B. E. Warren, X-Ray Diffraction

X-RAY SCATTERING BY ATOMS

1.1 CLASSICAL SCATTERING BY A FREE ELECTRON

When an x-ray beam falls on an atom, two processes may occur: (1) the
beam may be absorbed with an ejection of electrons from the atom, or (2)
the beam may be scattered. We shall first consider the scattering process in
terms of classical theory. The primary beam is an electromagnetic wave with
electric vector varying sinusoidally with time and directed perpendicular to
the direction of propagation of the beam. This electric field exerts forces on
the electrons of the atom producing accelerations of the electrons. Following
classical electromagnetic theory, an accelerated charge radiates. This
radiation, which spreads out in all directions from the atom, has the same
frequency as the primary beam, and it is called scattered radiation.

We shall first consider the scattering from a single free electron following
classical theory. One might suppose that this is a waste of time, since we
know that x-ray scattering does not follow classical theory. Experimentally
we observe both an unmodified scattering with the same wavelength as the
primary beam, and a Compton modified scattering with a longer wavelength.
Classical theory predicts only the unmodified scattering. However, there are
several reasons why the intensity of classical scattering is extremely important
for much of what we shall do. (1) The correct wave mechanical treatment of
scattering shows that the sum of the intensities of unmodified and modified
scattering from each individual electron in the atom is closely equal to the
classical intensity per electron. (2) The quantitative unit in which it is
convenient to express the scattered intensity from a sample is the electron
unit. An intensity in electron units /, is the intensity from a sample divided
by the classical intensity from a single electron. (3) The polarization of both
the unmodified and the modified scattering is given correctly by the classical
treatment.

Let us consider a single free electron at the origin of Fig. I.1, with an
unpolarized primary beam directed along the X-axis. We are interested
in the intensity of scattered radiation at a point P which is at a distance R from
the electron at an angle ¢ with the X-axis. We choose the other axes so that
the point P is in the X Y-plane. Since the primary beam is unpolarized, the
electric vector takes with equal probability all orientations in the YZ-plane.
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Z

Fig. 1.1 Classical scattering of an unpolarized primary beam by a single free
electron at the origin.

We can choose one direction E, and later average over all directions. Since
it is a vector, E, can be resolved into components Eyy- and Eyy. If » is the
frequency of the primary beam, the instantaneous values of the electric
fields are

€0y = Eoy- sin 2mt, €0z = Eoz sin 2mt.

Considering first the component ¢,,-, a force is exerted on the electron which
produces a Y-component of acceleration

Jy  eEgy-

sin 2mt,

where e and m are the charge and mass of the electron.

From electromagnetic theory an accelerated charge radiates. Figure 1.2
illustrates a charge ¢ with an acceleration a, and at distance R, the electric
field e which results from the acceleration. In terms of cgs units, which for
x-ray scattering are the simplest, the electric field is given by

gasina

¢’R
where c is the velocity of light. The electric field is in the plane of R and a,
and its magnitude depends upon the component a sin =. This leads to a very

, (1.1)

Fig. 1.2 lllustration of the electric field
¢, produced by a charge ¢ with accelera-
tion a, according to classical electro-
magnetic theory.
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simple and useful rule in considering problems of scattering and polarization.
With the eye placed at the point of observation P, the component of acceler-
ation a sin a, which is seen, determines the electric field produced.
By means of Eq. (1.1), we can now express the instantaneous value of the
electric field due to the acceleration a;-:
*Eoy

e .
€, = —=- sin 2zt cos ¢.
mc R

Expressed in terms of an amplitude, €,-- = E;-. sin 27y where the amplitude
is given by ‘

Similar reasoning applied to the initial amplitude E,; leads to
E, = eeEgz .
mc R
The resultant amplitude E at the point of observation is then given by
4
2 2 e 2
E- = E-z + Ez" = _c"_Ré(ESZ + Egl’ COS2 ¢).

m?

