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Abstract—Despite extensive research, secure outsourcing re-
mains an open challenge. This tutorial focuses on recent advances
in secure cloud-based data outsourcing based on cryptographic
(encryption, secret-sharing, and multi-party computation (MPC))
and hardware-based approaches. We highlight the strengths and
weaknesses of state-of-the-art techniques, and conclude that,
while no single approach is likely to emerge as a silver bullet.
Thus, the key is to merge different hardware and software
techniques to work in conjunction using partitioned computing
wherein a computation is split across different cryptographic
techniques carefully, so as not to compromise security. We
highlight some recent work in that direction.

I. INTRODUCTION

With cloud emerging as the dominant computing plat-

form, secure data outsourcing, originally described in [1],

has remained a significant data management challenge. Initial

work on secure computing focused extensively on encryp-

tion techniques to allow operations to execute on the cloud.

Order-preserving encryption (OPE) [2], deterministic encryp-

tion (DET) [3], non-deterministic encryption (NDET) [4],

homomorphic encryption [5], bucketization [1], searchable

encryption [6], and searchable symmetric encryption [7] are

example of encryption techniques. These techniques have re-

sulted in several secure data processing systems. CryptDB [8],

Monomi [9], CorrectDB [10], ZeroDB [11], and MrCrypt [12]

are encryption-based systems. Microsoft Always Encrypted,

Oracle 12c, Amazon Aurora [13], and MariaDB [14] are

industrial secure encrypted databases. Some prior work ex-

plored specialized hardware, e.g., FPGA, for implementing a

secure execution environment with the objective that the secure

hardware acts as the data owner’s agent in an untrusted cloud

(and can hence decrypt and compute on plaintext data). Such

systems include TrustedDB [15] and Cipherbase [16]. Several

tutorials have considered encryption-based techniques and pre-

sented in VLDB, SIGMOD, and ICDE. In VLDB 2007 [17],

the tutorial focused on result verification and data confidential-

ity at the cloud. In ICDE 2013 [18] and SIGMOD 2014 [19],

the tutorials focused on encryption techniques and an overview

of Intel Software Guard Extensions (SGX) [20]. In ICDE

2013 [21], the tutorial focused on encrypted data processing

and access-pattern-hiding techniques. In ICDE 2018 [22], the

tutorial focused on ORAM-based data processing.
Over the decade, significant new directions of research in

secure data outsourcing have emerged as a consequence of

the changing software and hardware landscape. Academia and

industries have started focusing on information-theoretically
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secure techniques that are unconditionally secure and indepen-

dent of adversary’s computational capabilities, and are, thus,

quantum-safe. Encryption-based techniques, which form the

bulk of the work on secure data outsourcing, are, in contrast,

not secure against computationally powerful adversaries, as

well as, not quantum-safe.1

Shamir’s secret-sharing (SSS) [25] is a well-known

information-theoretically secure protocol. Secret-sharing

mechanisms also have applications in other areas such as

Byzantine agreement, secure multiparty computations (MPC),

and threshold cryptography, as discussed in [26]. Recently,

several new types of secret-sharing techniques, prototypes,

and systems have been evolved; for example, distributed point

function [27], function secret-sharing [28], accumulating-

automata [29], [30], OBSCURE [31], SMCQL [32],

Conclave [33], Splinter [34], Pulsar [35], Jana [36],

and others [37]–[39]. However, such solutions either do not

support general SQL queries, overburden the database (DB)

owner (by fully participating in a query execution), or reveal

the identity of the qualified tuples (i.e., access-patterns).

Another major mainstream direction of work is exploiting

secure hardware for building secure databases. This is a result

of the emergence of secure enclaves as exemplified by Intel

SGX [20], which is now commodity hardware. SGX allows us

to create a small trusted execution environment that is isolated

and protected from the rest of the system. Systems such as

Opaque [40], EnclaveDB [41], StealthDB [42], M2R [43],

and VC3 [44] are build using SGX. However, these secure

hardware-based systems still suffer from several side-channel

attacks, such as cache-line [45]–[47], branch shadow [48],

and others [49]–[51]. Work is ongoing in developing secure

hardware that do not suffer from such attacks [52].

