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Learning Goals

In this chapter, you’ll learn...

* how to use the relationship among speed, frequency, and
wavelength for a periodic wave.

* how to calculate the speed of waves on a rope or string.

- what happens when mechanical waves overlap and
interfere.

* the properties of standing waves on a string, and how to
analyze these waves.

* how stringed instruments produce sounds of specific
frequencies.
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Introduction

- Earthquake waves carry enormous power as they
travel through the earth.

» Other types of mechanical waves, such as sound
waves or the vibration of the strings of a piano, carry
far less energy.

» QOverlapping waves
Interfere, which
helps us
understand musical
Instruments.
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Types of Mechanical Waves @ o3

- A'wave on a string is a type of mechanical wave.

- The hand moves the string up and then returns,
producing a transverse wave that moves to the right.

- /Motlon of the wave
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Types of Mechanical Waves o3

» A pressure wave In a fluid is a type of mechanical

waVve.

» The piston moves to the right, compressing the gas or
liguid, and then returns, producing a longitudinal wave
that moves to the right.
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Types of Mechanical Waves o3

» A surface wave on a liguid is a type of mechanical
wave.

» The board moves to the right and then returns,
producing a combination of longitudinal and
transverse waves.
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Mechanical Waves

* “Doing the wave” at a sports stadium is an example of
a mechanical wave.

* The disturbance propagates through the crowd, but
there is no transport of matter.
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Periodic Waves @ o2

* For a periodic wave, each particle of the medium
undergoes periodic motion.

* The wavelength A of a periodic wave is the length of
one complete wave pattern.

* The speed of any periodic wave of frequency f Is:

Wave speed *-., ~~Wavelength

,’
For a periodic wave: U = Af,.
---- Frequency

 Video Tutor Solution: Example 15.1
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https://mediaplayer.pearsoncmg.com/assets/_video.true/secs-yf-vts-ex15-1

Periodic Transverse Waves

* A mass attached to a spring undergoes simple
harmonic motion, producing a sinusoidal wave that
travels to the right on the string.

Motion of the wave Amplitude A

Crest /

R > |

> 1 -

Trough
Amplitude A

* The SHM of the spring and mass generates a sinusoidal
wave in the string. Each particle in the string exhibits the
same harmonic motion as the spring and mass; the
amplitude of the wave is the amplitude of this motion.
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Periodic Waves @2of2)

A series of drops falling into water produces a periodic
wave that spreads radially outward.

* The wave crests and troughs are concentric circles.

* The wavelength A is the radial distance between
adjacent crests or adjacent troughs.
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Periodic Longitudinal Waves

» Consider a long tube filled with a fluid, with a piston at
the left end.

* If we push the piston in, we compress the fluid near
the piston, and this region then pushes against the
neighboring region of fluid, and so on, and a wave
pulse moves along the tube.

Forward motion of the plunger creates a compression (a zone of high density);
backward motion creates a rarefaction (a zone of low density).

v v

Compression Rarefaction
I I
Plunger | | 3
oscillating === .
in SHM |

P le’\%' Wave s[peed

Wavelength A is the distance between corresponding points on successive cycles.
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Mathematical Description of a Wave

The wave function for a sinusoidal wave moving in the +x-direction is
given by Equation (15.7):

Wave function for Amplitude-.,  Position »Time
a sinusoidal wave -, % M %

gl “y(x,t) = Acos(kx — wr)
propagating in ™ i

+x-direction Wave number = 277/A- “+*Angular frequency = 27f

In this function, y is the displacement of a particle at time t and position X.

The quantity A is the amplitude of the wave.

The quantity k is called the wave number, and is defined as k = 27”

The quantity @ is called the angular frequency, and is defined as

w=27rf = ?I__” where T is the period.
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Copyright © 2020 Pearson Education, Inc. All Rights Reserved



Figure 15.4 A sinusoidal transverse wave
traveling to the right along a string. The
vertical scale is exaggerated.

The string is shown at time intervals of & peuod
for a total of one period T. The thhhghrmg
shows the motion of one wavelength of the wave.
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The wave advances
by one wavelength A
during each period T.

