
Tutorial: Information Leakage from Cryptographic
Techniques

Komal Kumari,1 Sharad Mehrotra,2 and Shantanu Sharma1

1New Jersey Institute of Technology, USA. 2University of California, Irvine, USA.

Abstract—This tutorial focuses on the research aimed at pro-
viding secure data processing at the public cloud. First, we focus
on cryptographic (encryption and secret-sharing) techniques and
systems developed over the last two decades. Second, we will
discuss information leakages from ciphertext (e.g., distribution,
ordering, and cross-crypto leakages) and query execution (e.g.
access pattern, volume, and workload skew leakages) and com-
pare the existing techniques and systems based on efficiency and
information leakage. Finally, we conclude that cryptographic
techniques are not sufficient alone. To provide efficient and
secure large-scale data processing at the cloud, a new line
of work that combines software and hardware mechanisms is
required. We discuss an orthogonal approach designed around
the concept of data partitioning, i.e., splitting the data processing
into cryptographically secure and non-secure parts.

I. GOAL OF THE TUTORIAL

This tutorial delves into three key areas of research aimed at

ensuring the secure processing of databases at the public cloud.

We will divide this tutorial into three phases as follows:

1) We discuss cryptographic (encryption and secret-sharing) tech-

niques and systems developed over the past two decades and

compare these approaches/systems based on their efficiency

and operational capabilities. We will discuss encryption-based

systems, such as CryptDB [1], HE3DB [2], MongoDB’s

Queryable Encryption [3], Microsoft Always Encrypted [4],

and secret-sharing based systems including Secrecy [5], S2 [6],

Titanium [7], and Obscure [6].

2) We, then, discuss different types of information leakage from

ciphertext itself and from query execution. We will illustrate

how such leakages can lead to revealing the entire database

in cleartext to an adversary. Furthermore, we will discuss

techniques to prevent such attacks and compare existing

cryptographic techniques and systems against such leakages.

3) Finally, we discuss two new approaches to secure data process-

ing. The first approach will discuss data partitioning methods,

where only sensitive data will be encrypted, and non-sensitive

data will remain in cleartext. The second approach will discuss

how we can use multiple encryption techniques over a table

without revealing any additional information to an adversary,

using a new concept called secure normal form. Finally, we

will conclude the tutorial by showing open problems.

Outcome. Secure data processing is an integral aspect of data

management at the cloud. The cloud environment offers unique

challenges in implementing security and scalability of data.

The tutorial is relevant to the researchers working on security

issues in data management. Furthermore, it introduces state-

of-the-art technologies to practitioners in protecting the data,

while using the cloud for their data management.

Intended audience and duration. Researchers, students,

developers, and practitioners interested in data security should

be benefited. We cover content for different audiences, as 10%

beginner, 40% intermediate, and 50% advanced.

II. CRYPTOGRAPHIC TECHNIQUES FOR DATA PROCESSING

The rapid rise of cloud technology for data storage and

computing has revolutionized the digital landscape. Cloud

providers could be located anywhere, under varying legal

jurisdictions with varying legal protections; the privacy and

confidentiality of the outsourced data can be compromised,

thus making it hard to establish trust in the cloud providers.

Loss of control over resources (as outsourced to the cloud)

coupled with the lack of trust (in the service provider) poses

numerous concerns about data integrity, availability, security,

privacy, and confidentiality, to mention a few. The problem of

trust has become even more profound now given data breaches

(HBO [8], Dell [9], Santander Bank [10], Nissan [11] and

Equifax [12] data breaches).

To provide security and privacy to client’s outsourced data,

secure computing emerged as a crucial focus for leveraging

cloud services, leading to the development of numerous cryp-

tographic approaches broadly classified into two categories:

• Encryption-based techniques. Several encryption-based

techniques have been proposed depending on the desired

operations. E.g., order-preserving encryption (OPE) [13] offers

range queries, deterministic encryption (DET) [14] offers

equality queries, homomorphic encryption [15] offers ad-

dition and/or multiplication over ciphertext, searchable en-

cryption [16], [17] offers search operation over ciphertext,

bucketization [18] offers full support for SQL queries, and

non-deterministic encryption (NDET) [19], which does not

offer any operation over ciphertext.

