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ourier Series

n 1807, the French mathematician and physicist Joseph Fautienitted a paper

on heat conduction to the Academy of Sciences of Paris. In this paper Fourier made
the claimthatany functiofi (x) can be expanded into an infinite sum of trigonometric
functions,

f(x) = % + Z[ak cogkx) + b sin(kx)], for—m <x <.
k=1

The paper was rejected after it was read by some of the leading mathematicians of
his day. They objected to the fact that Fourier had not presented much in the way of
proof for this statement, and most of them did not believe it.

In spite of its less than glorious start, Fourier’s paper was the impetus for major
developments in mathematics and in the application of mathematics. His ideas forced
mathematicians to come to grips with the definition of a function. This, together
with other metamathematical questions, caused nineteenth-century mathematicians
to rethink completely the foundations of their subject, and to putit on a more rigorous
foundation. Fourier's ideas gave rise to a new part of mathematics, called harmonic
analysis or Fourier analysis. This, in turn, fostered the introduction at the end of
the nineteenth century of a completely new theory of integration, now called the
Lebesgue integral.

The applications of Fourier analysis outside of mathematics continue to multiply.
One important application pertains to signal analysis. Hér&,) could represent
the amplitude of a sound wave, such as a musical note, or an electrical signal from a
CD player or some other device (in this casepresents time and is usually replaced
by t). The Fourier series representation of a signal represents a decomposition of
this signal into its various frequency components. The term&siand cokx
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oscillate with numerical frequenéyf k/2z. Signals are often corrupted by noise,
which usually involves the high-frequency components (s large). Noise can
sometimes be filtered out by setting the high-frequencyfiierts (theax andby
whenk is large) equal to zero.

Data compression is another increasingly important probl®ne way to ac-
complish data compression uses Fourier series. Here thesgo&e able to store or
transmit the essential parts of a signal using as few bitafofination as possible.
The Fourier series approach to the problem is to store (ositni) only thosey and
by that are larger than some specified tolerance and discardshe~ortunately, an
importanttheorem (the Riemann—Lebesgue Lemma, whiclrileeorem 2.10) as-
sures us that only a small number of Fourier coefficientsigréfcant, and therefore
the aforementioned approach can lead to significant dat@@ssion.

12.1 Computation of Fourier Series

The problem that we wish to address is the one faced by FoSigipose thaf (x)
is a given function on the interval-z, =]. Can we find coefficients, andb,, so
that

+ ) [ancosnx +bysinnx].  for—7 <x <z?  (1.1)
n=1

ao
f(x)=—=

(X) >
Notice that, exceptfor the tereg/2, the series is an infinite linear combination of the
basic terms sinx and cosx for n a positive integer. These functions are periodic
with period 2z /n, so their graphs trace througtperiods over the intervél-r, 7 1.

Figure 1 shows the graphs of cosind cos %, and Figure 2 shows the graphs of
sinx and sin %. Notice how the functions become more oscillatorymascreases.

i

—T T Y
v 1 _

Figure 1 The graphs of cos x Figure 2 The graphs of sin x

and cos 5x. and sin bx.

The orthogonality relations

Our task of finding the coefficiengs, andb, for which (1.1) is true is facilitated by
the following lemma. These orthogonality relations are ofihe keys to the whole
theory of Fourier series.

! Be sure you know the difference between angular frequénieythis case, and numerical frequency. It
is explained in Section 4.1.
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LEMMA 1.2 Letpandqbe positive integers. Thenwe have the followamthogonality relations.