We now let E, take with equal probability all orientations in the YZ-plane
and consider the appropriate averages

(Eoy) + (Eoz) = (Ep).
Since the Y- and Z-axes are equivalent,

(Eqy) = (Eoz) = KEp)

(E? = (B} —&. (' + cos” 4’). (1.2)

and

m*c'R® 2

The observable quantity is the intensity /, where by intensity we shall always
mean energy per unit area per unit time. In cgs units, the intensity is given by

I1=< (B,
8"( ,

where E is the amplitude or maximum value of a sinusoidally varying field.
Multiplying both sides of Eq. (1.2) by ¢/87, we obtain

[ =1 e (1 + cos® ¢\,. (1.3)

0 o
m*c'R® 2
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Equation (1.3) gives the intensity of classical scattering by a single free
electron, and it is often called the Thomson scattering equation. The factor
(1 + cos® §)/2 is called the polarization factor for an unpolarized primary
beam. If the primary beam is not unpolarized, the polarization factor takes
a different form. The numerical value involved in Eq. (1.3) is important.
Since we are using cgs units, R is in cms, and

¢ _ (4.802 x 10719
m%*  (9.107 x 10~%)%(2.998 x 10%)*

At a few centimeters from a single electron, the ratio J/I; is therefore of the
order 10~%%, and one might think that the intensity of scattered x-rays would
be far too small to measure. However when we recall that in even 1 milligram
of matter the number of electrons is approximately 10%°, we see that the
intensity of scattered radiation from a sample of matter is not necessarily
too small to measure.

= 7.94 x 107 cm?

1.2 POLARIZATION BY SCATTERING

For x-rays there are no Nicol prisms or polaroid sheets to produce polar-
ization. However, scattering at any angle will produce partial polarization,
and scattering at 90° produces complete linear polarization. An example of
a polarizer and analyzer is given by Fig. 1.3. An unpolarized x-ray beam
directed along the X-axis falls on a scatterer such as a block of carbon at O.

o Fig. 1.3 A double scattering experi-
ment which illustrates the production
of a polarized beam by scattering at
90°, and the analysis of the polarized
beam by a second scattering at 90°.

XI

The electrons in the block are accelerated in all directions in the YZ-plane.
To determine the nature of the scattered radiation from O to O’, we use the
rule which was discussed in connection with Eq. (1.1). Placing the eye at
O’ and looking back toward the scatterer at O, we see only the ¥Y-component
of the electron accelerations. Hence the scattered radiation from O to O’
will be linearly polarized with electric field in the Y-direction. The scattering
at 90° has produced a polarized beam.



1.3 SCATTERING FROM SEVERAL CENTERS 5

To analyze the polarization, imagine a second scatterer at O’. The
electrons at O’ will be accelerated only in the Y’-direction. With the eye
placed at X', we see the full component of the Y’-acceleration, and hence
there will be a scattered beam along the X’-axis, which is polarized with
electric field in the Y'-direction. Placing the eye at Y’, we see no component
of the Y’-acceleration of the electrons and hence the intensity of scattering
along the Y’-axis is zero. A recorder pivoted at O’ and moving in the X' Y'-
plane, would record a maximum at X’ and zero at Y’. The second scattering
at 90° plays the role of an analyzer.

Since the Bragg reflections from a crystal are nothing but sharp maxima
in the scattered radiation, any Bragg reflection at approximately 20 = 90°
is a linearly polarized beam. Scattering is often done with blocks of low
atomic number such as carbon. In this case an appreciable fraction of the
scattered intensity is due to the Compton modified component. However,
the polarization of both the unmodified and the Compton modified scattering
follows exactly the same rules that have been developed here for classical
scattering.

1.3 SCATTERING FROM SEVERAL
CENTERS, COMPLEX REPRESENTATION

Our next problem is to formulate a simple procedure for handling the
scattering from several centers. In Fig. 1.4 we have a plane parallel beam
directed toward the right. Scattering takes place from several centers, 1, 2, 3,
n,and weareinterested in the intensity of scatteringat a point of observation P.

