University Physics with Modern Physics

 Fifteenth Edition

Chapter 40 Quantum

 Mechanics I: Wave Functions
Learning Outcomes

In this chapter, you'll learn...

- the wave function that describes the behavior of a particle and the Schrödinger equation that this function must satisfy.
- how to calculate the wave functions and energy levels for a particle confined to a box, and for a harmonic oscillator.
- how quantum mechanics makes it possible for particles to go where Newtonian mechanics says they cannot: quantum tunneling.
- how measuring a quantum-mechanical system can change that system's state.

Introduction

- Just as we use the wave equation to analyze waves on a string or sound waves in a pipe, we can use a related equation-the Schrödinger equation-to analyze the behavior of matter from a quantum-mechanical
 perspective.
- In the photograph, microscopic particles of different sizes fluoresce under ultraviolet light.
- The smaller the particles, the shorter the wavelength of visible light they emit.
- The Schrödinger equation will help us understand why.
Pearson

The Schrödinger Equation in 1-D (1 of 2)

- In a one-dimensional model, a quantum-mechanical particle is described by a wave function $\Psi(x, t)$.
- The one-dimensional Schrödinger equation for a free particle of mass m is:

$$
-\frac{\pi^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}=i \hbar \frac{\partial \Psi(x, t)}{\partial t}
$$

- The presence of i (the square root of -1) in the Schrödinger equation means that wave functions are always complex functions.
- The square of the absolute value of the wave function, $|\Psi(x, t)|^{2}$, is called the probability distribution function. It tells us about the probability of finding the particle near position x at time t.
- Video Tutor Solution: Example 40.1

Pearson

The Schrödinger Equation in 1-D: A Free Particle

- A free particle can have a definite momentum $p=\hbar k$ and energy $E=\hbar \omega$.
- Such a particle is not localized at all: The wave function extends to infinity.
- The wave function can be written
 as a complex exponential:

$$
\Psi(x, t)=A e^{i(k x-\omega t)}=A e^{i k x} e^{-i \omega t}
$$

(sinusoidal wave function representing a new particle)

The Schrödinger Equation in 1-D: Wave Packets (1 of 2)

- Superposing a large number of sinusoidal waves with different wave numbers and appropriate amplitudes can produce a wave pulse that has a wavelength

$$
\lambda_{\mathrm{av}}=\frac{2 \pi}{k_{\mathrm{av}}}
$$

and is localized within a region of space of length Δx.

- Shown are the real and imaginary components of such a wave packet at time t.

The Schrödinger Equation in 1-D: Wave Packets (2 of 2)

- The resulting probability distribution has only one maximum.
- This localized pulse has aspects of both particle and wave.
- It is a particle in the sense that it is localized in space; if we look from a
 distance, it may look like a point.
- But it also has a periodic structure that is characteristic of a wave.
- Such a localized wave pulse is called a wave packet.

The Schrödinger Equation in 1-D (2 of 2)

- If a particle of mass m moves in the presence of a potential energy function $U(x)$, the one-dimensional Schrödinger equation for the particle is:

- Note that if $U(x)=0$, this reduces to the free-particle Schrödinger equation.

The Schrödinger Equation in 1-D: Stationary States (1 of 2)

- If a particle has a definite energy E, the wave function $\Psi(x, t)$ is a product of a time-independent wave function $\Psi(x)$ and a factor that depends on time t but not position:

- For such a stationary state the probability distribution function $|\Psi(x, t)|^{2}=|\Psi(x)|^{2}$ does not depend on time.

The Schrödinger Equation in 1-D: Stationary States (2 of 2)

- The time-independent one-dimensional Schrödinger equation for a stationary state of energy E is:

- Much of Chapter 40 is devoted to solving this equation to find the definite-energy, stationary-state wave functions $\Psi(x)$ and the corresponding values of E-that is, the energies of the allowed levels-for different physical situations.
- Video Tutor Solution: Example 40.2

Newtonian View of a Particle in a Box

- Let's look at a simple model in which a particle is bound so that it cannot escape to infinity, but rather is confined to a restricted region of space.
- Our system consists of a particle confined between two rigid walls separated by a distance L.

A particle with mass m moves along a straight line at constant speed, bouncing between two rigid walls a distance L apart.

Potential Energy for a Particle in a Box

- The potential energy corresponding to the rigid walls is infinite, so the particle cannot escape.
- This model might represent an electron that is free to move within a long, straight molecule or along a very thin wire.