/ sinpxdx = / cospxdx =0 (1.3)

/ sinpx cosgxdx =0 (1.4)
i 7, ifp=q

dx = 15

/ﬂcospxcosqx X {O, it p £ q (1.5)
T . _|m, ifp=q

/n sinpx singx dx = {O, it p £ q (1.6)

We will leave the proof of these identities for the exercises

Computation of the coefficients

The orthogonality relations enable us to find the coefficgeptandb, in (1.1).
Suppose we are given a functidrthat can be expressed as

| .
f = — K b k 1.7
00 ==+ > “lax coskx + by sinkx] (1.7)

k=1

ontheinterval—x, 7]. Tofindag, we simply integrate the series (1.7) term by term.
Using the orthogonality relation (1.3), we see that

/ f (X) dx = ag7. (1.8)
To find a, for n > 1, we multiply both sides of (1.7) by cox and integrate
term by term, getting

/ f (x) cosnx dx = / (% + Z[ak coskx + by SinkX]) cosnx dx
-7 -7 k=1

T

= & cosnx dx

-1

00 x (1.9)
+ Z ax / coskx cosnx dx
k=1 B

+ Z bk/ sinkx cosnx dx.
k=1 Y~

Using the orthogonality relations in Lemma 1.2, we see tHaha terms on the
right-hand side of (1.9) are equal to zero, except for

T

an cosnx cosnxdx = ay - 7.

-7
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Hence, equation (1.9) becomes

/ f(x)cosnxdx =a, -7, forn>1,

e

S0, including equation (1.83,

1 T
ap = ;/ f (x) cosnxdx, forn> 0. (1.120)

g

To findb,, we multiply equation (1.7) by sinx and then integrate. By reasoning
similar to the computation af,,, we obtain

1 T
b, = ;/ f(x)sinnxdx, forn> 1. (1.12)

g

Definition of Fourier series

If fisa piecewise continuous function on the intefvak, 7], we can compute the
coefficientsa, andb, using (1.10) and (1.11). Thus we can define the Fourier series
for any such function.

DEFINITION 1.12 Suppose thaf is a piecewise continuous function on the
interval[—m, 7r]. With the coefficients computed using (1.10) and (1.11) , we
define theFourier series associated to f by

Fox) ~ 2 4 > " [an cosnx + by sinnx] . (1.13)
2 n=1
The finite sum
g N
SN(X) = = + Y [a, cosnx -+ by sinnx] (1.14)
2 n=1

is called thepartial sum of order N for the Fourier series in (1.13). We say that
the Fourier series convergesxaif the sequence of partial sums converges at

N — oo. We use the symbot in (1.13) because we cannot be sure that the series
converges. We will explore the question of convergenceemtixt section, and we
will see in Theorem 2.3 that for functions that are minimallgll behaved, the-

can be replaced by an equals sign for most values of

Find the Fourier series associated with the function

f(x) = 0, for -7 < x < 0,
|z —x, for0O<x <.

2We used the expressi@g/2 instead ofy, for the constant term in the Fourier series (1.7) so formulas
like equation (1.10) would be true for= 0 as well as for largen.
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We compute the coefficiemp using (1.8) or (1.10). We have

aozl/. f(x)dx:l/(nx)dx:z.
T J_ 7 Jo 2

T

Forn > 1, we use (1.10), and integrate by parts to get

1 /7 1 /7
ap = — f(x)cosnxdx = — (r — X) cosnx dx
T J_ 5 T Jo
1 /7 i
= — (r — x)dsinnx
nm 0

1 .
= —(w — X) sinnx
nmw

l T
+ — / sinnx dx

1
= n2—(1 — cosnm).
T

Thus, since cosr = (—1)", the even numbered coefficients akg = 0, and the
odd numbered coefficients aag,,1 = 2/[7(2n + 1)?] for n > 0.
We computeb, using (1.11). Again we integrate by parts to get

b, = E/ f (X) sinnxdx = 1/ (r — X) sinnx dx
T J_n T Jo

=—— (r — X) dcosnx
nmw Jo

1
= ——(m — X) cosnx
nm

s l T
- — / cosnx dx
0 nmw Jo

la,l and Ib, _ 2
The magnitude of the coefficients is plotted in Figure 3, wgttl in black and
1 |bn| in blue. Notice how the coefficients decay to 0. The Fourieesdor f is
T 2eacod2n+1X = Sinnx
fOO~Z+=Y =+ . (1.16)
% 10 20 30 4 = n=0 (2n+1)2 1 N 0