—— e
1 Fig. 1.4 Scattering of a plane parallel

————s primary beam by several scattering centers.
2 X The lengths X, are the total distances from

T3 P a wave front W in the primary beam to the

3 point of observation P.
3

The relative phases at P are determined by the path lengths X;, X, X,, X,
from a wave front W in the primary beam to the point P. The instantaneous
value of the electric field at P, in each of the scattered waves, is given by the
usual expression for a traveling wave:

2”X"), (1.4)

e, = E, cos (vat - —
A



6 X-RAY SCATTERING BY ATOMS 1.3

where » is the frequency, 4 the wavelength, and the amplitudes E,, E,, E,
are, in general, different from one another. Expanded, the equations are
written

€, = E, cos 2mvt cos 27X ,[A + E, sin 2avt sin 27X, /A

The resultant instantaneous field at P is given by the sum

e=Ye,=cos2mt I E, cos 22X + sin 2wt 3 E, sin 2—1;13 :
Let
> E, cos 2“3(" = E cos ¢,
(1.5)
Y E,sin 27X E sin ¢.

With these abbreviations, the instantaneous field at P is given by
e = E(cos 2mvt cos ¢ + sin 2yt sin ¢) = E cos 2nvt — ¢).

Hence the quantity E, which was introduced in Egs. (1.5), is the amplitude
of the resultant field at P. But the only quantity that we can observe at P
is the intensity, and in cgs units this is given by

[ = cE®
8=
Hence it is only E? that is of interest to us, and from Eqgs. (1.5) this is given by
2 2
E= (z E, cos 2";" ") + (Z E, sin 2";( ) (1.6)

To obtain the intensity, we need only the quantity E* given by Eq. (1.6).
We shall now develop the method of the complex exponential, which is
much simpler to use in diffraction problems, and which can be justified by

showing that it leads to the same value of E2. In terms of i = v —1, we write
Eq. (1.4) in the complex exponential form

e =E ei[zrvl—(zwx,.ll)]
n n .

Since e~ = cos x — isin x, we can write

27X,

— iE, sin

€, = e‘g""(E,, cos 2";{").

Forming the sum,

2
e=Je¢, = e“"‘"'(z E, cos ..le,, — iY E,sin

21rX,,)
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We next write the complex conjugate €*, which for any complex quantity is
obtained by replacing i by —i:

) 2
& = e“z""‘(z E, cos 2_11)X,, + i) E,sin W;(") .

The product e€* is then given by

2 2
€e* = (z E, cos 27’;”) + (Z E, sin 2";(") . (1.7
Comparing Eqgs. (1.6) and (1.7), we see that
ee* = E2. (1.8)

Hence by proper use of the complex exponential, we arrive at the quantity
E?, and this is all that we need to obtain the intensity /.

We shall use the complex exponential representation since it generally
simplifies the mathematical manipulations. What we have just proved can
be formulated as a set of rules. For each scatterer write in complex form the
instantaneous value of the electric field at the point of observation. Sum
these values, and form the complex conjugate of the sum. The product of
the sum and its complex conjugate is then equal to E? the square of the
amplitude. The intensity at the point of observation is given by 7 = cE?/8x.

1.4 SCATTERING BY AN ATOM

We first consider the classical scattering from a group of electrons confined
to a small volume such as the volume of an atom. The conditions are shown
by Fig. 1.5. The primary beam, of amplitude E, polarized so that E, is
normal to the plane of the paper, has a direction represented by the unit
vector s,. The electrons are clustered about point O, the position of each
represented by a vector r,. We consider scattering at a point of observation
P, at a large distance R from the electrons, in a direction given by a unit
vector s.

In terms of a wave front through L X1,
O, the instantaneous value of the field |
in the primary beam acting on electron 20 X
. . 0 2
n is given by ! >
i R

¢ = Eycos (mz - Z"Xl).
A
To represent the magnitude and phase  Fig. 1.5 Scattering by a group of

of the scattered beam at P due to clectrons at positions r,. The unit

. vectors s, and s give the direction of
clectron #, we can multiply by the he primary beam and the direction to

classical factor for an electron and the point of observation P.
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consider the total path as X; 4+ X,:

E,é® 27
€, = mc‘;Xz Ccos [2‘””' - T(Xl + Xg):l-

This neglects a 180° jump in phase in the scattering, but this is of no impor-
tance to the present problem since it is the same for all the electrons.
Considering that the source and the point of observation are both at distances
very large compared to the length |r,|, we can make the usual plane wave
approximations. In the denominator X, — R, and in the cosine

X1+X2—->l',,'so+R—rn°S=R—(S—So)°l'n.