These techniques have led to the development of several sys-

tems — CryptDB [1] using OPE, DET, and NDET, HE3DB [2]

using homomorphic encryption, MongoDB [3] using a variant

of searchable encryption, Microsoft Always Encrypted [4]

using DET and NDET, Cypherbase [20] and Vaultree [21]

using fully homomorphic encryption. Industrial systems, such

as Oracle 12c, Amazon Aurora [22], and MariaDB [23], offer

encryption at-rest, but do not offer processing over ciphertext.
• Secret-sharing (SS) based techniques. In using SS, the

database owner divides a secret value, say S, into c different

fragments, called shares, and sends each share to a set of c
non-colluding servers. To reconstruct the secret, a client needs

to collect a subset of c fragments from the server.

9

2024 IEEE 44th International Conference on Distributed Computing Systems Workshops (ICDCSW)

DOI 10.1109/ICDCSW63686.2024.00007

20
24

 IE
EE

 4
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s W
or

ks
ho

ps
 (I

C
D

C
SW

) |
 9

79
-8

-3
50

3-
54

71
-3

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

C
SW

63
68

6.
20

24
.0

00
07

979-8-3503-5471-3/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 31,2024 at 02:22:18 UTC from IEEE Xplore. Restrictions apply.

One of the famous secret-sharing techniques was proposed

by Adi Shamir [24]. In Shamir’s secret-sharing (SSS) tech-

nique [24], the database owner randomly selects a polyno-

mial of degree c′ with c′ random coefficients, i.e., f(x) =
a0+a1x+a2x

2+ · · ·+ac′x
c′ , where f(x)∈Fp[x], p is a prime

number, Fp is a finite field of order p, a0=S (the secret), and

ai∈N (1≤i≤c′). The owner distributes S into c>c′ shares, by

computing f(x) for x=1, 2, . . . , c and sends an ith share to

the ith server. The secret, S, is reconstructed using Lagrange

interpolation [25] over any c′+1 shares. An adversary can

construct S, iff they collude with c′+1 servers. Thus, the

degree of a polynomial is set to be c′, if an adversary can

collude with at most c′ servers.

Additive SS [26] is another technique that divides a secret S
into c shares such that the addition of all c shares over some

modulo p regains S. Other SS techniques are Boolean SS [5],

replicated SS [27], distributed point function [28], function

SS [29], and accumulating-automata [6], [30].

These techniques have led to the development of systems, e.g.,

Secrecy [5] using replicated SS, Obscure [6] using SSS, S2 [6]

using SSS and additive SS, Titanium [7] using additive SS,

Sharemind [31], [32] using additive SS, Conclave [33] using

addtive SS, PDAS [34] using SSS, Waldo [35] using replicated

SS, Prism [6] using additive and SSS, Jana [36] using additive

SS, and S3ORAM [37] using SSS.

Secure hardware. Secure data processing can also be

achieved using trusted hardware, e.g., Intel Software Guard

Extensions (SGX) [38] and Trusted Execution Technology

(TXT) [39] that allow the owner to create a small trusted

execution environment called enclaves, which is isolated and

protected from the rest of the cloud system. SGX provides

encryption of the enclave’s memory having the code and data,

and the integrity is protected by the CPU as soon as the data

leaves the last level of the caching hierarchy. This protects

SGX applications from hardware attacks like memory snoop-

ing. Several systems including EnclaveDB [40], M2R [41],

Opaque [42], ObliDB [43], StealthDB [44], VC3 [45], T-

SGX [46], and Oblivate [47] are build using SGX.

Adversary model. Often, these techniques are developed un-

der two types of adversarial cloud models, namely honest-but-

curious (HBC) [48] and malicious clouds. Such adversaries

have some background knowledge about the data, e.g., data

distribution. An HBC cloud, also known as a semi-honest

cloud, behaves as per the system protocol; however, an HBC

may try to obtain information about the sensitive data by

observing the stored data and query execution. In contrast,

a malicious adversary deviates from the underlying protocol

and thus can tamper with the data stored or query processing.

Evaluation criteria. The above techniques and systems can

be evaluated based on several criteria, such as the type of

adversary they deal with, the number of used servers, sup-

ported operations, availability of indexes for query execution,

dealing with malicious client, the use of a trusted proxy, and

information leakages from the ciphertext and query execution.