Each point moves up and down in
place. Particles one wavelength apart
move in phase with each other.
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Graphing the Wave Function @of2)

[f we use Eq. (15.7) to plot y as a function
of x for time ¢ = 0, the curve shows the shape
of the string at t = 0.

e
/
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Graphing the Wave Function @of2

[f we use Eq. (15.7) to plot y as a function
of ¢ for position x = 0, the curve shows the
displacement y of the particle at x = 0 as a
function of time.
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Particle Velocity and Acceleration in a
Sinusoidal Wave @of2)

Waveatr = 0
y Ao, v, 8= 010,
A d- =0 a, = 0
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Particle Velocity and Acceleration in a
Sinusoidal Wave @of2)

The same wave att = Qand r = 0.05T
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Figure 15.6 Using an oscillating piston to make a sinusoidal longitudinal wave in a fluid.

Forward motion of the plunger creates a compression (a zone of high density):
backward motion creates a rarefaction (a zone of low density).

Plunger

oscillating =
in SHM
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Wavelength A is the distance between corresponding points on successive cycles.
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Figure 15.7 A sinusoidal longitudinal
wave traveling to the right in a fluid.
The wave has the same amplitude A and
period T as the oscillation of the piston.

Longitudinal waves are shown at intervals of

—:,LT for one period T.

Plunger Two particles in the medium,
moving in one wavelength A apart
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with amplitude A.

The wave advances
by one wavelength A
during each period T.
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EXAMPLE 15.1 Wavelength of a musical sound

Sound waves are longitudinal waves in air. The speed of sound de-
pends on temperature; at 20°C it is 344 m/s (1130 ft/s). What is the
wavelength of a sound wave in air at 20°C if the frequency is 262 Hz
(the approximate frequency of middle C on a piano)?

IDENTIFY and SET UP This problem involves Eq. (15.1),v = A f, which
relates wave speed v, wavelength A, and frequency f for a periodic wave.
The target variable is the wavelength A. We are given v = 344 m/s and
f=262Hz = 2625
EXECUTE We solve Eq. (15.1) for A:

v 344m/s 344m/s

A=2= = = 131
f 260Hz 2625 -

EVALUATE The speed v of sound -
quency. Hence A = v/f says tha
proportion to frequency. As an exa
taves above middle C. Each octav
frequency, so the frequency of higl
f = 4(262Hz) = 1048 Hz. Hence
fourth as large: A = (1.31 m)/4 =

KEYCONCEPT The product of :
has the same value no matter what tl
the wave speed.
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Figure 15.8 Tracking the oscillations of
three points on a string as a sinusoidal
wave propagates along it.

o o N
The string is shown at time intervals of 3 period
for a total of one period T.

Oscillator Three points on the string,
generating wave one half-wavelength apart

IS

Suppose that the displacement of a particle at the left end of the string (x = 0), where
the wave originates, is given by

y(x = 0,1) = Acoswt = A cos27ft (15.2)

That is, the particle oscillates in SHM with amplitude A, frequency f, and angular fre-
quency @ = 2f. The notation y(x = 0, t) reminds us that the motion of this particle is
a special case of the wave function y(x, r) that describes the entire wave. At t = 0 the
particle at x = 0 is at its maximum positive displacement (y = A) and is instantaneously
at rest (because y is a maximum).
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) o Amplitude ., Position ~Time
Wave function for i1 4
a sinusoidal wave = M X ¥
S y(x.t) = Acos|w|— — ¢ (15.3)
propagating in 2 \D <.,

+x-direction : L
Angular frequency = 2@f  Wave speed

A =v/f=2mv/w:

) ) A Amplitude ., Position -, + Time
Wave function for : 5 s
a sinusoidal wave - v X i
A “y(x, 1) = Acos| 27| — — = (15.4)
propagating in A T
+x-direction ~ * 4 .
‘ Wavelength -~ *--» Period

It’s convenient to define a quantity , called the wave number:

