three rounds, where the first
round finds the common values in an attributeAc by using STEPs
1-3, the second round finds the maximum value in an attribute
Ax corresponding to common items in Ac using STEPs 4-5a, the
last round finds DB owners who have the maximum value using
STEPs 5b-7. Note that the third round is not always required, if
(i) we do not want to reveal the identity of the DB owner having

the maximum value, or (ii) values in Ax column across all DB
owners are unique.

STEP 1 at DB owner and STEP 2 at servers: These two steps are
identical to STEP 1 and STEP 2 of PSI query execution method
(given in Section V).

STEP 3. DB owner: On the received outputs (of STEP 2) from
servers, DB owners find the common item in the attribute Ac,
as in STEP 3 of PSI query execution method (Section V). Now,
to find the maximum value in the attribute Ax corresponding to
the common item in Ac, DB owners proceeds as follows:

For the purpose of simplicity, we assume that there is only one
common item, say yth item.DBi finds the maximum, sayMiy ,
in the attributeAx of their relation corresponding to the common
item y. Note that since we assume only one common element,
we refer to the maximum elementMiy byMi. DBi executes
Eq. (6) to produce values at DB owners in an order-preserving
manner:

vi ← F(Mi) + ri (6)

DBi implements the polynomialF() onMi and adds a random
number ri (selected in a range between 0 and Mm

i ), and it
produces a value vi. Finally, DBi creates additive shares of vi
(denoted by A(v)φi ) and sends them to servers Sφ, φ = {1, 2}.
Note that even if k ≥ 2 DB owners have the same maximum
valueMi, by this step, the value v will be different at those DB
owners, with a high probability, 1− 1

(Mi)(k−1)m
, (depending on

the range of ri). Also, if any two numbers Mi <Mj , then
F(Mi) + ri < F(Mj) will hold.

STEP 4. Servers: Each server Sφ executes the following:

inputSφ [i]← A(v)φi , 1≤ i≤m; outputSφ []← PF(inputSφ [])
Server Sφ collects additive shares from each DB owner and
places them in an array (denoted by inputSφ []), on which Sφ
executes the permutation function PF . Then, they send the out-
put the permutation function, i.e., outputSφ [], to the announcer
Sa that executes the following:

foutputSa [i]← outputS1 [i] + outputS2 [i], 1 ≤ i ≤ m (7)

max, index← FindMax(foutputSa []) (8)

Sa adds the ith outputs received from S1 and S2, and com-
pares all those numbers to find the maximum number (denoted
by max). Also, Sa produces the index position (denoted by
index) corresponding to the maximum number in foutputS3 [].
Finally, Sa creates additive secret-shares of max (denoted by
A(maxSφ), φ ∈ {1, 2}), as well as, of index (denoted by
A(index)Sφ ), and sends them to Sφ (φ ∈ {1, 2}) that forwards
such additive shares to DB owners. Note that if the protocol
does not require to reveal the identity of the DB owner having
the maximum value, Sa does not send additive shares of index.

STEP 5a. DB owner: Now, the DB owners’ task is to find the
maximum value and/or the identity of the DB owner who has
the maximum value. To do so, each DB owner performs:

max← A(max)S1 +A(max)S2 (9)

index← A(index)S1 +A(index)S2 , pos← RPF(index)
(10)
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The DB owner finds the identity of the DB owner having the
maximum value by adding the additive shares and by imple-
menting reverse permutation function RPF . Note that RPF
works since PF is known to DB owners and servers (see As-
sumptions given in Section IV). To find the maximum value, they
implement F(z) and F(z + 1) and evaluate F(z) ≤ max <
F(z + 1), where z ∈ {1, 2, . . .}.1 If this condition holds to be
true, then z is the maximum value, and if z =Mi, then the ith

DB owner knows that he/she holds the maximum value. Obvi-
ously, if the ith DB owner does not hold the maximum value,
thenMi < F(Mi) + ri < F(Mi + 1) ≤ F(z) ≤ max.

