Fundamentals of Engineering Design (FED) 101- LC9

Test 1

Student name:
Student ID number:
Please provide complete and clear answers.
In the circuit shown, there are five resistors and a battery $\mathrm{V}=10$ volts.

1. Calculate $\mathrm{R}_{\text {eq }}$ for this circuit. (6 points)
2. Calculate the total current I. (2 points)
3. Calculate the voltage across R1. (2 points)

Solution:

1. To obtain R_{eq}, we combine the resistances starting from the end and going to the front (towards the battery)

First, R5 and R4 can be combined in series

$$
R 4+R 5=1 K \Omega+1 \mathrm{~K} \Omega=2 \mathrm{~K} \Omega
$$

The combination can then be combined with R3 in parallel

$$
\frac{\mathrm{R} 3+2 \mathrm{~K} \Omega}{2 K \Omega * \mathrm{R} 3}=\frac{2 \mathrm{~K} \Omega+2 \mathrm{~K} \Omega}{2 \mathrm{~K} \Omega * 2 \mathrm{~K} \Omega}=1 \mathrm{~K} \Omega
$$

This result can be combined in series with R2

$$
R 2+1 \mathrm{~K} \Omega=2 \mathrm{~K} \Omega+1 \mathrm{~K} \Omega=3 \mathrm{~K} \Omega
$$

Finally, R_{eq} is the parallel combination of the $3 \mathrm{~K} \Omega$ resistance with R1

$$
R_{e q}=\frac{R 1+3 \mathrm{~K} \Omega}{3 \mathrm{~K} \Omega * \mathrm{R} 1}=\frac{1 \mathrm{~K} \Omega+3 \mathrm{~K} \Omega}{3 \mathrm{~K} \Omega * 1 \mathrm{~K} \Omega}=0.75 \mathrm{~K} \Omega
$$

2. The total current I can be calculated using Ohm's Law

$$
I=\frac{\mathrm{V}}{R_{e q}}=\frac{10 \text { volts }}{0.75 \mathrm{~K} \Omega}=13.33 \mathrm{~mA}
$$

3. Using KVL

$$
\begin{gathered}
V-V_{R 1}=0 \\
V_{R 1}=V=10 \mathrm{~V}
\end{gathered}
$$