Despite extensive research on cryptographic techniques and

secure hardware, today, there is no single secure system that

can provide a completely trusted environment at the cloud

while supporting most types of SQL queries. In fact, it is

unlikely that such a fully secure approach will emerge anytime

soon that fully addresses a general solution to secure data

outsourcing. We maintain that practically secure solutions will

need to interoperate across different systems/cryptographic

solutions storing data in systems offering security properties.

For instance, if data can be classified as sensitive and non-

sensitive, non-sensitive data could be stored in clear text while

sensitive data is stored encrypted. However, recent work has

identified several challenges in supporting such partitioned
1Google, with sufficient computational capabilities, broke SHA-1 [23]. Also, Google

showed a quantum processor can solve a computation in few minutes, while the same

computation should take more than 10,000 years on the current supercomputer [24].
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computing when different cryptographic techniques are used

in conjunction [53], [54]. Several recent techniques have

explored such challenges that arise in partitioned computing,

such as HybrEx [55], Sedic [56], Prometheus [57], Tagged-

MapReduce [58], SEMROD [59], and [54], [60].

Tutorial outline. To set the background, the tutorial starts

by describing existing encryption-based approaches and high-

lighting their limitations in terms of security and performance.

We discuss, briefly, new searchable encryption techniques,

such as PB-Tree [61], IB-Tree [62], and Seabed [63]. We,

then, focus on secret-sharing, MPC, and secure hardware (Intel

SGX)-based data processing techniques and systems built

using those techniques. We observe that while mechanisms

based on secret-sharing [25] are potentially more scalable,

splitting data amongst multiple non-colluding clouds (an as-

sumption that is not valid in a general setting) incurs signifi-

cant communication overheads and can only support a limited

set of selection and aggregation queries efficiently. Then, we

show that the current SGX architectures suffer from side-

channel attacks, due to which they are not secure as they are

assumed to be. Also, we show that the current cryptographic-

or SGX-based solutions cannot handle large-sized datasets,

and hence, we discuss data-partitioning-based approaches that

work on systems supporting different cryptographic techniques

to securely inter-operate between them.

II. CRYPTOGRAPHIC SECURE DATA PROCESSING

Adversarial and security models for the Cloud. Cryp-

tographic techniques are designed to deal with different

types of adversarial public clouds, namely honest-but-curious

(HBC) [64] and malicious clouds. An HBC adversarial cloud

– which is considered widely in many cryptographic algo-

rithms [1], [64]–[66] – stores an outsourced dataset without

tampering, correctly computes assigned tasks, and returns

answers; however, it may exploit side knowledge (e.g., query

execution, background knowledge, and the output size) to

gain as much information as possible about the sensitive data.

A malicious adversary may deviate from the algorithm and

may execute a task that he/she wishes (e.g., delete tuples

from the relation). To ensure security in HBC and malicious

adversarial models, IND-CKA and IND-CKA2 [7] are well-

known security properties, respectively. Further, to deal with

securely updating and inserting data, forward and backward

security properties were introduced. In this tutorial, we discuss

different adversarial models and security properties.

A. Secret-Sharing-based Data Outsourcing
Secret-Sharing was invented independently by Adi

Shamir [25] and George Blakley [67] in 1979. In using

secret-sharing, the database (DB) owner divides a secret value

into c different fragments, called shares, and sends each share

to a set of c non-communicating participants/servers. These

servers cannot know the secret value until they collect c′ < c
shares. Note that c′ ≤ c, where c is often taken to be larger

than c′ to tolerate malicious adversaries that may modify

the value of their shares. We discuss additional assumptions

about the adversarial model when using secret-sharing,

e.g., the adversary cannot collude with all (or possibly

the majority of) the servers. Also, the adversary cannot

eavesdrop on a majority of communication channels between

the DB owner and the servers. Note that if the adversary

could either collude with or successfully eavesdrop on the

communication channels between the majority of servers and

the DB owner, the secret-sharing technique will not apply.