STEP 5b. DB owner: Note that by the end of STEP 5a, the DB
owners know the maximum value and the identity of the DB
owner having the same maximum value, due to pos. However, if
there are more than one DB owner having the maximum value,
the other DB owners cannot learn about it. The reason is: the
server Sa can find only the maximum value, while, recall that,
if more than one DB owners have the same maximum value,
say M, they produce a different value, due to using different
random numbers in STEP 3 Eq. (6). Thus, we need to execute
this step 5b to know all DB owners having the maximum value.

After comparing its maximum values against max, DBi
knows whether it possesses the maximum value or not. Depend-
ing on this, DBi generates a value αi = 0 or αi = 1, creates
additive shares of αi, and sends to Sφ, φ ∈ {1, 2}.

STEP 6. Servers: Server Sφ allocates the received additive
shares to a vector, denoted by fpos, and sends the vector fpos
to all DB owners, i.e., fposSφ [i]← A(α)

Sφ
i , 1 ≤ i ≤ m.

STEP 7. DB owner: Each DB owner adds the received additive
shares to obtain the vector fpos[].

fpos[i]← fposS1 [i] + fposS2 [i], 1 ≤ i ≤ m (11)

By fpos[], DB owners discover which DB owners have the
maximum value, since, recall that in STEP 5, DBi that satisfies
the condition (F(Mi) ≤ max < F(Mi + 1)) requests Sφ to
place additive share of 1 at fposSφ [i].

Example VI-C.1: Assume η = 5003. Refer to Tables I, II, and
III, and consider that all hospitals wish to find the maximum age
of a patient corresponding to the common disease and which
hospitals treat such patients. We assume that all hospitals know
cancer as the common disease.

In STEP 3, all hospitals, i.e., DB owners, find their maximum
values in the attribute Age corresponding to common disease
and implement F(x) = x4 + x3 + x2 + x+ 1, sent by the ini-
tiator.

F(6) = 1555 + 216 = 1771 = (5000− 3229) mod 5003

F(8) = 4681 + 1 = 4682 = (5500− 818) mod 5003

F(8) = 4681 + 319 = 5000 = (2500 + 2500) mod 5003

Further, they add random numbers (216, 1, 319) and create
additive shares, which are outsourced to S1 and S2. In STEP 4,
S1 holds 〈5000, 5500, 2500〉, permutes them, and sends to Sa.
S2 holds 〈−3229,−818, 2500〉, permutes them, and sends toSa.

1To reduce the computation cost, we can select number z similar to binary
search method.

Sa obtains 〈4682, 5000, 1771〉 by adding the received shares
fromS1,S2, and finds 5000 as the maximum value and ‘Hospital
2’ to which the value belongs. Finally, Sa creates additive
shares of 5000 = (4000 + 1000) mod 5003, additive shares of
the identity of the DB owner as 2 = (200− 198) mod 5003,
and sends to DB owners via S1, S2.

In STEP 5a, all hospitals will know the maximum value as
5000 (with random value added) and identity of the DB owner
as 2 on which they implement the reverse permutation function
to obtain the correct identity as ‘Hospital 3’. Then, ‘Hospital 1’
knows that they do not hold the maximum, sinceF(6) + 216 <
F(7) < 5000. ‘Hospital 2’ knows that they hold the maximum,
since F(8) < 5000 < F(9). Also, ‘Hospital 3’ knows that they
hold the maximum.

To know which hospitals have the maximum value, in STEP

5b, Hospitals 1, 2, 3’ create additive shares of 0, 1, 1, respec-
tively, as: 0 = (200− 200) mod 5003, 1 = (300− 299) mod
5003, and 1 = (200− 199) mod 5003, and send to S1 and
S2. Finally, in STEP 6, S1 and S2 send 〈200, 300, 200〉 and
〈−200,−299,−199〉 to all hospitals. In STEP 7, hospitals add
received shares, resulting in 〈0, 1, 1〉. It shows that ‘Hospitals 2,
3’ have the maximum value 8.