Expressed in terms of the complex exponential, the sum of the instantaneous
fields at P is given by

€ = Eee® HTIV-(RIN) S l2ri/ ) a—sq)'T, (1.9)
mczR n

However, electrons do not scatter in the manner predicted by classical
theory. From both theory and experiment we know that there are two kinds
of scattering: (a) unmodified scattering (same wavelength) and (b) Compton
modified scattering (longer wavelength). In scattering from a crystal, it
is the unmodified scattering which gives rise to the Bragg reflections. The
modified scattering from the different electrons is completely incoherent
because of the change in wavelength, and accordingly it produces only a
diffuse background. A correct treatment of x-ray scattering involves wave
mechanical methods which we are not in position to consider here. However,
the results of the wave mechanical treatment can be expressed as simple
rules which allow us to calculate the unmodified and modified scattering
from an atom.

To calculate the unmodified scattering from an atom, we consider that
each electron is spread out into a diffuse cloud of negative charge, charac-
terized by a charge density p expressed in electron units. The quantity p dV
is the ratio of the charge in volume 4V to the charge of one electron, so that
for each electron | p dV = 1. The wave mechanical treatment then says that
the amplitude of unmodified scattering from the element p dV is equal to
p dV times the amplitude of classical scattering from a single electron. To
get the total amplitude of unmodified scattering from one electron, we must
integrate over the volume occupied by the electron, and in doing this make
proper allowance for the phase of the contribution from each element p dV.

The instantaneous value of electric field for the unmodified scattering,
due to one of the electrons in an atom, is then given directly by Eq. (1.9),
by considering that instead of electrons at positions r, we have charge
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elements p dV at positions r, and by replacing the sum by an integral:

€, = .E0:2 e2n‘[vt—(R/l)]fe(hill)(s—so)"’P dv. (110)
mc°R

The quantity represented by the integral is called f;, the scattering factor per

electron

Jo= f eBriiie=s"y dv. (1.11)

Evidently f, is the ratio of the amplitude of unmodified scattering from one
electron to the amplitude scattered by an electron according to classical
theory. Stated in another way, f, is the amplitude of unmodified scattering
per electron, expressed in electron units.

Fig. 1.6 Relation between the s — s,
vector and the vector r for an atom
centered at O.

Of course it is not true that the charge distribution has spherical sym-
metry for each electron in the atom. However for closed groups of inner
electrons, spherical symmetry exists, and we can work with the combined
charge distribution for the electrons of a closed group. By assuming spherical
symmetry for the charge distribution p = p(r), and taking the origin at the
center of the atom, we obtain a simple expression for f,. In terms of the
quantities represented by Fig. 1.6, (s — sp) - r = 2 sin 0 r cos ¢, and with
the abbreviation

k=4-ns.m0, (1.12)
A

We can write

fe =f f e'¥¢%¢s(r)2mr? sin ¢ d¢ dr.
r=0 J ¢=0

The integration with respect to ¢ is readily performed, and we obtain

kr

For an atom containing several electrons, the amplitude of unmodified
scattering per atom is the sum of the amplitudes per electron:

f, =fw41rr2p(r) sin kr dr. (1.13)
0

f=2 =2 f m4m~2pn(r) sinkr 4, (1.14)

n JO kr
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The quantity f plays an important role in x-ray diffraction theory, and it is
usually called the atomic scattering factor. Evidently fis the amplitude of
unmodified scattering per atom expressed in electron units (amplitude in
units of the amplitude from a single electron according to classical theory).
To compute f, we need only to know the radial dependence of the electron
density in the atom Y, p,(r). For any atom, f is a function of (sin 6)/4,
since it is a function of k. Calling Z the number of electrons in the atom,

> f dmrtp(r) dr = Z,
n 0

and f approaches Z at small values of (sin 8)/A.