2
k= e (wave number) (15.5)
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] ] I
y(x.t) = A cos[w(% + I)] =A cos[2ﬂ'(f + ?)] = A cos(kx + wt) (15.8)

(sinusoidal wave moving in —x-direction)

(kx £ wt) is called the phase

> _ o
dt k
ayi X, T
v(x, 1) = = =0 _ wA sin(kx — o)

ot

Fy(x. t
# = —w’A cos(kx — wt)

ay(x. 1) =
y ar*
= —oy(x.1)
y(x, 1)
— = —k%A cos(kx — wt) = —k*y(x. 1)
ox
Second partial derivative with respect to x
Wave equation P T . ) o
involves second 'sz(x. I)' 1 sz(x, 1) e
—=8 = == _::~ with respect to ¢ (15.12)

partial derivatives

a2 2 el
of wave function: 0x ey U ot

Wave speed
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EXAMPLE 15.2 Wave on a clothesline

Cousin Throckmorton holds one end of the clothesline taut and wiggles
it up and down sinusoidally with frequency 2.00 Hz and amplitude
0.075 m. The wave speed on the clothesline is v = 12.0 m/s. Att = 0
Throcky’s end has maximum positive displacement and is instanta-
neously at rest. Assume that no wave bounces back from the far end.
(a) Find the wave amplitude A, angular frequency w, period T, wave-
length A, and wave number k. (b) Write a wave function describing the
wave. (c) Write equations for the displacement, as a function of time, of
Throcky’s end of the clothesline and of a point 3.00 m from that end.

EXECUTE (a) The wave amplitude and frequency are the same as for
the oscillations of Throcky’s end of the clothesline, A = 0.075 m and

f = 2.00 Hz. Hence
d cycles
2rf = (2¢r = )(2.00 Y )
cycle s

4.007 rad/s = 12.6 rad/s

g
I

The period is T = 1/f = 0.500 s, and from Eq. (15.1),

v 12.0 m/s
32—27_},'26.0(}111
f 200s

We find the wave number from Eq. (15.5) or (15.6):

p - 2_71' _ 2mrad
A 6.00 m

= 1.05 rad/m

or

4.007 rad/s
k=2 = 7!'; = 1.05 rad/m
v 12.0 m/s
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(b) We write the wave function using Eq. (15.4) and the values of A,
T, and A from part (a):

X t
y(x, 1) = AcosQﬂ'(E - ?)

I
= (0.075 m)cos2w( = )
6.00m 0.500s

= (0.075 m)cos[(1.05 rad/m)x — (12.6 rad/s)t]

We can also get this same expression from Eq. (15.7) by using the val-
ues of @ and k from part (a).

(c) We can find the displacement as a function of time at x = 0 and
x = +3.00 m by substituting these values into the wave function from
part (b):

—0.1) = (0.075 2(0_:)
Y(x = 0.1) = (0.075 m) cos2ar{ oo = G500

= (0.075 m) cos(12.6 rad/s)t

(x = +3.00m, ) = (0.075m) 2(3'00'“— d )
Y= e M L) = AR M COS ST 00m 0,500 s

(0.075 m)cos[7 — (12.6 rad/s)t]
—(0.075 m) cos(12.6 rad/s)t

Copyright © 2020 Pearson Education, Inc. All Rights Reserved



o . Fo Equilibrinm ‘ F
(a) String in equilibrinm = 7 =
7 |
N =
(b) Part of the string ~ Vertical Moving upward
in motion component with velocity v, Still at rest
- % LN . P
F, g - N ~
) T — ¥ |
" Uy I )
' v, : Disturbance propagates
—L A oy - | at wave speed v.
. T = |
Horizontal -y e Y i
. : S
component F | — F
vt ——>|P

F, Wy B FU‘
F vt !y v
_ Uy
Transverse impulse = Fyt = F—t
: v

Transverse impulse = Transverse momentum

Fyt = mu,
Transverse momentum = mu, = vt v, v,‘"
¥ (wor) J F—t = pvtv,
U -
Speed of a F o Tension in string
transverse wave ~"*p = _ [— (15.14)
on a string M4 Mass per unit length
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The Speed of Mechanical Waves