Correctness and information leakage discussion: is provided
in Appendix C, available online.

PSI Maximum Verification: Appendix F.4, available online,
provides a method to verify the maximum value.

D. PSI Median Query

A PSI median query over cost column corresponding to dis-
ease column over Tables I, II, and III returns {〈Cancer, 300〉}.
Note that here we first add the cost of treatment at each DB
owner. However, the approach can be extended to deal with
individual tuples. For solving PSI median, we extend the method
of finding maximum by executing all steps as specified in Section
VI-C with an additional process in STEP 2. Particularly, Sa in
STEP 2 of Section VI-C after adding shares, sorts them, and finds
the median value. If the number of DB owners is odd (even),
then Sa finds the middle value (two middle values) in the sorted
shares.

E. PSI Count Query

We propose an extension to PSI method (Section V) that only
reveals the count of common items among DB owners (i.e., the
cardinality of the common set), instead of revealing the common
items themselves. The approach involves using a permutation
functionPFs1known only to the serversSφ, to find the common
items over χ and permute the final output at the servers before
sending the vector (in additive share form) to DB owners. When
DB owners compute on the vector received from the servers to
determine the final output, the position of one in the vector does
not reveal the common items, while the count of ones reveals
the cardinality of the common items. The PSI count method
follows all the steps of PSI as described in Section V, with the
addition of the same permutation function execution by both
servers (in STEP 2 of Section V) before sending the output to the
DB owners. DB owners then perform the same computations as
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given in STEP 3 of Section V, and count the ones to obtain the
answer.

Correctness: Correctness of PSI count can be argued identi-
cally to the correctness of PSI method given in Section V. In
addition, since both servers use the same permutation function,
it will produce the correct answer at DB owner.

Information leakage discussion: We can argue information
leakage at servers and DB owners like Section V. Moreover, PSI
count method hides information about which item is common
or not in the attribute AC , among DB owners. Thus, DB owners
will only know the number of common items.

PSI Count Verification: is provided in Appendix F.3, available
online.

F. Extending PSI Over Multiple Attributes

In the previous sections, we explained PSI over a single
attribute (or a set). We can trivially extend it to multiple attributes
(or multisets). Particularly, such a query can be expressed in SQL
as follows:
SELECTAc,Ax FROM db1 INTERSECT . . . INTERSECT
SELECT Ac, Ax FROM dbm
Recall that in PSI finding method Section V,DBj sends addi-

tive shares of a tableχj of length b = |Dom(Ac)|, whereAc was
the attributes on which we executed PSI. Now, we can extend this
method by creating a table χj of length b = |Πi>0Dom(Ai)|,
where Ai are attributes on which we want to execute PSI. How-
ever, as the domain size and the number of attributes increase,
such a method incurs the communication overhead. Thus, to
apply the PSI method over a large (and real) domain size, as well
as, to reduce the communication overhead, we provide a method,
named as bucketization-based PSI. This method is provided in
detail in Appendix E, available online.

VII. PRIVATE SET UNION (PSU) QUERY

This section develops a method for finding union (denoted by
PSU) among m > 1 different DB owners over an attribute Ac

(which is assumed to exist at all DB owners.
High-level idea: Likewise PSI method (as presented in

Section V), each DB owner uses a publicly known hash function
to map distinct values of Ac attribute in a table of cells at most
|Dom(Ac)|, where |Dom(Ac)| refers to the size of the domain
of Ac, and outsources each element of the table in additive
share form to two servers Sφ, φ ∈ {1, 2}. Sφ computes the
union obliviously, thereby DB owners will receive a vector of
length |Dom(Ac)| having either 0 or 1 of additive shared form.
After adding the share for an ith element, DB owners only know
whether the element is in the union or not; nothing else.

STEP 1. DB owner: This step is identical to STEP 1 of PSI
(Section V).

