In the circuit shown, there are five resistors and a battery $V=10$ volts.

1. Calculate R_{eq} for this circuit. (6 points)
2. Calculate the total current I. (2 points)
3. Calculate the voltage across R_1. (2 points)

Solution:

1. To obtain R_{eq}, we combine the resistances starting from the end and going to the front (towards the battery)

 First, R_5 and R_4 can be combined in series

 \[
 R_4 + R_5 = 1\Omega + 1\Omega = 2\Omega
 \]

 The combination can then be combined with R_3 in parallel

 \[
 \frac{R_3 + 2\Omega}{2\Omega \times R_3} = \frac{2\Omega + 2\Omega}{2\Omega \times 2\Omega} = 1\Omega
 \]

 This result can be combined in series with R_2

 \[
 R_2 + 1\Omega = 2\Omega + 1\Omega = 3\Omega
 \]

 Finally, R_{eq} is the parallel combination of the 3Ω resistance with R_1

 \[
 R_{eq} = \frac{R_1 + 3\Omega}{3\Omega \times R_1} = \frac{1\Omega + 3\Omega}{3\Omega \times 1\Omega} = 0.75\Omega
 \]

2. The total current I can be calculated using Ohm's Law

 \[
 I = \frac{V}{R_{eq}} = \frac{10 \text{ volts}}{0.75\Omega} = 13.33mA
 \]

3. Using KVL

 \[
 V - V_{R_1} = 0
 \]

 \[
 V_{R_1} = V = 10V
 \]