III. INFORMATION LEAKAGES

The systems mentioned in §II strive to provide data security

against respective adversarial models; however, some of them

suffer from information leakages from data at-rest and during

query processing [49]. Below, we discuss these leakages and

present strategies to overcome leakages.

A. Data at-rest leakages
These leakages can be grouped into three types: (i) distribution

leakage, (ii) ordering leakage, and (iii) cross-crypto leakage.

1) Distribution leakage: reveals data distribution from the

ciphertext. Deterministic encryption [14], offering efficient

execution of equality testing for selection and join queries,

creates an identical ciphertext for more than two occurrences

of a value and, hence, reveals data distribution from the

ciphertext. In contrast, non-deterministic encryption or secret

sharing do not reveal data distribution from ciphertext.

2) Ordering leakage: reveals the ordering (e.g., <, >, ≤,

≥, =) of two or more ciphertexts. For example, if two values

have a relationship in cleartext, say x1<x2, then ordering

leakage will reveal the same relationship from the ciphertext,

i.e., E(x1)<E(x2), where E refers to an encryption technique.

Order-preserving encryption (OPE) [50], which offers efficient

execution of range queries, reveals ordering information. [51]–

[53] has shown that distribution leakage mixed with ordering

leakage can reveal the entire data in cleartext to an adversary.

3) Cross-crypto leakage: occurs when using different en-

cryption techniques on different parts of the data. Figure 1

shows a table with three columns, e.g., tuple/row id (tid),

State, and ZipCode; Suppose we encrypt tid and State columns

with a strong encryption technique, such as non-deterministic

encryption, and ZipCodes with a weaker encryption technique,

such as deterministic encryption, to enable the equality test.

NDET reveals nothing about ciphertext, while DET reveals

data distribution. Thus, the distribution of the ZipCode col-

umn is revealed. Note that ZipCode and State columns are

functionally dependent. An adversary server can thus learn

more than what is allowed about State data, e.g., the first and

third rows have the same state. This toy example illustrates

how functional dependency between columns can lead to

additional leakage. A recent paper of ICDE 2024 [6] proposes

a technique called secure normal form to partition a table into

multiple tables such that a single table does not reveal any

additional leakage from the ciphertext.

Figure 1: An example of showing cross-crypto leakage.

B. Query processing leakages
These leakages refer to the disclosure of information during

query execution. Query processing leakages can be broadly

classified into three categories: (i) access pattern leakage,

(ii) workload leakage, and (iii) volume leakage.

10

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 31,2024 at 02:22:18 UTC from IEEE Xplore. Restrictions apply.

1) Access pattern leakage: reveals the identity or the se-

quence in which data is accessed, e.g., the rows in the database,

the file-ids, or the storage locations. Access pattern leakage

also results in search pattern (or query pattern) leakage that

allows an adversary to establish linkability among queries

by identifying which queries in a sequence are the same or

different [54]–[56]. An adversary observing the access patterns

can potentially reconstruct the original search query and even

the underlying plaintext data, effectively nullifying the purpose

of storing the data in cipher form, as discussed in [57]–[61].

Techniques, e.g., oblivious random access memory

(ORAM) [62]–[64] and its improved version — Path-

ORAM [65], private information retrieval (PIR) [66],

distributed point function (DPF) [28], and function secret-

sharing (FSS) [29], hide access patterns.

Path ORAM organizes data blocks into a logical binary

tree, where each block is randomly assigned to a specific

path within the tree. The client stores the mapping between

blocks and paths into a position map. For a single read/write

operation, Path ORAM retrieves the entire path containing the

desired data block at the client side and then rewrites the path

by reassigning the fetched blocks to new, randomly chosen

paths within the tree. Each request incurs a bandwidth cost

of O(log N), where N is the number of data blocks. Despite

its conceptual simplicity, the overhead of O(log N) makes

Path ORAM impractical for many applications.Moreover, the

throughput and support for concurrent clients are also limited

in Path ORAM. Since the introduction of Path ORAM, works

such as [67]–[74] have been carried out to address such

limitations. Systems, e.g., Metal [75] and Titanium [7] use

ORAM to build secure file systems.

PIR allows clients to fetch an item from outsourced data

without revealing to the server which is the item of interest.