Order-preserving secret-sharing (OP-SS), introduced in [37],

maintains the order of the values in secret-shares too. Due

to maintaining the ordering of values, finding records with

maximum/minimum values using OP-SS is trivial, while

revealing ordering information to the adversary.

In 2006, Emekçi et al. [37] introduced the first work for

data outsourcing using SSS and OP-SS for executing sum,

maximum, and minimum queries. Another paper by Emekçi

et al. [38] using OP-SS for aggregation queries requires the

DB owner to retain each polynomial, which was used to create

database shares. Like [38], [39] proposed a similar approach.

[68] proposed SSS-based sum and average queries; however,

they require the DB owner to retain tuple-ids of qualifying

tuples. [29] introduced a novel approach for searching over the

secret-shared data without taking help from the DB owner. [30]

used the string-matching operation over the shares at the

server by applying a MapReduce job. In short, these solutions

offer a limited form of selection or aggregation queries, but

overburden the DB owner (by storing enough data related

to polynomials and fully participating in a query execution),

are insecure due to OP-SS, or reveal access-patterns. Recent

work, OBSCURE [31] eliminates all such limitations and

provides a fully secure and efficient solution for implementing

aggregation queries with selections. OBSCURE exploits OP-SS

– while OP-SS, in itself, is not secure (it is prone to back-

ground knowledge attacks, for instance). The way OBSCURE

cleverly uses OP-SS, it prevents such attacks by appropriately

partitioning data, while still being able to exploit OP-SS for

efficiency. SMCQL [32] and Conclave [33] are two systems

that allow executing SQL queries among different DB owners,

while pushing most parts of the computation in cleartext.

B. Secure Processor-based Data Outsourcing
Intel SGX. Recent versions of Intel CPUs introduced SGX, a

collection of microarchitectural mechanisms aimed to protect

third-party cloud applications from the software stack of an

untrusted system. SGX allows us to create a small trusted

execution environment that is isolated and protected from the

rest of the system. For example, in the cloud, SGX protects

the computation from the operating system controlled by

the tenant, but vulnerable to numerous applications, system-

level attacks, and the hypervisor controlled by the cloud. In

addition to protecting against software attacks, SGX provides

encryption of enclave’s memory having code and data and

integrity is protected by the CPU, when the data leaves the last

level of the caching hierarchy. This protects SGX applications

from hardware attacks like memory snooping. While running

on the servers controlled by the cloud, from a trust point of

view, SGX enclaves are effectively controlled by the client.
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Shortcoming of the existing SGX architecture. Unfortu-

nately, existing implementations of SGX are prone to a range

of side-channel attacks that exploit one of the microarchitec-

tural components of the CPU, e.g., branch target buffers [48],

[51], pattern-history table [69], caches [45]–[47], [49], [50],

DRAM row buffer [70], page-tables [70], [71], page-fault

exception handlers [72], [73], and speculative execution ca-

pabilities [74] to exfiltrate sensitive data and sometimes the

entire memory of the enclave [74]. Page-fault attacks rely

on the operating system that is under control of the attacker

to exfiltrate sensitive data from the enclave by triggering

page-faults and tracking enclave’s memory accesses at the

granularity of memory pages [72]. Branch shadowing attacks

allow reconstructing control flow inside the enclave, and

hence, secret data by monitoring all taken branches through

a side-channel in the branch prediction unit [48]. Cache-

based side-channel attacks allow attackers to trace all memory

accesses within the enclave [45], [47]. Foreshadow [74] and

Meltdown-type attacks on SGX allow complete access to

enclave’s memory and registers. Surprisingly, the side-channel

attacks allow an attacker to reconstruct a significant fraction

of the sensitive dataset, often gaining complete access to it in

cleartext. To illustrate the power of side-channel attacks, we

discuss several recent case studies that extract cryptographic

keys, graphical images, and sensitive genomic data from the

enclave in a practical and realistic scenario [45], [47].