Figure 3 The Fourier coefficients

for the function in Example 1.15. Let's examine the experimental evidence for convergendeefourier series
in Example 1.15. The partial sums of orders 3, 30, and 300h@Fourier series
in Example 1.15 are shown in Figures 4, 5, and 6, respectiMalythese figures
the function f is plotted in black and the partial sum in blue. The evidenice o
these figures is that the Fourier series convergeb(i0, at least away from the
discontinuity of the function at = 0.
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/) v X 0 X

X

- 0 b1 - 0 T -7 0 T
Figure 4 The partial sum of Figure 5 The partial sum of Figure 6 The partial sum of
order 3 for the function in order 30 for the function in order 300 for the function in
Example 1.15. Example 1.15. Example 1.15.

Fourier series on a more general interval

It is very natural to consider functions defined [orr, 7] when studying Fourier
series because in applications the argumerg frequently an angle. However,
in other applications (such as heat transfer and the vilgatiring) the argument
represents a length. In such a case itis more natural to @tbat is in an interval
of the form[—L, L]. Itis a matter of a simple change of variable to go frierx, 7|

to a more general integral.

Suppose thaff (x) is defined for—L < x < L. Then the functionF(y) =
f(Ly/m) is defined for-r <y < w. For F we have the Fourier series defined in
Definition 1.20. Using the formulg = 7x/L, the coefficients, are given by

a = i/ F(y) cosny dy
T J_

g

= l/ f (ﬂ) cosnydy
T ) n T

1 L
= —/ f(x) cos—mX dx.
L L

The formula forb, is derived similarly. Thus equations (1.10) and (1.11) aee t
special case foL = 7 of the following more general result.

THEOREM 1.17 If f(x) = ap/2+ Y no4la,cosnmx/L) + by sin(nzx/L)] for —L < x < L, then

L
a = 1/ fx) cos X dx, forn > 0, (1.18)
L), L
L
by = 1/ fo0sin dx,  forn > 1. (1.19)
L/, L

Keep in mind that Theorem 1.17 only shows tifaf can be expressed as a
Fourier series, then the coefficieatsandb, must be given by the formulasin (1.18)
and (1.19). The theorem does not say that an arbitrary fumctin be expanded into
a convergent Fourier series.
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The special case when= 0in (1.18) deserves special attention. Since ces0
1, it says
1 L
ag= — / f (x) dx.
LJ L

Thusag/2 is the average of over the interval—L, L].
We will also extend Definition 1.12 to functions defined onititerval[—L, L].

DEFINITION 1.20 Suppose thaf is a piecewise continuous function on the
interval[—L, L]. With the coefficients computed using (1.18) and (1.19), we
define theFourier series associated to f by

f(x) ~ % + i [an cos(nLLX> + by sin (nLLXﬂ . (1.22)
n=1

Even and odd functions

The computation of the Fourier coefficients can often bdifatéd by taking note
of the symmetries of the functioh.

DEFINITION 1.22 A function f (x) defined on an interval L < x < L is
saidtobevenif f(—x) = f(x)for—L < x < L,andoddif f(—x) = — f (x)
for—L <x<L.

The graph of an even function is symmetric abouttfeis as shown in Figure 7.
Examples includef (x) = x? and f (x) = cosx. The graph of an odd function is
symmetric about the origin as shown in Figure 8. Exampldsidef (x) = x3 and
f (X) = sinx.

Jx) f(X)

\ / f(-a) = ~f(a)
—a a /\ a X
L\ 0 Lt - -a 0 \/L

fl=a) = fla)

Figure 7 The graph of an Figure 8 The graph of an odd
even function. function.

The following properties follow from the definition.

PROPOSITION 1.23 Suppose thaf andg are defined on the intervalL < x < L.

1. If both f andg are even, therig is even.
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2. If both f andg are odd, therfg is even.
3. If f isevenandis odd, thenfgis odd.

4. If f is even, then
L L
/ f(x)dx:Z/ f (x) dx.
—L 0

L
/ f(x)dx =0.