The client creates a query for the server such that the query

holds the identifier of the data to be retrieved. There are two

types of PIR: computational PIR (CPIR) [76] and information-

theoretic PIR (ITPIR) [77]. CPIR is secure under a bounded

computational capabilities of an adversary, while ITPIR is

secure regardless of the computational power of an adversary.

DPF allows the client to create a share of the query in the

form of a point function and send shares to servers. These

shares evaluate to one in share form when the query matches

the data; otherwise zero in share form. S2 [6] and Dory [78]

use DPF. FSS [29] is a generalization of DPF.

Other techniques, different from previously discussed meth-

ods, have also been proposed, e.g., Durashift [79], Nemo [80],

Waffle [81], Pancake [82], S3ORAM [37], and [83]–[85],

2) Workload-skew leakage: reveals an estimate of which

encrypted tuples potentially satisfy the frequent selection

queries to an adversary, knowing frequent selection queries.

Except for access pattern hiding techniques, all cryptographic

techniques are prone to workload-skew attacks. Panda [6]

prevents workload attacks by creating bins over the data.

3) Volume or output-size leakage: reveals the number of

records returned for a query. Volume leakage can be exploited

by an adversary having knowledge about the number of

records for each data element, as discussed in [6], [49], [60],

[86]–[89]. A common strategy to prevent volume leakage is to

return to the maximum number of records, say L, associated

with an element to answer any query. With each query result

padded to L, the result must ensure that the records satisfying

the query are returned, together with the additional padded

records, which can be discarded on the client side. Path

ORAM [65] can prevent volume but will incur a significant

cost by returning O(logN ×L) items, where N is the number

of outsourced records. Veil [6], HybrIdx [90], and [91]–[97]

hides volume. These techniques store more data at servers than

the actual amount of data and fetch more than L elements to

answer a query.

IV. BIOGRAPHIES

Komal Kumari is pursuing PhD degree in computer science

at New Jersey Institute of Technology, USA. She obtained her

MTech degree in computer science from Indraprastha Institute

of Information Technology, Delhi, India, in 2021. Her primary

research focus is secure data processing.

Sharad Mehrotra received his PhD degree in computer

science from the University of Texas, Austin, in 1993. He

is a distinguished professor with the Department of Computer

Science, University of California, Irvine. Previously, he was a

professor with the University of Illinois at Urbana Champaign.

He has received numerous awards and honors, including the

2011 SIGMOD Best Paper Award, 2007 DASFAA Best Paper

Award, SIGMOD test of time award, 2012, DASFAA ten

year best paper awards for 2013 and 2014, 1998 CAREER

Award from the US National Science Foundation (NSF), and

ACM ICMR best paper award for 2013. His primary research

interests include the area of database management, distributed

systems, secure databases, and the Internet of Things. He is

an IEEE Fellow and an ACM Fellow.

Shantanu Sharma received his PhD degree in computer

science from Ben-Gurion University, Israel, in 2016. He is an

assistant professor with the Department of Computer Science,

New Jersey Institute of Technology, USA. Before joining

NJIT, he worked as a postdoctoral fellow at UC Irvine.

His research interests include secure and privacy-preserving

database systems and trustworthy smart spaces.

ACKNOWLEDGEMENT

The work of Shantanu Sharma was supported by NSF under
Grant 2245374. The work of Sharad Mehrotra was supported
by NSF under Grant 2420846, Grant 2245372, Grant 2133391,
Grant 2008993, and Grant 1952247.

REFERENCES

[1] R. A. Popa et al., “CryptDB: processing queries on an encrypted
database,” CACM, vol. 55, no. 9, pp. 103–111, 2012.

[2] S. Bian et al., “HE3DB: An efficient and elastic encrypted database via
arithmetic-and-logic fully homomorphic encryption,” in CCS, 2023.

[3] Mongo, “MongoDB Atlas: Cloud Document Database — MongoDB.”
https://tinyurl.com/2rrfn88m.