Data Processing using SGX. Several recent systems emerged

to provide secure data processing in the SGX environment. We

provide a historical perspective on the problem starting with

TrustedDB [15] and Cipherbase [16], the systems that were

first to use secure hardware and initiated the field of secure

hardware-based data processing. We then discuss recent sys-

tems, such as Opaque [40], EnclaveDB [41], StealthDB [42],

M2R [43], and VC3 [44], that are built to leverage SGX.

We provide an overview of types of queries these systems

support, and discuss their advantages and limitations, and

whether they provide practical security in the face of powerful

side-channel attacks. We then discuss an ongoing micro-

architectural work [52], [75] aimed to address side-channel

attacks in the next generation of chips, and possible limitations

of hardware approaches. Finally, we provide an overview of

possible system-level defenses and algorithmic approaches,

providing a secure environment with SGX.

C. Data Partitioning-based Outsourcing
Existing secure techniques do not scale to large-sized

datasets. For example, on TPC-H LineItem table, executing a

simple selection query took 1051 seconds on 1M rows using

secret-sharing-based Jana [36] and 89 seconds using SGX-

based Opaque [40] on 6M rows [54]. Partitioned computing

deals with data partitioning into sensitive and non-sensitive

data and, potentially, provides significant benefits by (i) avoid-

ing (expensive) cryptographic operations on non-sensitive data,

and, (ii) allowing query processing on non-sensitive data to

exploit indices. Such indices (that cannot be easily supported

alongside encryption-based mechanisms in a non-interactive

setting) are a key mechanism for efficient query processing

in traditional database systems. Partitioned computing over

sensitive/non-sensitive data has been considered, especially, in

hybrid clouds (e.g., HybrEx [55], Sedic [56], Prometheus [57],

Tagged-MapReduce [58], SEMROD [59], and [60]), where

sensitive data stays at a private cloud and only cleartext non-

sensitive data stays at a public cloud. However, [55]–[60] do

not generalize to partitioned computing in the public cloud

setting (where sensitive data is stored cryptographically secure

and non-sensitive data resides in cleartext). Recent work [54]

generalizes the partitioned computing approach at the cloud.

We discuss a new security challenge due to simultaneous

execution of queries on the encrypted (sensitive) dataset and on

the plaintext (non-sensitive) datasets, and then, show the need

to new security definition, called partitioned data security.

We highlight the importance of partitioned computation at the

cloud by illustrating selection query execution.

III. GOAL OF THE TUTORIAL

Outcome, intended audience, and duration. This tutorial

provides a survey on data security and privacy by intro-

ducing the state-of-the-art results from the security litera-

ture (especially, secret-sharing-, secure hardware-, and data

partitioning-based techniques) that are particularly relevant

for databases. Researchers, students, developers, practitioners

interested in data security and privacy should be benefited. We

cover content for different audiences, as: 10% beginner, 40%

intermediate, 50% advanced. The duration will be 3 hours.

Open problems. We show that the existing data outsourcing

techniques and systems are not enough, if we wish systems

that simultaneously (i) are efficient and general enough (i.e.,

support significant parts of SQL) to be practical, and (ii)
offer provable security from the user’s perspective. Below, we

provide open questions in different directions:

Secret-Sharing Context. We may think about how SSS-based

solutions can be developed for large-sized datasets, how they

can support complex SQL queries, and how one can minimize

the number of clouds while doing all operations at the cloud.

Secure Hardware Context. In the face of numerous side-

channel attacks, naı̈ve adoption of SGX does not provide any

practical protection. Some of the challenges will be solved by

future hardware [52], [75], but some will require algorithmic

and compiler-level solutions to support efficient memory and

branch-oblivious computations.

Partition Computation Context. To make partition comput-

ing more practical, we need to find ways to execute com-

plex queries (e.g., join and nested queries) using partitioned

computing. Another open problem is in finding how one can

classify the data into sensitive and non-sensitive data. Another

open problem could be in finding which types of cryptographic

techniques can be supported by partition computing.
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[1] H. Hacigümüs et al., “Executing SQL over encrypted data in the
database-service-provider model,” in SIGMOD, pp. 216–227, 2002.

[2] R. Agrawal et al., “Order-preserving encryption for numeric data,” in
SIGMOD, pp. 563–574, 2004.