\/Restoring force returning the system to equilibrium
U =

Inertia resisting the return to equilibrium

Speed of a F(_,‘.-Tension in string
transverse wave «""*p — — (15.14)
In

on a string 4 Mass per unit length
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EXAMPLE 15.3 Calculating wave speed

One end of a 2.00 kg rope is tied to a support at the top of a mine shaft
80.0 m deep (Fig. 15.14). The rope is stretched taut by a 20.0 kg box of
rocks attached at the bottom. (a) A geologist at the bottom of the shaft
signals to a colleague at the top by jerking the rope sideways. What is
the speed of a transverse wave on the rope? (b) If a point on the rope is
in transverse SHM with f = 2.00 Hz, how many cycles of the wave are
there in the rope’s length?

EXECUTE (a) The tension in the rope due to the box is
F = myoxg = (20.0kg)(9.80 m/s*) = 196 N
and the rope’s linear mass density is

Mrope  2.00 kg
L 80.0m

w= = 0.0250 kg/m

Hence, from Eq. (15.14), the wave speed is

F 196 N
v= == . )—————=885m/s
n 0.0250 kg/m

(b) From Egq. (15.1), the wavelength is

v 885m/s
e L2 =443m
f 200s
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The Speed of a Wave on a String @ of2)

* One of the key properties of any wave Is the wave speed.

« Consider a string in which the tension is F and the linear
mass density (mass per unit length) is u.

* We expect the speed of transverse waves on the string v
should increase when the tension F increases, but it
should decrease when the mass per unit length y
Increases.

* |t is shown in your text that the wave speed is:

Speed of a <.+ Tension in string
transverse wave =" *p = _[—

on a string 4=« Mass per unit length
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The Speed of a Wave on a String @of2)

* These transmission cables have a relatively large
amount of mass per unit length, and a low tension.

- If the cables are disturbed—say, by a bird landing on
them—transverse waves will travel along them at a
slow speed.
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W x, t
8}(,)( ) (15.20)
dx

Fy(x,t) = —F

y(x, 1) = A cos(kx — wt)

y(x, t

- ( ) = —kA sin(kx — wt)
ax

ay(x. t

: ('JI ) = wA sin(kx — wt)
or

P(x.t) = FkoA® sin(kx — wt)

P(x,t) = VuF o*A% sin®(kx — wt) (15.23)
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Average power,

Wave angular frequency-.,

sinusoidal wave -“""'“M"Pﬁx- = %\/ 6:)214.1...}1-&‘? amplitude (15.25)
2 VERD

on a string

Mass per unit length " “*-Tension in string
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Power in a Wave o2

- Shown Is the instantaneous power In a sinusoidal
wave.

* The power is never Wave power versus time ¢
at coordinate x = 0

negative, which

means that energy

never flows opposite

to the direction of P, =
wave propagation.

<— Period 7 —>|

@Pearson
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Power in a Wave o2

* A wave transfers power along a string because it
transfers energy.

» The average power is proportional to the square of
the amplitude and to the square of the frequency.

* This result Is true for all waves.

* For a transverse wave on a string, the average power
IS:

Wave angular frequency-..
Average power, & s

X C N iessseseeay 0 Wave amplitude
sinusoidal wave - sp =1 MszAz R I
i av 2 Vi sz
on a string , Y s ;
Mass per unit length -  ™--Tension 1n string

@Pearson
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EXAMPLE 15.4 Power in a wave

wiTH VARIATION PROBLEMS

(a) In Example 15.2 (Section 15.3), at what maximum rate does
Throcky put energy into the clothesline? That is, what is his maximum
instantaneous power? The linear mass density of the clothesline is
i = 0.250 kg/m, and Throcky applies tension F = 36.0 N. (b) What
is his average power? (c) As Throcky tires, the amplitude decreases.
What is the average power when the amplitude is 7.50 mm?