[4] “Microsoft Always Encrypted.” https://tinyurl.com/2e5pcvep.
[5] J. Liagouris et al., “Secrecy: Secure collaborative analytics in untrusted

clouds,” in NSDI 23, pp. 1031–1056, 2023.
[6] “List of publications.” https://web.njit.edu/∼ss797/publications.html.
[7] W. Chen et al., “Titanium: A metadata-hiding file-sharing system with

malicious security,” in NDSS, 2022.
[8] Available at: https://tinyurl.com/4nb984s6.
[9] PCWorld, “Dell hack: Personal info of 49 million customers allegedly

breached — PCWorld.” https://tinyurl.com/yc4ebk3k.

11

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 31,2024 at 02:22:18 UTC from IEEE Xplore. Restrictions apply.

[10] EM360, “Santander Customer Data Swiped in Cyber Attack — Enter-
prise Tech News EM360Tech.” https://tinyurl.com/ycynjzks.

[11] CBSNews, “Nissan data breach exposed Social Security numbers of
thousands of employees - CBS News.” https://tinyurl.com/yc582bm8.

[12] Available at: https://tinyurl.com/4x6hvyp7.
[13] R. Agrawal et al., “Order-preserving encryption for numeric data,” in

SIGMOD, pp. 563–574, 2004.
[14] M. Bellare et al., “Deterministic and efficiently searchable encryption,”

in CRYPTO, pp. 535–552, 2007.
[15] C. Gentry, A fully homomorphic encryption scheme. PhD thesis, Stanford

University, 2009.
[16] D. X. Song et al., “Practical techniques for searches on encrypted data,”

in S&P, pp. 44–55, 2000.
[17] R. Curtmola et al., “Searchable symmetric encryption: Improved defi-

nitions and efficient constructions,” JCS, vol. 19, pp. 895–934, 2011.
[18] H. Hacigümüs et al., “Executing SQL over encrypted data in the

database-service-provider model,” in SIGMOD, pp. 216–227, 2002.
[19] S. Goldwasser et al., “Probabilistic encryption,” JCSS, vol. 28, no. 2,

pp. 270–299, 1984.
[20] A. Arasu et al., “Orthogonal security with Cipherbase,” in CIDR, 2013.
[21] “Data-in-use encryption - vaultree.” https://www.vaultree.com/.
[22] Amazon Aurora, available at:https://aws.amazon.com/rds/aurora/.
[23] MariaDB, available at:https://mariadb.com/.
[24] A. Shamir, “How to share a secret,” CACM, vol. 22, 1979.
[25] R. M. Corless et al., “A graduate introduction to numerical methods,”

AMC, vol. 10, p. 12, 2013.
[26] R. Cramer et al., Secure multiparty computation. Cambridge University

Press, 2015.
[27] T. Araki et al., “High-throughput semi-honest secure three-party com-

putation with an honest majority,” in CCS, pp. 805–817, 2016.
[28] N. Gilboa et al., “Distributed point functions and their applications,” in

EUROCRYPT, pp. 640–658, 2014.
[29] E. Boyle et al., “Function secret sharing,” in EUROCRYPT, 2015.
[30] S. Dolev et al., “Accumulating automata and cascaded equations au-

tomata for communicationless information theoretically secure multi-
party computation,” TCS, vol. 795, pp. 81 – 99, 2019.

[31] Cybernetica’s Sharemind. Available at: https://tinyurl.com/2x6t8sat.
[32] D. Bogdanov et al., “Sharemind: A framework for fast privacy-

preserving computations,” in ESORICS, vol. 5283, pp. 192–206, 2008.
[33] N. Volgushev et al., “Conclave: secure multi-party computation on big

data,” in EuroSys, pp. 3:1–3:18, 2019.
[34] B. Thompson et al., “Privacy-preserving computation and verification

of aggregate queries on outsourced databases,” in PETS, 2009.
[35] E. Dauterman et al., “Waldo: A private time-series database from

function secret sharing,” in S&P, pp. 2450–2468, 2022.
[36] D. W. Archer et al., “From keys to databases - real-world applications

of secure multi-party computation,” IACR, 2018.
[37] T. Hoang et al., “S3ORAM: A computation-efficient and constant client

bandwidth blowup oram with shamir secret sharing,” in CCS, 2017.
[38] M. Hoekstra et al., “Using innovative instructions to create trustworthy

software solutions,” in Workshop on HASP, pp. 1–8, 2013.
[39] “Intel® trusted execution technology hardware-based technology for