STEP 2. Server: Each server Sφ (φ ∈ {1, 2}) holds the φth

additive share of the table χ of m DB owners and executes the
following operation:

rand[]← PRG(seed)
output

Sφ
i ← ((

∑j=m
j=1 A(xi)

φ
j )× rand[i]) mod δ (12)

TABLE XIV
DB1

TABLE XV
DB2

TABLE XVI
DB3

Each server Sφ performs the following operations: (i) generates
b pseudorandom numbers that are between 1 and δ − 1, (ii)
performs (arithmetic) addition of the ith additive secret-shares
from all DB owners, (iii) multiplies the resultant of the previous
step with ith pseudorandom number and then takes modulo, and
(iv) sends b results to all DB owners.

STEP 3. DB owner: On receiving two vectors, each of length
b, from two servers, DB owners execute modular addition over
ith shares of both vectors to know the final answer Eq. (13). It
results in either zero or any random number, where zero shows
that the ith element of χ is not present at any DB owner, while
a random number shows the ith element of χ is present at one
of the DB owners.

fopi ← (outputS1i + outputS2i ) mod δ (13)

Example: Assume three DB owners: DB1, DB2, and DB3;
see Tables I, II, and III. Also, assume that the domain of diseases
contain cancer, fever, heart, and kidney diseases. Three hospitals
wish to know the union of diseases treated by all hospitals, i.e.,
the name of diseases treated by any hospital. We select δ = 5.

STEP 1. DB Owners: DB owners create their table χ as shown
in the first column of Tables XIV, XV, and XVI. For example,
〈1, 1, 0, 0〉 in Tables XV corresponds to cancer, fever, heart, and
and kidney diseases, where 1 means that the disease is treated by
the hospital. After that, DB owners generate additive shares as
shown in the second and third columns of Tables XIV, XV,
and XVI, and outsource all values of the second and third
columns to S1 and S2, respectively.

STEP 2. Servers: Assume the servers generate the following
four pseudorandom numbers: 〈2, 3, 1, 4〉. The server S1 will
return the four values 3, 2, 0, 4 by executing the following
computation, to all three DB owners:

4 + 3 + 2 = 9× 2 = 18 mod 5 = 3

2 + 4 + 3 = 9× 3 = 27 mod 5 = 2
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TABLE XVII
TABLE STRUCTURE CREATED BY PRISM

3 + 3 + 4 = 10× 1 = 10 mod 5 = 0

1 + 2 + 3 = 6× 4 = 24 mod 5 = 4

Server S2 will return values 3, 1, 2, and 1 to all three DB owners:

− 3− 2− 1 = −6× 2 = −12 mod 5 = 3

− 2− 3− 3 = −8× 2 = −24 mod 5 = 1

− 2− 3− 3 = −8× 2 = −8 mod 5 = 2

− 1− 2− 3 = −6× 2 = −24 mod 5 = 1

STEP 3. DB owners: The DB owner obtains a vector 〈1, 3, 2, 0〉,
by executing the following computation (see below). From the
vector 〈1, 3, 2, 0〉, DB owners learn that cancer, fever, and heart
are the disease treated by at least one of the hospitals. However,
the DB owner does not learn anything more than this; i.e., they
do not learn whether any disease treated by all hospitals or any
disease treated by at least two hospitals.

3 + 3 = 6 mod 5 = 1

2 + 1 = 3 mod 5 = 3

0 + 2 = 2 mod 5 = 2

4 + 1 = 5 mod 5 = 0

Correctness and information leakage discussion: is provided
in Appendix D, available online.

VIII. EXPERIMENTAL EVALUATION

This section evaluates the scalability of PRISM on different-
sized datasets and a different number of DB owners. Also, we
evaluate the verification overhead and compare it against other
MPC-based systems. We used a 16 GB RAM machine with 4
cores for each of the DB owners and three AWS servers of 32 GB
RAM, 3.5 GHz Intel Xeon CPU with 16 cores to store shares.
The communication between DB owners and servers were done
using the scp protocol, and η, δ were 227, 113, respectively.

