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Learning Outcomes

In this chapter, you’ll learn...

 the wave function that describes the behavior of a particle
and the Schrodinger equation that this function must
satisfy.

* how to calculate the wave functions and energy levels for a
particle confined to a box, and for a harmonic oscillator.

* how quantum mechanics makes it possible for particles to
go where Newtonian mechanics says they cannot:
guantum tunneling.

* how measuring a quantum-mechanical system can
change that system’s state.
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Introduction

« Just as we use the wave equation to
analyze waves on a string or sound
waves in a pipe, we can use a related
equation—the Schrodinger
equation—to analyze the behavior of
matter from a quantum-mechanical
perspective.

* In the photograph, microscopic
particles of different sizes fluoresce
under ultraviolet light.

« The smaller the particles, the shorter
the wavelength of visible light they
emit.

« The Schrddinger equation will help us

understand why.
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The Schrodinger Equation in 1-D @of2)

* In a one-dimensional model, a quantum-mechanical particle is
described by a wave function ¥(x,t).

* The one-dimensional Schrédinger equation for a free particle of mass
m Is:
72 62‘P(x,t)_| V¥ (x,t)
2m  ox2 ot

» The presence of i (the square root of —1) in the Schrddinger equation
means that wave functions are always complex functions.

* The square of the absolute value of the wave function, LP(x,t)\z, is called

the probability distribution function. It tells us about the probability of
finding the particle near position x at time t.

* Video Tutor Solution: Example 40.1
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https://mediaplayer.pearsoncmg.com/assets/_video.true/secs-yf-vts-ex40-1

The Schrodinger Equation in 1-D: A
Free Particle

- Afree particle can have a S
definite momentum p = hk and A\ TN

energy E = hw. - NG g
Al \/ \/

» Such a particle is not localized at L
all: The wave function extends to w0 = Asinks

e AL \
infinity. o /\
0
- i 7/ 2w/k  3m/k
* The wave function can be written  -at \\/ Y
as a complex exponential:

(sinusoidal wave function

. i(kx-at) ikx o —ioot _ i
¥(xt)=Ae =Aee representing a new particle)
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The Schrodinger Equation in 1-D:
Wave Packets @of2)

@ Pearson

Superposing a large number of

sinusoidal waves with different wave
numbers and appropriate amplitudes
can produce a wave pulse that has a
wavelength o7

av k
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and is localized within a region of
space of length Ax.

Shown are the real and imaginary
components of such a wave packet
at time t.
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The Schrodinger Equation in 1-D:
Wave Packets @of2)

» The resulting probability distribution

. [P, 1)
has only one maximum.
* This localized pulse has aspects of
both particle and wave.
* |tis a particle in the sense that it is |
Ax >

localized in space; if we look from a <
distance, it may look like a point.

- But it also has a periodic structure
that is characteristic of a wave.

« Such a localized wave pulse is
called a wave packet.

@ Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved



The Schrodinger Equation in 1-D of2)

* |f a particle of mass m moves in the presence of a potential
energy function U(x), the one-dimensional Schrédinger equation
for the particle is:

Planck’s constant Particle’s wave function

General ;

One-dimensional ‘72 2 ............... S -,' summnns tanuun, 3
g SR ﬁ a '\If X T sunsansennnnn, 1 a'\If X, 1
Schrodinger — ( ) i) U(x)llf<x, t) — iﬁy
equation: 2m ox? ot

" Particle’s mass " Potential-energy function

* Note that if U(x) = 0, this reduces to the free-particle
Schrodinger equation.
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The Schrodinger Equation in 1-D:
Stationary States @of2)

- If a particle has a definite energy E, the wave function ¥ (x,t)

is a product of a time-independent wave function ¥(x)
and a factor that depends on time t but not position:

Time-dependent ..o, Time-independent wave function
wave fanetions=""" g o oty

_ —iEt/h <.,
for a state of \P(xa t) - ‘p(x)e X et Planck’s constant
definite energy Energy of state divided by 27

« For such a stationary state the probability distribution function
2 2 .
¥ (x,t) =|¥(x) does not depend on time.
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The Schrodinger Equation in 1-D:
Stationary States @of2)

* The time-independent one-dimensional Schrddinger equation
for a stationary state of energy E is:

Pl md\ s constant Time-independent wave function

ST LU DN
-----
......
.....
. .
. .
‘e
‘e
-

.
ot
o

Time-independent

one-dimensional *2 et -

Schridi he d-p(x) ibhe,  ghietoncy _
Schrodinger _ + = F
equation: 2m  dx? U(x) ¥ (x) : Y(x)

Particle’s mass Potential-energy function Energy of state

« Much of Chapter 40 is devoted to solving this equation to find
the definite-energy, stationary-state wave functions ¥(x)
and the corresponding values of E—that is, the energies of
the allowed levels—for different physical situations.