IDENTIFY and SET UP In part (a) our target variable is the maximum
instantaneous power Pp,,, while in parts (b) and (c) it is the average
power. For part (a) we’ll use Eq. (15.24), and for parts (b) and (c) we’ll
use Eq. (15.25); Example 15.2 gives us all the needed quantities.

EXECUTE (a) From Eq. (15.24),

Prax = V pFo’A’
= V/(0.250 kg/m)(36.0 N)(4.007 rad/s)%(0.075 m)>
— 266 W

(b) From Egs. (15.24) and (15.25), the average power is one-half of
the maximum instantaneous power, so

=1(266 W) = 1.33 W

-1
Rw - EPmax

Continued
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Wave Intensity

At distance r, At a greater distance

* The intensity of awave IS iceouce. - = r\. the intensity

the average power it
carries per unit area.

the intensity 1s /. I, 18 less than /,: The
; same power 1s spread
over a greater area.

- If the waves spread out " : 2
uniformly in all directions ) é B
and no energy Is B M

absorbed, the intensity |
at any distance r from a e

4

2

wave source is inversely =

proportional to 2,

* Video Tutor Solution:

Source of waves

Example 15.5

@ Pearson
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https://mediaplayer.pearsoncmg.com/assets/_video.true/secs-yf-vts-ex15-5

Wave Intensity

Waves on a string carry energy in one dimension (along the direction of the string). But
other types of waves, including sound waves in air and seismic waves within the earth,
carry energy across all three dimensions of space. For waves of this kind, we define the
intensity (denoted by I) to be the time average rate at which energy is transported by
the wave, per unit area, across a surface perpendicular to the direction of propagation.
Intensity [ is average power per unit area and is usually measured in watts per square
meter (W/m?).

dmr?

Inverse-square law for intensity:

Intensity is inversely proportional to the square of the distance from source.
3 Distance from

i | 1 5 $...s SOULCE tO poOInt 2

— == (15.26)

_ir‘l2 4t Distance from
source to point 1

Intensity at point 1+,

| N
Intensity at point 2= 2
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Reflection of a Wave Pulse at a Fixed

End of a String @ o4

* What happens when a .
wave pulse or a
sinusoidal wave arrives

at the end of the string? oy
 If the end Is fastened to a ®

rigid support, it is a fixed >

end that cannot move. ©)

o) The arr|V|ng wave exerts String exerts an upward

force on wall ... *==sseeel,

a force on the support @ ’

(d raWIng 4) ... wall exerts a downward

reaction force on string.

@ Pearson

Pulse arrives

at fixed end.
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Reflection of a Wave Pulse at a Fixed
End of a String @or4

* The reaction to the force String exerts an upward
of drawing 4, exerted by R P
the support on the string, .. wall exerts a downward
“kicks back” on the string reaction foree on string. - §
and sets up a reflected ® |
pulse or wave traveling in ) Pulse inverts
the reverse direction. ® . i
<
@ < . /

@Pearson
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Reflection of a Wave Pulse at a Fixed
End of a String @ora

- Afree end is one that is > 1
perfectly free to move in @ )
the direction perpendicular

to the length of the string. >;>Ll|fflil-im
@ & at free end.

- When a wave arrives at
this free end, the ring
slides along the rod, ® d
reaching a maximum Rod exerts no transverse
displacement, coming '@ R
momentarily to rest

(drawing 4).
@ Pearson

D
|
v
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Reflection of a Wave Pulse at a Fixed

End of a String @or4)

* In drawing 4, the string Is
now stretched, giving
Increased tension, so the
free end of the string is
pulled back down, and
again a reflected pulse is
produced.

Rod exerts no transverse Jil
forces on string.

O,

®

Pulse reflects

from free end

> without
inverting.

@Pearson
Copyright © 2020 Pearson Education, Inc. All Rights Reserved



Superposition @of2)

* Interference is the result of
Overlapplng WaveS . displacements due to the individual pulses.
. . = i N
* Principle of superposition: When ",
two or more waves overlap, the total
. . ! — e N
displacement is the sum of the BRYEES
displacements of the individual waves. PF s v o=
« Shown is the overlap of two wave L~
pulses—one right side up, one -
inverted—traveling in opposite e
directions. A\\/
- Time increases from top to bottom. ! ]
@Pearson
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Superposition @of2)

» Overlap of two wave pulses—both e |«
right side up—traveling in opposite ./ |~ \__
directions.
- Time increases from top to )
bottom. e
SR\
_ N\
@Pearson
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Standing Waves on a String @ ofs)

» Waves traveling in opposite directions on a taut string
Interfere with each other.

