Fundamentals of Engineering Design (FED) 101- LCA

Test 3

Student name:
Student ID number:
Please provide complete and clear answers.

1. Consider the 555 timer shown in Figure 1 with $\mathrm{C} 1=10 \mu \mathrm{~F}$ and $\mathrm{C} 2=100 \mathrm{nF}$. The voltage at pin 3 is shown in Figure 2.
a) What is the duty cycle of the pulses?
(2 points)
b) Determine the values of R1 and R2 from the information in Figure 2.
(4 points)
c) What could you do to increase the duty cycle of the pulses? Explain your answer. (4 points)

Figure 2

Solution:
a) $T_{O N}=2 s, T_{O F F}=1 s, T=3 s$
duty cycle $=T_{O N} / T=.667$, duty cycle $=66.7 \%$
b) $T_{\text {OFF }}=0.693(R 2)(C 1)$
$1=0.693(R 2)\left(10 \times 10^{-6}\right)$
$R 2=144300=144.3 \mathrm{~K} \mathrm{ohms}$
$T_{O N}=0.693(R 1+R 2)(C 1)$
$2=0.693(R 1+144.3 K)\left(10 \times 10^{-6}\right)$
$\mathrm{R} 1+144.3 \mathrm{~K}=288.6 \mathrm{~K} \rightarrow \mathrm{R} 1=144.3 \mathrm{~K} \mathrm{ohm}$
c) Increase R1 or decrease R2

When R1>>R2, the duty cycle approaches 100%