Particle in a Box: Wave Functions, Energy Levels (1 of 2)

- The energy levels for a particle in a box are:

- Each energy level has its own value of the quantum number n and a corresponding wave function:

$$
\begin{aligned}
& \begin{array}{l}
\text { Stationary-state } \\
\text { wave functions. } \cdots \cdots \\
\text { for a particle } \\
\text { in a box }
\end{array} \psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{\stackrel{n}{n} \pi x}{L} \\
& \text { Width of box }
\end{aligned} \quad(\stackrel{\text { Quantum number }}{n}=1,2,3, \ldots)
$$

- Video Tutor Solution: Example 40.6

Particle in a Box: Wave Functions, Energy Levels (2ot 2)

- Shown are energy levels and associated stationary-state wave functions for a particle in a box.

Particle in a Box: Probability and Normalization

- Shown are the first three $\Psi(x)$ stationary-state wave functions for a particle in a box (a) and the associated the associated probability distribution functions $|\Psi(x)|^{2}(\mathrm{~b})$.

- There are locations where there is zero probability of finding the particle.
- Wave functions must be normalized so that the integral of $|\Psi(x)|^{2}$ over all x equals 1 (means there is 100% probability of finding the particle somewhere).

Particle in a Finite Potential Well (1 of 3)

- A finite well is a potential well that has straight sides but finite height.
- This function is often called a square-well potential.

Particle in a Finite Potential Well (2 of 3)

- Shown are the stationary-state wave functions $\Psi(x)$ and corresponding energies for one particular finite well.
- All energies greater than U_{0} are possible; states with $E>U_{0}$ form a continuum.

Pearson

Particle in a Finite Potential Well (3 of 3)

- Shown are graphs of the probability distributions for the first three bound states of a finite well.
- As with the infinite well, not all positions are equally likely.
- Unlike the infinite well, there is some probability of finding the particle outside the well in
 the classically forbidden regions.

Pearson

Potential Barriers and Tunneling (1 of 2)

- Shown below is a potential barrier.
- In Newtonian physics, a particle whose energy E is less than the barrier height U_{0} cannot pass from the left-hand side of the barrier to the right-hand side.

Potential Barriers and Tunneling (2 of 2)

- Shown below is the wave function $\Psi(x)$ for a free particle that encounters a potential barrier.
- The wave function is nonzero to the right of the barrier, so it is possible for the particle to "tunnel" from the left-hand side to the right-hand side.

Scanning Tunneling Microscope (STM) (1 of 2)

- The scanning tunneling microscope (STM) uses electron tunneling to create images of surfaces down to the scale of individual atoms.
- An extremely sharp conducting needle is brought very close to the surface, within 1 nm or so.
- When the needle is at a positive potential with respect to the surface, electrons can tunnel through the surface potential-energy barrier and reach the needle.

Scanning Tunneling Microscope (STM) (2 of 2)

- This colored STM image shows "quantum wires:" thin strips, just 10 atoms wide, of a conductive rare-earth silicide atop a silicon surface.
- Such quantum wires may one day be the basis of ultraminiaturized circuits.

Applications of Tunneling

- Tunneling is of great importance in nuclear physics.
- An alpha particle trying to escape from a nucleus encounters a potential barrier that results from the combined effect of the attractive nuclear force and the electrical repulsion of the remaining part of the nucleus.
- To escape, the alpha particle must tunnel through this barrier.

Pearson

The Harmonic Oscillator (1 of 2)

- Shown is the potential-energy function for the harmonic oscillator.
- In Newtonian mechanics the particle is restricted to the range from $x=-A$ to $x=A$.
- In quantum mechanics the particle can be found at $x>A$
 or $x<-A$.

Energy Levels for a Harmonic Oscillator

- The allowed energies for a harmonic oscillator are:

- Note that the ground level of energy E_{0} is denoted by the quantum number $n=0$, not $n=1$.
- There are infinitely many levels.
- As $|x|$ increases, $U=1 / 2 k^{\prime} x^{2}$ increases without bound.

The Harmonic Oscillator (2 of 2)

- Shown are the lowest six energy levels of the harmonic oscillator, and the potential-energy function $U(x)$.
- For each level n, the value of $|x|$ at which the horizontal line representing the total energy E_{n} intersects $U(x)$ gives the amplitude A_{n} of the corresponding Newtonian oscillator.

Pearson

Wave Functions for the Harmonic Oscillator

- Shown are the first four stationary-state wave functions $\Psi(x)$ for the harmonic oscillator.
- A is the amplitude of oscillation in Newtonian physics.

Probability Distributions for the Harmonic Oscillator

- Shown are the probability distribution functions for the first four stationary-state wave functions for the harmonic oscillator.
- The blue curves are the Newtonian probability distributions.

Modeling a Diatomic Atom

- A potential-energy function describing the interaction of two atoms in a diatomic molecule.
- The distance r is the separation between the centers of the atoms.

Measurement in Quantum Mechanics

- Shown is a method for using photon scattering to measure the x-component of momentum of a particle in a box.
- Even when we use a photon with the lowest possible momentum, we find that the state of the particle in the box must change as a result of the experiment.