The simple treatment of the atomic scattering factor, which we have
given here, is based on two assumptions: (a) the x-ray wavelength is much
smaller than any of the absorption edge wavelengths in the atom, and (b) the
electron distribution in the atom has spherical symmetry. If the first con-
dition is not satisfied, a dispersion correction is necessary. The correction
can be expressed in the form

f=h+Af"+idf", (1.15)
where f is the corrected scattering factor, f; is the value found in the tables,
and Af’, Af" are the real and imaginary parts of the dispersion correction.
The imaginary part Af” represents a small shift in phase of the scattered
radiation. The angular dependance of Af’and Af” is much smaller than that
of fo- An example in which the second condition is not satisfied is given by
the diamond crystal. The lack of complete spherical symmetry in the electron
distribution in carbon allows weak Bragg reflections from diamond which
could not exist if the distributions had complete spherical symmetry.

To compute the intensity of modified scattering from an atom, we use
another result from the wave mechanical treatment. For each electron
considered individually, the intensity of unmodified scattering plus the
intensity of modified scattering is equal to the intensity of classical scattering
per electron. Written in terms of an unpolarized primary beam, and calling
i, the intensity of modified scattering per electron expressed in electron units:

4 2 4 2
I, e (l 4+ cos 20)/}2 + 1, e (l 4 cos 20)ie

m3c*R? 2 m2c'R® 2

e /1 4 cos? 20)
=1, (

m®c*R? 2
and hence i/, = 1 — f2. Since the modified scattering from the different

electrons is incoherent, the intensity of modified scattering per atom is the
sum of the intensities of modified scattering from the electrons:

VA4
i(M) = 3 i =Z—'§1ff,,. (1.16)
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To illustrate the use of Eqs. (1.14) and (1.16), let us suppose that the
electron density for each of the three electrons in neutral Lican be represented
by a hydrogen-like expression of the form

_ e—(2r/n)
P d®
where for each K electron a;- = 0.20 A and for the L electron a;, = 1.60 A.
The expression is already normalized so that

@ e—(:’.r/n)
I 47r? dr = 1.
0

ma®

From Eq. (1.13),

© —(27/a) o .
J‘ 4y & sin ki d 1
(1]

fe = 3 r= . 2192
ma kr [1 4+ (27a sin 6/1))

and hence

ch =

1 B 1
[L 4 (2may sin O/A)]2 Jor = [1 + (2may, sin O/

From Eq. (1.14), the atomic scattering factor for Li is given by
Jui=2fx + for-

Using Eq. (1.16), the intensity of modified scattering in electron units is
given by

iM)=3 =2f}x — f2.

Figure 1.7 shows plots of /., /.., f, and i(M) against (sin 0)/A for a neutral
Li atom, which for purposes of illustration is supposed to have the assumed
charge distribution.

3
i(M)
2_
Fig. 1.7 Values of f,;, f.x, f, and
I (iM) for an assumed charge distribu-
b tion in neutral Li.
! Jex
& (sin @)/
ol L1111 1

01 02 03 04 05 06 07 08 09
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The above treatment is oversimplified. For the modified scattering there
is an additional small term coming from cross interaction between the charge
densities of different electrons. There is also the Breit Dirac factor R =
(¥'[v)3, where +' is the frequency of the modified scattering and » is the
frequency of the primary beam. The intensity of modified scattering is
obtained by multiplying i(M) by the Breit Dirac factor R.

In general it is not necessary to evaluate the various quantities from
first principles. Tables of the atomic scattering factor f;, the dispersion
corrections Af’and Af”, and the modified scattering per atom /(M) are given
in the International Tables.! For X electrons only, the dispersion correction
terms Af’ and Af” are given in James.? Dispersion corrections for all the
electrons have been tabulated by Dauben and Templeton.? For a thorough
treatment of the x-ray scattering by atoms, reference should be made to
James.?
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PROBLEMS

1.1 a) An unpolarized primary beam of intensity /, is scattered according to
classical theory by a single electron. Show that the total scattered power
(integral of intensity over area) is given by

1"—ﬁ « I
T3 \met) ™

b) What is the total scattered power if the primary beam has an intensity /,
and is linearly polarized?

1.2 Assuming classical scattering and incoherency (the intensity from » electrons
is n times the intensity from one electron), show that for elements of low atomic
number the total scattered power per gram Py,, is given by Pg,, = 0.20/,.