A. PRISM Evaluation

Dataset generation: We used five columns (Orderkey (OK),
Partkey (PK), Linenumber (LN), Suppkey(SK), and Discount
(DT)) of LineItem table of TPC-H benchmark. We experimented
with domain sizes (i.e., the number of values) of 5 M and 20 M
for the OK column on which we executed PSI and PSU. Further,
we selected at most 50 DB owners. To the best of our knowledge,
this is the first such experiment of multi-owner large datasets.
OK column is used for PSI/PSU, and other columns were used
for aggregation operations. To generate secret-shared dataset,
each DB owner maintained a LineItem table containing at most
5 M (20 M) OK values. To outsource the database, each DB
owner did the following:

1) Created a table of 11 columns, as shown in Table XVII,
in which the first five columns contain the secret-shared
data of LineItem table, the next five columns contain the
verification data for the first five columns, and the last
column (aOK) was used for computing the average. All
verification column names are prefixed with the character
‘v.’

2) First column of Table XVII was created over OK column
of LineItem table (by following STEP 1 of Section V) for
executing PSI/PSU over OK. vOK column was created to
verify PSI results (by following STEP 1 of Section F.1).

3) Columns PK and vPK were created using the
following command: select OK, sum(PK) from
LineItem group by OK. Other columns 〈LN, SK,
DT, vLN, vSK, vDT〉 were created by using similar SQL
commands.

4) Columns aOK was created using the following command:
select count(*) from LineItem group by
OK.

5) Finally, permute all values of verification columns and
create additive shares of 〈OK and vOK〉, as well as,
multiplicative shares of all remaining columns.

Share generation time: The time to generate two additive
shares and three multiplicative shares of the respective first five
columns of Table XVII in the case of 5 M (or 20 M) OK domain
size was 121 s (or 548 s). Furthermore, the time for creating each
additional column for verification took 20 s (or 90 s) in the case
of 5 M (or 20 M) domain values.

Exp 1. PRISM performance on multi-threaded implementation
at AWS: Since identical computations are executed on each
row of the table, we exploit multiple CPU cores by writing a
parallel implementation of PRISM. The parallel implementation
divides rows into multiple blocks with each thread processing
a single block. We increased the number of threads from 1 to
5; see Fig. 2, while fixing DB owners to 10. Increasing threads
more than 5 did not provide speed-up, since reading/writing of
data quickly becomes the bottleneck as the number of threads
increase. Observe that the data fetch time from the database
remains (almost) identical; see Fig. 2.

PSI and PSU queries: Fig. 2 shows the time taken by PSI/PSU
over the OK column. Observe that as the number of values in
OK column increases (from 5 M to 20 M), the time increases
(almost) linearly from 4 s to 18 s, respectively.

Aggregation queries over PSI: We executed PSI count, aver-
age, sum, maximum, and median queries; see Fig. 2. Observe
that the processing time of PSI count is almost the same as
that of PSI, since it involves only one round of computation
in which we permute the output of PSI. In contrast, other
aggregation operations (sum, average, maximum, and median)
incur almost twice processing cost at servers, since they involve
computing PSI over OK column in the first round and, then,
computing aggregation in the second round. For this experiment,

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 31,2024 at 02:19:10 UTC from IEEE Xplore.  Restrictions apply. 



1368 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 3, MAY/JUNE 2024

Fig. 2. Exp 1. (a)–(b) PRISM performance on multi-threaded implementation at AWS. (c)–(d) Exp 2. PRISM dealing with multiple DB owners.

TABLE XVIII
EXP 1. MULTI-COLUMN AGGREGATION QUERY PERFORMANCE (TIME IN

SECONDS)

we computed sum only over DT column and maximum/median
over PK column. Table XVIII shows the impact of comput-
ing sum and maximum over multiple attributes (from 1 to 4).
As we increase the number of attributes, the computation of
respective aggregation operation also increases, due to addi-
tional addition/multiplication/modulo operations on additional
attributes.