» The result is a standing wave pattern that does not
move on the string.

» Destructive interference occurs where the wave
displacements cancel, and constructive interference
occurs where the displacements add.

* At the nodes no motion occurs, and at the antinodes
the amplitude of the motion is greatest.

 Video Tutor Demonstration: Out-of-Phase Speakers

@Pearson
Copyright © 2020 Pearson Education, Inc. All Rights Reserved


https://mediaplayer.pearsoncmg.com/assets/_video.true/secs-vtd27_interferencespeakers

The Principle of Superposition

Combining the displacements of the separate pulses at each point to obtain the actual
displacement is an example of the principle of superposition: When two waves overlap,
the actual displacement of any point on the string at any time is obtained by adding the
displacement the point would have if only the first wave were present and the displace-
ment it would have if only the second wave were present. In other words, the wave func-
tion y(x, t) for the resulting motion is obtained by adding the two wave functions for the
two separate waves:

Wave functions of two overlapping waves
Principle of

superposition: vix, 1) = _j:;llix, 1 + ;’g(x, 1) (15.27)

Wave function of combined wave = sum of individual wave functions

Copyright © 2020 Pearson Education, Inc. All Rights Reserved



.+ Equilibrium

horizontal x-axis.

position of string
is along the

=" At this instant the

waves coincide, so
x they add to give

maximum string

(=

displacement.

cancel, so the string

« At this instant the
waves exactly

displacement is zero.

Y o I Ml |

~<|r

=

-
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y(x, 1) = yi(x, 1) + yo(x. t) = (2Asinkx) sin ot or

. . Wave function Standing-wave amplitude
Standing wave on - -

. ¥ L. .
a string, y(x, ) = (Agysinkx) sinef ¢..- Time
- N 4 L

fixed end atx = (i . R 1
Wave number < Position Angular frequency

(15.28)

The standing-wave amplitude Agy is twice the amplitude A of either of the original travel-

ing waves: Agw = 2A.

We can use Eq. (15.28) to find the positions of the nodes; these are the points for which
sinkx = 0, so the displacement is always zero. This occurs when kx = 0, 7, 27, 37, .. .,

or, using k = 27/A,

T 2w 3
x=0——,—
k- ko k (nodes of a standing wave on (15.29)
A 2A 3A a string, fixed end at x = 0)
~%2 20
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A guitar string lies along the x-axis when in equilibrium. The end
of the string at x = 0 (the bridge of the guitar) is fixed. A sinusoidal
wave with amplitude A = 0.750 mm = 7.50 % 10~* m and frequency
f = 440 Hz, corresponding to the red curves in Fig. 15.24, travels
along the string in the —x-direction at 143 m/s. It is reflected from the
fixed end, and the superposition of the incident and reflected waves
forms a standing wave. (a) Find the equation giving the displacement of
a point on the string as a function of position and time. (b) Locate the
nodes. (c) Find the amplitude of the standing wave and the maximum
transverse velocity and acceleration.

EXECUTE (a) The standing-wave amplitude is Agwy = 24 =
1.50 %X 10~ m (twice the amplitude of either the incident or reflected
wave). The angular frequency and wave number are

w = 2uf = (2w rad)(440s™') = 2760 rad/s

2760 rad
- @ ST /s = 19.3 rad/m
v 143 m/s

Equation (15.28) then gives
y(x, 1) = (Agw sinkx) sin wt
= [(1.50 X 107> m)sin(19.3 rad/m)x] sin(2760 rad/s )t
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(b) From Eq. (15.29), the positions of the nodes are x = 0, A/2,
A, 3A/2,.... The wavelength is A =v/f = (143 m/s)/(440 Hz) =
0.325 m, so the nodes are atx = 0,0.163 m, 0.325 m, 0488 m, . . ..