* Video Tutor Solution: Example 40.2
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https://mediaplayer.pearsoncmg.com/assets/_video.true/secs-yf-vts-ex40-2

Newtonian View of a Particle in a Box

 Let’s look at a simple model A particle with mass m moves along a

- - : - straight line at constant speed, bouncing
in WhICh a partICIe IS bound between two rigid walls a distance L apart.
so that it cannot escape to 5
Infinity, but rather is confined H

: : 7
to a restricted region of .. E——
Space.

« Our system consists of a
particle confined between
two rigid walls separated by &
a distance L. 0 I
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Potential Energy for a Particle in a
Box

* The potential energy corresponding to the rigid walls is
Infinite, so the particle cannot escape.

* This model might represent an electron that is free to move
within a long, straight molecule or along a very thin wire.

The potential energy U is zero in the interval
0 < x < L and is infinite everywhere outside

this interval. -l.
o0 iy 00
A \
U(x) U
¥
U=0
X
0 8
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Particle in a Box: Wave Functions,
Energy Levels @of2)

* The energy levels for a particle in a box are:

Magnitude of Planck’s Planck’s constant
momentum constant divided by 27
Energy levels -. % ¥ ¥
. ; 2 212 2,222
for a particle * _Pn N h n“mh

= - —
I 2£n 8mL2K 2ml>?

Particle’s mass Width of box Quantum number

(n=1,2,3,...)

in a box

- Each energy level has its own value of the quantum number
n and a corresponding wave function:

A Quantum number
Stationary-state : .

¥ 3
wave functions ---.., . 2 . nwx ¥ .
for a particle P,(x) = \/%SIH I (n = 1523, « vs )

v,

in a box SR
Width of box

* Video Tutor Solution: Example 40.6
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Particle in a Box: Wave Functions,
Energy Levels @of2)

« Shown are energy levels and associated stationary-state
wave functions for a particle in a box.

(a) E

n=3>5 25E|

n=4 16E1

n=3 9E1

n=>2 4E,

n=1 E] %
E=0
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Particle in a Box: Probability and
Normalization

« Shown are the first three \P(x)

stationary-state wave functions
for a particle in a box (a) and the associated

the associated probability distribution functions

¥ (x)[ (b).

* There are Iopgtions_where there is_ o wiﬂ?— )
zero probability of finding the particle.

-« Wave functions must be normalized so S
that the integral of ‘\P(X)‘Z over all x P PZA, N A
equals 1 (means there is 100%
probability of finding the particle Gl Se— :
somewhere). ’ "

@Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved



Particle in a Finite Potential Well @ o3

« Afinite well is a potential well that has straight sides
but finite height.

 This function is often called a square-well potential.

The potential energy U is zero within the
potential well (in the interval 0 = x = L) and
has the constant value U, outside this interval.

F U

I PP _
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Particle in a Finite Potential Well o3

« Shown are the stationary-state wave functions \P(x)
and corresponding energies for one particular finite well.

* All energies greater than U, are possible; states with
E > U, form a continuum.

@) W) ®) v

Continuum
] Y — Up= 6L} 1pw
n=3 Eg n=73 E3 = S‘OgEl—IDW
\ //_ ‘ =0.8480,
N
— \___ —
n=>2 E2 n=>2 E2 = 2‘43E1—IDW
\ — 04050,
) . E\mw
n=1 E, n=1 E,=0.625E, mpw
x X =0.1040,
0 L 0 L
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Particle in a Finite Potential Well oi3)

« Shown are graphs of the [0
probability distributions for the

first three bound states of a
finite well. n=73

* As with the infinite well, not all
positions are equally likely.

=72
* Unlike the infinite well, there
IS some probability of finding =
the particle outside the well in ! e
the classically forbidden
regions.
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Potential Barriers and Tunneling @of2)

- Shown below Is a potential barrier.

* In Newtonian physics, a particle whose energy E is
ess than the barrier height U, cannot pass from the
eft-hand side of the barrier to the right-hand side.

U(x)
Uy

0 L
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Potential Barriers and Tunneling @of2)

» Shown below is the wave function ¥ (x ) for a free particle
that encounters a potential barrier.

« The wave function is nonzero to the right of the barrier, so
it is possible for the particle to “tunnel” from the left-hand
side to the right-hand side.

The wave function is exponential U(x)
within the barrier (0 = x = L) ...

x
0 " Py
o L : . .
[*+... and ?musmdal outside the barrier.