Exp 2. Impact of the number of DB owners: Since we devel-
oped PRISM to deal with multiple DB owners, we investigated the
impact of DB owners by selecting 10, 20, 30, 40, 50 DB owners,
for two different domain sizes of OK column. Fig. 2 shows the
server processing time for PSI, PSU, and aggregation over PSI.
Note that as the number of DB owners increases, the computation
time at the server increases linearly, due to linearly increasing
number of addition/multiplication/modulo operations; e.g., on
5 M OK values, PSI processing took 4.2 s, 8.6 s, 12.5 s, 16.2 s,
and 20 s in the case of 10, 20, 30, 40, 50 DB owners.

Exp 3. Impact of communication cost: PRISM protocols in-
volve at most two rounds, where servers send data of size equal to
the domain size in the first and second rounds of query execution.
Thus, it is required to measure the impact of communication
cost, since it may affect the overall performance. Among the
proposed protocols, the maximum amount of data flows for
maximum/median queries, due to first receiving the answers
of PSI, then additive share transmission from each DB owner
to a server, and finally, receiving the answer of the maximum
query from a server to DB owners. Here, the overall data was
transmitted of size 60 MB (240 MB) in the case of 5 M (20 M)
OK values and took 1.2 s (4.8 s), 0.6 s (2.4 s), 0.1 s (0.4 s)
on slow (50 MB/s), medium (100 MB/s), and fast (500 MB/s)
speed of data transmission. To measure the communication cost,
we simulated network cost by finding appropriate delays in the
transmission, where delay was determined by dividing data size
by the network speed.

Additional Experiments: On the use of bucketization-based
PSI and result verification are provided in Appendix G, available
online.

B. Comparing With Other Works

We compare PRISM against the state-of-the-art cloud-based
industrial MPC-based systems: Galois Inc.’s Jana [4], since it
provides the identical security guarantees at servers as PRISM.
To evaluate Jana, we inserted two LineItem tables (each of 1 M
rows) having 〈OK, PK, LN, SK, DT〉 columns and executed join
on OK column. However, the join execution took more than 1 h
to complete.

[1], [2], [42], [43], [44], [53], [63] provide cloud-based
PSI/PSU/aggregation techniques/systems. We could not exper-
imentally compare PRISM against such systems, since none of
them is not open source.2 Thus, in Table XIX, we report exper-
imental results from those papers, just for intuition purposes.
With the exception of [42], none of the techniques supports
large-sized dataset, has quadratic/exponential complexity or
uses expensive cryptographic techniques [63]. While [42] scales
better, it does not support aggregation and, moreover, reveals
which item is in the intersection set. For a fair comparison, we
report PRISM results only for two DB owners in Table XIX, since
other papers do not provide experimental results for more than
two DB owners. Recall that in our experiments (Fig. 2(c)), PRISM

supports 50 DB owners and takes at most ≈41 seconds on 5 M
values. Further note that, in the case of 1B values and two DB
owners, PRISM takes≈ 7.3mins, unlike [42] that took≈10mins.

There are several non-cloud-based PSI approaches. However,
such approaches cannot be directly compared against PRISM,
due to a different model used (in which DB owners communicate
amongst themselves and do not outsource data to the cloud)
and/or different security properties. Just to put some numbers in
this context, recent work [48] took 304 s in the case of 14 DB
owners each with 1 M values, and [39] took at least ≈400 s for
PSI sum on 100 K values.

Comparison between PRISM and OBSCURE: We compare
PRISM and secret-sharing-based OBSCURE [33] in Appendix H,
available online.