enhancing server platform security.” https://tinyurl.com/5b3mjf7b.
[40] C. Priebe et al., “EnclaveDB: A secure database using SGX,” in S&P,

pp. 264–278, 2018.
[41] T. T. A. Dinh et al., “M2R: enabling stronger privacy in mapreduce

computation,” in USENIX, pp. 447–462, 2015.
[42] W. Zheng et al., “Opaque: An oblivious and encrypted distributed

analytics platform,” in NSDI, pp. 283–298, 2017.
[43] S. Eskandarian and M. Zaharia, “Oblidb: Oblivious query processing for

secure databases,” VLDB, vol. 13, no. 2, pp. 169–183, 2019.
[44] D. Vinayagamurthy et al., “StealthDB: a scalable encrypted database

with full SQL query support,” PoPETs, pp. 370–388, 2019.
[45] F. Schuster et al., “VC3: trustworthy data analytics in the cloud using

SGX,” in S&P, pp. 38–54, 2015.
[46] M.-W. Shih et al., “T-SGX: Eradicating Controlled-Channel Attacks

Against Enclave Programs.,” in NDSS, 2017.
[47] A. Ahmad et al., “OBLIVIATE: A data oblivious filesystem for Intel

SGX.,” in NDSS, 2018.
[48] R. Canetti et al., “Adaptively secure multi-party computation,” in STOC,

pp. 639–648, 1996.
[49] G. Kellaris et al., “Generic attacks on secure outsourced databases,” in

CCS, 2016.
[50] X. Cao et al., “Frequency-revealing attacks against frequency-hiding

order-preserving encryption,” VLDB, vol. 16, no. 11, 2023.
[51] V. Bindschaedler et al., “The tao of inference in privacy-protected

databases,” IACR, 2017.
[52] P. Grubbs et al., “Leakage-abuse attacks against order-revealing encryp-

tion,” in S&P, pp. 655–672, 2017.
[53] M. Naveed et al., “Inference attacks on property-preserving encrypted

databases,” in CCS, pp. 644–655, 2015.
[54] S. Oya et al., “Hiding the access pattern is not enough: Exploiting search

pattern leakage in searchable encryption,” in USENIX Security, 2021.
[55] E. M. Kornaropoulos et al., “The state of the uniform: Attacks on

encrypted databases beyond the uniform query distribution,” in S&P,
pp. 1223–1240, 2020.

[56] E. A. Markatou et al., “Reconstructing with less: Leakage abuse attacks
in two dimensions,” in CCS, pp. 2243–2261, 2021.

[57] G. Kellaris et al., “Generic attacks on secure outsourced databases,” in
CCS, pp. 1329–1340, 2016.

[58] M. S. Islam et al., “Access pattern disclosure on searchable encryption:
ramification, attack and mitigation.,” in NDSS, vol. 20, p. 12, 2012.

[59] D. Cash et al., “Leakage-abuse attacks against searchable encryption,”
in CCS, pp. 668–679, 2015.

[60] P. Grubbs et al., “Pump up the volume: Practical database reconstruction
from volume leakage on range queries,” in CCS, 2018.

[61] P. Grubbs et al., “Learning to reconstruct: Statistical learning theory and
encrypted database attacks,” in S&P, pp. 1067–1083, 2019.

[62] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious rams,” in STOC, pp. 182–194, 1987.

[63] R. Ostrovsky, “Efficient computation on oblivious RAMs,” in STOC,
pp. 514–523, 1990.

[64] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” JACM, vol. 43, no. 3, pp. 431–473, 1996.

[65] E. Stefanov et al., “Path ORAM: An extremely simple oblivious RAM
protocol,” in CCS, pp. 299–310, 2013.

[66] B. Chor et al., “Private information retrieval,” JACM, vol. 45, no. 6,
pp. 965–981, 1998.

[67] S. Devadas et al., “Onion ORAM: A constant bandwidth blowup
oblivious RAM,” in TCC, pp. 145–174, 2016.

[68] A. Chakraborti and R. Sion, “ConcurORAM: High-throughput stateless
parallel multi-client oram,” NDSS, 2019.

[69] B. H. Falk et al., “3-party distributed ORAM from oblivious set
membership,” in SCN, pp. 437–461, 2022.