L

5. If fisodd, then

We will leave the proof for the exercises. If we remember thatintegral off
computes the algebraic area under the graph, giarts 4 and 5 of Proposition 1.23
can be seen in Figures 7 and 8.

The Fourier coefficients of even and odd functions

Parts 4 and 5 of Proposition 1.23 simplify the computatiotnefFourier coefficients
of a function that is either even or odd. For examplef ifs even, then, since
sin(nzx/L) is odd, f (x) sin(nzx/L) is odd by part 3 of Proposition 1.23, and by
part 5,

1 [t . hmX
br':f/,_ f(x)sdex=0.

Consequently, no computations are necessary tobfindJsing similar reasoning,
we see thaff (x) cognzx/L) is even, and therefore

L L
an:%/L f(x)cos?dx:%/; f(x)cosnLLde.

Frequently integrating from O th is simpler than integrating from L to L.

Just the opposite occurs for an odd function. In this casagtlaee zero and the
b, can be expressed as an integral from Q td\Ve will leave this as an exercise. We
summarize the preceding discussion in the following thewore

THEOREM 1.24 Suppose thaf is piecewise continuous on the interyall, L].

1. If f(x)is an even function, then its associated Fourier seriesmitlve only
the cosine terms. Thatig,(x) ~ a/2 + Y - ; @, cognzx/L) with

2 L
ap = —/ f(X) cos—mx dx, forn=>0.
L Jo L

2. If f(x) is an odd function, then its associated Fourier series mitblve only
the sine terms. That isf,(x) ~ >_° ; by sin(nzx/L) with

L
bn:E/ f(x)sinwdx, forn> 1.
L Jo L
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Ib,

0

EXAMPLE 1.25 O

0

hHTTTTTTInmnmmvm i
10

20 30

Figure 9 The Fourier coefficients
for the function in Example 1.25.

Let’s look at another example of a Fourier series.

Find the Fourier series associated to the funcfior) = x on—7 < X < 7.

The function f is odd, so according to Theorem 1.24 its Fourier series will
involve only the sine terms. The coefficients are

b, = E/ X sin(nx) dx.
T Jo

Using integration by parts, we obtain

2 (—mcosn 1/ —n+l
bn=—<u+—/ cosnnxdx):Z( ) .
b n n 0 n

Thus, the Fourier series df(x) = x on the interval—=, 7] is

o (71)n+1 )
foo~2)" —— sinnx. (1.26)
n=1

0

The magnitude of the coefficients is plotted in Figure 9. @&hare not shown,
since they are all equal to 0. The partial sums of orders 5add 51 for the Fourier
series in (1.26) are shown in Figures 10, 11, and 12 resgéctiin these figures
the functionf (x) = x is plotted in black and the partial sum in blue. These figures
provide evidence that the Fourier series converge$(to, at least on the open
interval (—m, ). At x = £ every term in the series is equal to 0. Therefore the
series converges to 0 atr, but nottof (£7) = +x.

T T I
0 0 0
X X X
—‘(L 0 b — 0 T — 0 b
- T
—TT
Figure 10 The partial sum of Figure 11 The partial sum of Figure 12 The partial sum of
order 5 for f(x) = x. order 11 for f(x) = x. order 51 for f(x) = x.

EXAMPLE 1.27 1 Compute the Fourier series for the saw-tooth wévgraphed in Figure 13 on the

interval[—1, 1].

The graph in Figure 13 on the intenjat1, 1] consists of two lines with slope
+2 and—2 respectively. The formula fof on the interval-1 < x < 1 is given by

Fx) = 1+2x, if -1<x<0,
S l1-2x, ifo<x<1.
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Figure 14 The Fourier
coefficients for the function in
Example 1.27.

EXAMPLE 1.28 O
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—1+

Figure 13 A saw-tooth shaped wave.

The functionf is even and is periodic with period 2.
Since f is an even function, we see using Theorem 1.24 that only tkimeo
terms appear in the Fourier series, and the coefficientsiaza by

1
ap = 2/ (1-2x)cognzx)dx, forn=> 0.