Comparison with other PSI/PSU finding approaches: A sur-
vey of PSI protocols may be found in [58]. Existing PSI
protocols are based on homomorphic encryption [14], poly-
nomial evaluation [27], a special encryption technique for
comparing value [51], garbled-circuit techniques [37], hash-
ing [26], [59], [67], hashing and oblivious pseudorandom

2None of these techniques have open sources implementations, except [5].
We installed [5] that works for a very small data and incurs runtime errors. We
have reported this issue to the author as well.
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TABLE XIX
COMPARISON OF EXISTING CLOUD-BASED TECHNIQUES AGAINST PRISM

functions (OPRF) [47], a variant of OPRF known as pro-
grammable OPRF [48] Bloom-filter (for PSI and union find-
ing) [55], oblivious Bloom-filter [23], circuit evaluation (e.g.,
GMW [31] and [3]), and oblivious transfer [58], [61]. Poly-
nomial evaluation-based approach [27] can also be extended
the model to deal with multiple DB owners. However, these
techniques may suffer from one or more of the following
problems: multiple communication rounds, lack of support for
multiple DB owners [17], and/or incapable to execute com-
putation like PSI-count or sum queries (except [68] that uses
a trusted third party and [39] that is based on homomorphic
encryption).

Kamara et al. [42] proposed an encryption-based approach
that deals with a large-size dataset, but either reveals the size of
the intersection to the adversary or defer the intersection finding
to only DB owners. [1], [42] provided watermark-based verifi-
cation approach for encrypted datasets, where DB owners insert
negotiated values (among them) in the real dataset. [21] proposed
Diffie Hellman assumption-based PSI cardinality finding for two
DB owners under malicious server. [20] also proposed public-
key encryption-based PSI for malicious adversary, where one
of the two DB owners can behave maliciously during protocol
execution. There are other works under a similar model that
consider one of the DB owners out of at most three DB owners
is malicious [29], [49], [62], [64] and provide algorithms for
PSI. Such a model is extended for multiple DB owners using
Bloom filter in [72] and using homomorphic encryption in [36],
[44], [45]. [50], [56] proposed information-theoretically secure
PSI for multiple DB owners, who communicate with each other
during the computation. [50], [56] require more than one round
to obtain the answer. However, all such techniques either do not
support multiple DB owners [17], limited to PSI, or cannot be
deployed at the cloud (except [44]).

Only techniques given in [1], [2], [4], [5], [7], [42], [43],
[44], [53], [63], [68] are developed for the cloud settings; as we
compared in Table XIX.

In contrast, PRISM is applicable to the cloud setting, deals
with a malicious adversarial cloud, provides result verification
methods, supports different aggregation operations, and requires
at most one round between the server and DB owner to answer

PSI, PSU, count. PRISM requires at most two rounds in answering
PSI sum, maximum, and median queries.

Comparison with maximum/minimum finding approaches:
Since the classic Millionaire’s problem (for finding the maxi-
mum number between two DB owners) has been proposed by
Yao [71], many schemes about comparison/maximum finding
have been proposed. [22] and [57] proposed bit-wise less than
operation that may be used to find the maximum number.
Sepia [10] modified the approach of [57] for fining less than
operation. [66] extended the approach of [25] and used Yao’s
approach [71] for finding top-k items. Similarly, [9] proposed
top-k items finding approach based on [66]. Several SMC
sorting algorithms have been proposed (e.g. [8], [35]), such
algorithms may also be used to find the maximum number. [19]
proposed a technique for confirming the maximum number, if
the maximum number is known; however, [19] cannot compute
the maximum/minimum. All such techniques show limitations:
many communication rounds, restricted to two DB owners,
quadratic computation cost at servers, not dealing with malicious
adversaries in the cloud setting, and/or no support for result
verification.

IX. CONCLUSION

This paper describes PRISM based on secret-sharing that al-
lows multiple DB owners to outsource data to (a majority of)
non-colluding servers that can behave like honest-but-curious
servers and malicious servers in terms of the computation that
they perform. It exploits the additive and multiplicative homo-
morphic property of secret-sharing techniques to implement
both set operations and aggregation functions efficiently. Ex-
perimental results show PRISM scales to both a large number of
DB owners and to large datasets, compared to existing systems.
Future directions include dealing with: (i) multiple attributes
more efficiently than bucketization, (ii) dealing with malicious
DB owners, and (iii) a broader set of SQL queries.
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