[70] X. S. Wang et al., “SCORAM: oblivious RAM for secure computation,”
in CCS, pp. 191–202, 2014.

[71] S. Patel et al., “Panorama: Oblivious RAM with logarithmic overhead,”
in FOCS, pp. 871–882, 2018.

[72] X. Yu et al., “PRO-ORAM: dynamic prefetcher for oblivious RAM,” in
ISCA, 2015.

[73] I. Komargodski et al., “OptORAMa: optimal oblivious RAM,” JACM,
2023.

[74] C. Sahin et al., “Taostore: Overcoming asynchronicity in oblivious data
storage,” in S&P, pp. 198–217, 2016.

[75] W. Chen and R. A. Popa, “Metal: A metadata-hiding file-sharing
system,” in NDSS, 2020.

[76] B. Chor et al., “Computationally private information retrieval (extended
abstract),” in STOC, pp. 304–313, 1997.

[77] A. Beimel and Y. Stahl, “Robust information-theoretic private informa-
tion retrieval,” in SCN, vol. 2576 of Lecture Notes in Computer Science,
pp. 326–341, Springer, 2002.

[78] E. Dauterman et al., “DORY: An encrypted search system with dis-
tributed trust,” in OSDI, pp. 1101–1119, 2020.

[79] B. H. Falk et al., “Durasift: A robust, decentralized, encrypted database
supporting private searches with complex policy controls,” in WPES,
pp. 26–36, 2019.

[80] J. Li et al., “Nemo: Practical distributed boolean queries with minimal
leakage,” TIFS, 2024.

[81] S. Maiyya et al., “Waffle: An online oblivious datastore for protecting
data access patterns,” PACMMOD, vol. 1, no. 4, pp. 1–25, 2023.

[82] P. Grubbs et al., “Pancake: Frequency smoothing for encrypted data
stores,” in USENIX Security, pp. 2451–2468, 2020.

[83] L. Xu et al., “Interpreting and mitigating leakage-abuse attacks in
searchable symmetric encryption,” TIFS, vol. 16, 2021.

[84] J. Ghareh Chamani et al., “New constructions for forward and backward
private symmetric searchable encryption,” in CCS, 2018.

[85] S. Cui et al., “Privacy-preserving dynamic symmetric searchable encryp-
tion with controllable leakage,” TOPS, vol. 24, no. 3, 2021.

[86] R. Poddar et al., “Practical volume-based attacks on encrypted
databases,” in EuroS&P, 2020.

[87] Z. Gui et al., “Encrypted databases: New volume attacks against range
queries,” in CCS, 2019.

[88] J. Yao et al., “Sok: A systematic study of attacks in efficient encrypted
cloud data search,” in Workshop on SBC, pp. 14–20, 2020.

[89] S. Lambregts et al., “Val: Volume and access pattern leakage-abuse
attack with leaked documents,” in ESORICS, Springer, 2022.

[90] K. Ren et al., “Hybridx: New hybrid index for volume-hiding range
queries in data outsourcing services,” in ICDCS, pp. 23–33, 2020.

[91] G. Amjad et al., “Dynamic volume-hiding encrypted multi-maps with
applications to searchable encryption,” PETS, no. 1, pp. 417–436, 2023.

[92] S. Patel et al., “Mitigating leakage in secure cloud-hosted data structures:
Volume-hiding for multi-maps via hashing,” in CCS, 2019.

[93] M. George et al., “Structured encryption and dynamic leakage suppres-
sion,” in Eurocrypt, pp. 370–396, 2021.

[94] S. Kamara et al., “Computationally volume-hiding structured encryp-
tion,” in EUROCRYPT, pp. 183–213, 2019.

[95] S. Kamara et al., “Structured encryption and leakage suppression,” in
CRYPTO, pp. 339–370, 2018.

[96] J. Wang et al., “Practical volume-hiding encrypted multi-maps with
optimal overhead and beyond,” in CCS, pp. 2825–2839, 2022.

[97] A. Bienstock et al., “Near-optimal oblivious key-value stores for efficient
PSI, PSU and volume-hiding multi-maps,” in USENIX Security, pp. 301–
318, 2023.

12

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on October 31,2024 at 02:22:18 UTC from IEEE Xplore. Restrictions apply.