0

Forn = 0 we can compute the integral by observation,
1
a0:2/ (1-2x)dx =0.
0
Forn > 0, we use integration by parts to obtain
! 4
ap = 2/ (1 - 2x)cognzX) dx = —— (1 — cosnrw).
0 n2m?

Since conir = (—1)", we see that

a, =0 and a = 8 forn> 20
2n — 2n+1 — (2n T 1)27_[2, — U.
Thus we have
8 o0
f(xX) ~ — cog(2n+ D x). O

2 2
72 & (2n+1)

The magnitude of the coefficients is plotted in Figure 14. fhare not shown,
since they are all equal to 0. Notice how fast the coefficidatay to 0, in comparison
to those in Figures 3 and 9. The graph of the partial sum ofr@&de

8 1
S(X) = — [cos:rx + = COSSth| ,
b4 9

is shown in Figure 15. The sum of these two terms gives a paetiyrate approxima-
tion of the saw-tooth wave. This reflects the fact that thedfments decay rapidly,
as shown in Figure 14. The partial sum of order 9 is plottediguie 16. Notice
that the poorest approximation occurs at the “corners”efitaph of the saw-tooth.
This is where the function fails to be differentiable, anesé facts are connected.

Find the Fourier series of the functioh(x) = sin3x + 2 cos 4 on the interval
[—m, 7]
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EXAMPLE 1.29 O

AN/ NANS
VAR

Figure 15 The partial sum of order 3 for the saw-tooth
function.

AN/ \NVANS
VAR

Figure 16 The partial sum of order 9 for the saw-tooth
function.

-3

-3

Sincef is already given as a sum of sines and cosines, no work is de@&tie
Fourier series off is just sin X 4+ 2 cos 4. This example illustrates an important
point. Accordingto Theorem 1.17, the Fourier coefficierisfoinction are uniquely
determined by the function. Thus, by inspectibg,= 1, a, = 2 and all other
coefficients are equal to 0. By uniqueness, these are thesloes as would have
been obtained by computing the integrals in Theorem 1.1#h&a, andb,. 0

Find the Fourier series of the functidi(x) = sin® x on the interval — 7, 7 ].
In this example,f is not explicitly given as a linear combination of sines and
cosines, so there is some work to do. However, if we use thertdmetric identity

SIP X = %(1— cos X),

the right side is the desired Fourier series, since it is &fiimear combination of
terms of the form cosx. O

EXERCISES

In Exercises 1-6 expand the given function in a Fourier sesadid on the interval
—n < X < m. Plotthe function and two partial sums of your choice overittierval
—n < X < m. Plot the same partial sums over the interv8@lr < x < 3.

1. f(X) =|sinx|

2. £(X) =|x|



w

4.

5.

o

12.1

0, —7<x<0
f — 9 J— 9
X {x, 0<x<m.

F(x) = 0, -1 <X <0,
~|sinx, 0<x<um.
f (X) = x cosx

f (X) = xsinx

Computation of Fourier Series 723

In Exercises 7-16 find the Fourier series for the indicatedtion on the indicated
interval. Plot the function and two partial sums of your cdeodver the interval.

7.

10.

11.

12.

13.

14.

15.

16.

F(x) = 1+ X, for_lfxfo’on[—l,l]
1, for0<x<1

f(x) =4—x%20n[—2, 2]

9. f(x) =x%on[—1, 1]

f(x) = sinxcog x on[—m, 7]
0, for—-1<x<0,

o9 = x2, for0<x <1 on(~1.1l
sinzx/2, for—-2<x<0

f = ’ - = -2,2

(X 0, forO0<x<2 onl ]
cosmtx, for—-1<x<0,

1) = 1, for0<x<1 onf=1.1i

F(x) = 1+ X, for_lfxfo’on[—l,l]
1-x, forO<x<1

Fx) = 2+ X, for—2§x50,0n[72’2]
—24+x, forO<x<2

Fx) = 2, for—2§x50,on[72 2l

" |2—-x, forO<x<?2 ’

17.