A A

The function and its derivative (slope) are continuous at x = 0 and
x = L, so the sinusoidal and exponential functions join smoothly.
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Scanning Tunneling Microscope
(STM) @of2)

« The scanning tunneling microscope
(STM) uses electron tunneling to e
create images of surfaces down to the
scale of individual atoms. y i

* An extremely sharp conducting needle \\
IS brought very close to the surface, Surface
within 1 nm or so. electrons

L
 When the needle is at a positive \

potential with respect to the surface, O_Q_Q

electrons can tunnel through the |

surface potential-energy barrier and O Q

reach the needle. Specimen
@Pearson
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Scanning Tunneling Microscope
(STM) @of2)

 This colored STM image shows “quantum wires:” thin
strips, just 10 atoms wide, of a conductive rare-earth
silicide atop a silicon surface.

» Such quantum wires may one day be the basis of
ultraminiaturized circults.
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Applications of Tunneling

* Tunneling is of great importance
In nuclear physics.

« An alpha particle trying to escape
from a nucleus encounters a

Inside the nucleus (r = R),

*
.
.
i QB RS TR S S
.
.

Nucleus : §
potential barrier that results from Uy ~.°nalphaparticle encounters
) a square-well potential due
the combined effect of the ; to the strong nuclear force.
attractive nuclear force and the v
electrical repulsion of the -
remaining part of the nucleus. . I
0
« To escape, the alpha particle R
must tunnel thrOugh thlS barrier Outside the nucleus (r > R), an alpha
' particle experiences a 1/r potential due
to electrostatic repulsion.
@Pearson
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The Harmonic Oscillator @of2)

- Shown is the potential-energy Utx)
function for the harmonic U) = Lk
oscillator.

E

* In Newtonian mechanics the
particle is restricted to the
range from x = -Ato x = A.

* In quantum mechanics the

particle can be found at x > A —A 0 A
or x < -A.
@Pearson
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Energy Levels for a Harmonic
Oscillator

» The allowed energies for a harmonic oscillator are:

Energy levels for a
harmonic oscillator ...

*En _ (n“+ %)ﬁ\/%: (,{ i %)ﬁai (E =0,1,2,... )

%
.

Force Oscillation

Planck’s constant”  Particle’s e
constant angular frequency

divided by 27 mass

* Note that the ground level of energy E, is denoted by the
guantum numbern =0, notn = 1.

* There are infinitely many levels.
» As |x| increases, U = 3 k’x* increases without bound.

@Pearson
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The Harmonic Oscillator @of2)

- Shown are the lowest six energy levels of the harmonic
oscillator, and the potential-energy function U(x).

* For each level n, the value of |x| at which the horizontal line
representing the total energy E, intersects U(x) gives the
amplitude A, of the corresponding Newtonian oscillator.

U(x)

AE = hw E, = 3tw

O
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Wave Functions for the Harmonic

Oscillator

« Shown are the first
four stationary-state
wave functions

¥ (x) for the harmonic
oscillator.

* Ais the amplitude of
oscillation in Newtonian
physics.

U(x)

U(x)

N

y

A
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Probability Distributions for the
Harmonic Oscillator

« Shown are the probabillity distribution functions for the first
four stationary-state wave functions for the harmonic
oscillator.

* The blue curves are the Newtonian probability distributions.
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Modeling a Diatomic Atom

- A pot(_en_tlal-ene_rgy funptlon - .
describing the interaction of — U (approximation)
two atoms in a diatomic
molecule.

 The distance r iIs the
separation between the
centers of the atoms.

When r is near 1o, the potential-energy curve is
approximately parabolic (as shown by the red
curve) and the system behaves approximately
like a harmonic oscillator.
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Measurement in Quantum Mechanics

) Shown IS a methOd for USIng @lncidcnl photon has-...,
phOtOn SCatterlng {0 measure nonzero y-component ‘; @Partlcle

of momentum p, but in a box has

th e X-com p one nt Of zero x-component p,. Zero average

x-component of

momentum of a particle in a ®) Before=""" ..y momenwmp,
hoton—particl ¥ ¥
bOX Eol(;isionl,E;ota/e \/\ ‘ /\‘ -
P, = 0; same ‘ N4 ‘
- Even when we use a photon STSETE ) L
. . after collision.
with the lowest possible
momentum, we find that the % @
. . Photon Photon ™,
state of the particle in the box { detector A detector B
must C h an g e as a I’eSU|t Of @ If scattered p.holon @ [f scattered p‘hotoﬁ
) is detected here, it has  is detected here, it has
the expe”ment P. < 0; hence particle p, > 0; hence particle
hasp, > 0. has p, < 0.
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