1.3 A parallel x-ray beam limited by an opening of area 0.50 cm? falls upon a
0.10 gm carbon block close to the opening, as shown by Fig. 1.8. The window of
the ionization chamber is 2 x 2 cm, and 5 cm from the carbon block. Assume that
for scattering at 90°, the electrons scatter according to classical theory and in-
coherently (the intensity from » electrons is n times theintensity from one electron).
In position 4 with the block removed, the ionization current is found to be about
2500 times greater than in position B with the block in place. Making reasonable
approximations, calculate the number of electrons in the carbon atom.

1.4 A primary beam of wavelength 4 = 1.0 A, intensity /,, small cross-sectional
area a,, and power P, = lya,, falls upon a large flat-faced carbon block. Scattered
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1

lo

Fig. 1.8 Scattering by a carbon block =
of an unpolarized primary beam, as
considered in Problem 1.3.

radiation is observed at 10 cm from the point of impact. The primary and scattered
beams are at 90° to one another, and each makes 45° with the face of the block.
Assume that the electrons scatter according to classical theory and incoherently.
Making reasonable approximations, what is the value of 7/P,? [Hint: Set up the
contribution dI from a small volume a, dx, and allow for absorption. For carbon,
and A = 1.0 A, the mass abs. coef. is s,, = 1.37 cm® gm™1. Answer: I/P, = 4.4 x
105 cm™2))

1.5 The unpolarized x-ray beam of Fig. 1.9 is directed in the XZ-plane at an angle
20 to the X-axis. It is scattered by a carbon block at O. The scattered radiation
arriving at O’ is partially polarized and we call its intensity I, at point O’. This
partially polarized beam is scattered classically by an electron at O’. The intensity
of the scattering from O’ is measured at a point P distance R from O’ and at an angle
¢ with the X-axis. Deduce an expression for 7 in terms of I,, R, 8, and ¢,

a) if Pis in the X'Y’-plane;
b) if Pis in the XZ’-plane.

Answer part (b):

[=1 et 1 4+ cos?20cos? ¢
T 0 mcAR? 1 + cos220

[Note: The angular factor illustrates the polarization factor for a crystal mono-
chromated beam obtained by using a crystal at O.]

Fig. 1.9 Double scattering of an
initially unpolarized beam. The
beam scattered by O which falls onan
electron at O’ is partially polarized.
Illustration of Problem 1.5.

1.6 The instantaneous value of the electric field, at the point of observation, due
to a number of beams, is

€ =3 = 3 Eeitimion,
n n
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The frequencies » of the beams are all the same, but the phases ¢, are independent
of each other and vary randomly with time. This is one example of a set of beams
which can be called incoherent with respect to one another. Show that the average
intensity is the sum of the individual intensities:

<I> = zln-

1.7 Show that for any atom at very small values of (sin 0)/4, both the scattering
factor f and the intensity of modified scattering /(M) are parabolic functions of
(sin 6)/4, and hence both curves intersect the axis of ordinates with zero slope.

1.8 For the hydrogen atom in the normal state, wave mechanics gives the
electron density as

p = (e~?rla)[nqad, a=053A, fp dv = 1.

a) Derive expressions for fand /(M) as functions of (sin 0)/A.
b) Compute values of fand /(M) for (sin 6)/2 = 0.0, 0.2, 0.4, and compare with
the tabulated values.

1.9 Assume that for each of the two electrons in He, the electron density is given
by

p = (e?rl)ngd, a=032A, fp dv = 1.

If a beam of CuKa« (A = 1.54 A) falls on a single He atom, at what scattering angle
20 is the intensity of unmodified scattering equal to that of the modified scattering?

1.10 A beam of MoKa (4 = 0.71 A) falls on a single carbon atom. Using values
from the tables, compute the ratio of the total intensity (unmodified plus modified)
to that expected if the six electrons scattered according to classical theory and
incoherently. Evaluate for (sin 6)/2 = 1.1.

1.11 -Assume a model for the carbon atom which is far from reality. Assume that the
two K electrons are spread uniformly over the surface of a sphere of radius rg =
0.20 A and that the four L electrons are spread uniformly over the surface of a
sphere of radius r;, = 1.50 A. Compute and plot f, as a function of (sin 6)/1 from
0.0 to 0.6 in steps of 0.1. What incorrect feature in f has been produced by the
assumption of spherical shells ?