(c) From the expression for y(x, t) in part (a), the maximum dis-
placement from equilibrium is Agw = 1.50 X 107> m = 1.50 mm.

(c) From the expression for y(x, ) in part (a), the maximum dis-

placement from equilibrium is Agw = 1.50 X 10 m = 1.50 mm.
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This occurs at the anfinodes, which are midway between adjacent nodes
(that is, at x = 0.081 m, 0.244 m, 0.406 m, . . .).

For a particle on the string at any point x, the transverse (y-) velocity is
ay(x, t)

it
[(1.50 % 107> m)sin(19.3 rad/m)x]
% [(2760 rad/s) cos(2760 rad/s)t]
= [(4.15 m/s) sin(19.3 rad/m)x] cos(2760 rad/s)t

U_-,.(x, t) =

At an antinode, sin(19.3 rad/m)x = =1 and the transverse veloc-
ity varies between +4.15m/s and —4.15 m/s. As is always the case
in SHM, the maximum velocity occurs when the particle is passing
through the equilibrium position (y = 0).

The transverse acceleration a,(x, t) is the second partial derivative
of y(x, t) with respect to time. You can show that

(1) Ay
ax1) == = at*

= [(—1.15 % 10* m/s?)sin(19.3 rad/m)x]sin(2760 rad/s)t

At the antinodes, the transverse acceleration varies between
+1.15 ¥ 10* m/s” and —1.15 X 10* m/s,
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Standing Waves on a String @of3s)

* This Is a time exposure
of a standing wave on a
string.

 This pattern is called
the second harmonic.

) N = nodes: points at which the
string never moves

Q.
\;\
"\

| A = antinodes: points at which
G 1 y 4 : the amplitude of string motion
S is greatest
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Standing Waves on a String @of3s)

 As the frequency of the
oscillation of the right-hand
end increases, the pattern
of the standing wave
changes.

* More nodes and antinodes
are present in a higher
frequency standing wave.
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The Mathematics of Standing Waves

* We can derive a wave function for the standing wave by
adding the wave functions for two waves with equal
amplitude, period, and wavelength traveling in opposite
directions.

» The wave function for a standing wave on a string in which
X =0 Is a fixed end Is:

i Wave function Standing-wave amplitude
Standing wave on - R

a string, f(x, 1) = (Agw sin kx) Sin @t <. Time
X 4 r

fixed end at x = 0: WA : i
Wave number ~* Position Angular frequency

» The standing-wave amplitude Ag,, Is twice the amplitude A
of either of the original traveling waves: Ag,, = 2A.

@ Pearson
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Normal Modes

 For a taut string fixed at both (2) n = 1: fundamental frequency, ,

ends, the possible wavelengths z A N

. ! |

are A =2t and the possible < - .

n
V _ . :

f —nNn— =nf ’ (b) n = 2: second harmonic, f, (first overtone)

frequencies are TR v ) § " :
wheren=1, 2, 3, ’ g ;

- f; Is the fundamental frequency,  © n = s3:tird harmonic, £; second overtone)
f, Is the second harmonic (first e
overtone), f; Is the third harmonic
(second overtone), etc. (d) n = 4: fourth harmonic, f; (third overtone)

A N A N A N A N

I
I
=L >||

AT =
N>

3

* The figure illustrates the first four
harmonics.
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Standing Waves and String
Instruments

* When a string on a musical instrument is plucked, bowed or
struck, a standing wave with the fundamental frequency is
produced:

Fundamental frequency, . 7 = i E 4= Tension in string
string fixed at both ends I 2L\ u
2

4=+~ Mass per unit length

Length of string

* This is also the frequency of the sound wave created in the
surrounding air by the vibrating string.

* Increasing the tension F increases the frequency (and the pitch).

* Video Tutor Solution: Example 15.7
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https://mediaplayer.pearsoncmg.com/assets/_video.true/secs-yf-vts-ex15-7