[3] M. Bellare et al., “Deterministic and efficiently searchable encryption,”
in CRYPTO, pp. 535–552, 2007.

[4] S. Goldwasser et al., “Probabilistic encryption,” J. Comput. Syst. Sci.,
vol. 28, no. 2, pp. 270–299, 1984.

[5] C. Gentry, A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009.

[6] D. X. Song et al., “Practical techniques for searches on encrypted data,”
in IEEE SP, pp. 44–55, 2000.

[7] R. Curtmola et al., “Searchable symmetric encryption: Improved defi-
nitions and efficient constructions,” JCS, vol. 19, pp. 895–934, 2011.

[8] R. A. Popa et al., “CryptDB: processing queries on an encrypted
database,” Commun. ACM, vol. 55, no. 9, pp. 103–111, 2012.

[9] S. Tu et al., “Processing analytical queries over encrypted data,” PVLDB,
vol. 6, no. 5, pp. 289–300, 2013.

[10] S. Bajaj et al., “Correctdb: SQL engine with practical query authenti-
cation,” PVLDB, vol. 6, no. 7, pp. 529–540, 2013.

[11] M. Egorov and M. Wilkison, “ZeroDB white paper,” CoRR,
vol. abs/1602.07168, 2016.

[12] S. D. Tetali et al., “MrCrypt: static analysis for secure cloud computa-
tions,” in OOPSLA, pp. 271–286, 2013.

[13] Amazon Aurora, available at:https://aws.amazon.com/rds/aurora/.
[14] MariaDB, available at:https://mariadb.com/.
[15] S. Bajaj et al., “TrustedDB: A trusted hardware-based database with

privacy and data confidentiality,” IEEE TKDE, vol. 26, no. 3.
[16] A. Arasu et al., “Orthogonal security with cipherbase,” in CIDR, 2013.
[17] R. Sion, “Secure data outsourcing,” in VLDB, pp. 1431–1432, 2007.
[18] A. Arasu et al., “Querying encrypted data,” in ICDE, 2013.
[19] A. Arasu et al., “Querying encrypted data,” in SIGMOD, 2014.
[20] V. Costan et al., “Intel SGX explained,” IACR ePrint Archive, 2016.
[21] D. Agrawal et al., “Secure and privacy-preserving database services in

the cloud,” in ICDE, pp. 1268–1271, 2013.
[22] C. Sahin et al., “Data security and privacy for outsourced data in the

cloud,” in ICDE, pp. 1731–1734, 2018.
[23] https://shattered.io/.
[24] https://tinyurl.com/wxuaaaz.
[25] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, 1979.
[26] A. Beimel, “Secret-sharing schemes: A survey,” in IWCC, 2011.
[27] N. Gilboa and Y. Ishai, “Distributed point functions and their applica-

tions,” in EUROCRYPT, pp. 640–658, 2014.
[28] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in EURO-

CRYPT, pp. 337–367, 2015.
[29] S. Dolev et al., “Accumulating automata and cascaded equations au-

tomata for communicationless information theoretically secure multi-
party computation,” TCS, vol. 795, pp. 81 – 99, 2019.

[30] S. Dolev et al., “Privacy-preserving secret shared computations using
MapReduce,” IEEE TDSC, 2019.

[31] P. Gupta et al., “Obscure: Information-theoretic oblivious and verifiable
aggregation queries,” PVLDB, vol. 12, no. 9, pp. 1030–1043, 2019.

[32] J. Bater et al., “SMCQL: secure query processing for private data
networks,” PVLDB, vol. 10, no. 6, pp. 673–684, 2017.

[33] N. Volgushev et al., “Conclave: secure multi-party computation on big
data,” in EuroSys, pp. 3:1–3:18, 2019.

[34] F. Wang et al., “Splinter: Practical private queries on public data,” in
NSDI, pp. 299–313, 2017.

[35] Stealth Pulsar, available at:http://www.stealthsoftwareinc.com/.
[36] D. W. Archer et al., “From keys to databases - real-world applications

of secure multi-party computation,” IACR Cryptology ePrint, 2018.
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