18.

Expand the functiorf (x) = x? in a Fourier series valid on the intervalr <
X < z. Plot bothf and the partial sungy for N = 1, 3,5, 7. Observe how
the graphs of the partial sums approximate the graph ¢flot the same graphs

over the interval-27r < x < 2x.

Expand the functiorf (x) = x? in a Fourier series valid on the intervall <
x < 1. Plot bothf and the partial sur®y for N = 1, 3, 5, 7. Observe how the
graphs of the partial sums approximate the grapli ofPlot the same graphs

over the interval-2 < x < 2.
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In Exercises 19-22 determine if the functidéns even, odd, or neither.
19. f(X) = |sinx|

20. f(x) =x+3x3

21, f(x) =¢*

22. f(X) = X + X2

23. Use the addition formulas for sin and cos to show that

COSw COSP = %[cos(oz — B) +coga + B)1,
sinasing = %[cos(a — B) —codu + B)],
sina cosB = %[sin(a — B) + sin(a + B)].

24. Prove Lemma 1.2Hint: Use Exercise 23.

25. Complete the derivation of equation 1.11 for the coefficknt
26. Prove parts 1, 2, and 3 of Proposition 1.23.

27. Prove parts 4 and 5 of Proposition 1.23.

28. Prove part 2 of Theorem 1.24.

29. From Theorem 1.24, the Fourier series of an odd functionisteanly of sine-
terms. What additional symmetry conditions dénwill imply that the sine
coefficients with even indices will be zero? Give an examgla dunction
satisfying this additional condition.

30. Suppose that is a function which is periodic with periol and differentiable.
Show thatf’ is also periodic with period .

31. Suppose that is a function defined oR. Show that there is an odd function
foaqg and an even functiofieyensuch thatf (xX) = foqg(X) + feven(X) for all x.

12.2 Convergence of Fourier Series
Suppose thaf is a piecewise continuous function on the intefval , L], and that

f(x) ~ % + i [an COS(?) + b, sin (?)] (2.1)
n=1

is its associated Fourier series. Two questions arise irnataygwhenever an infinite
series is encountered. The first question is, does the smms®rge? The second
guestion arises if the series converges. Can we identifystime of the series?
In particular, does the Fourier series of a functibrtonverge a to f (x) or to
something else? These are the questions we will addrests isetttion’

3Theorem 1.17 does not answer this question, since it asstiaes(x) equals its Fourier series and
then describes what the Fourier coefficients have to be.
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Fourier Series and periodic functions
The partial sums of the Fourier series in (2.1) have the form

Sv(X) = % + XN: [an cos(nLLX> + by sin (nLLXﬂ ) (2.2)
n=1

The functionSy(x) is a finite linear combination of the trigonometric functson
cognrx/L) and sirinzx/L), each of which is periodic with period2* Hence
for everyN the partial sungy is a function that is periodic with period2 Conse-
guently, if the partial sums converge at each pairthe limit function must also be
periodic with period 2.

Let’s consider again the function(x) = x, which we treated in Example 1.25.
f (x) is defined for all real numbess and itis not periodic. We found that its Fourier
series on the intervaHx, ] is

0 (_l)n+l )
2 sinnx.
The partial sums of this series are all periodic with periad 2Zl'herefore, if the
Fourier series converges, the limit function will be pertodith period 2r. Thus
the limit cannot be equal tb(x) = x everywhere. The evidence from the graphs of
the partial sums in Figures 10, 11, and 12 of the previousmsettdicates that the
series does converge fax) = x on the interval—x, ). Since the limit must be
2 -periodic, we expect that the limit is closely related to fegiodic extension of
f (x) = x from the interval(—x, 7). The situation is illustrated in Figure 1, which
shows the partial sum of order 5 over 3 periods. The periodansion off (x) = x
is shown plotted in black.

Since it will appear repeatedly, let's denote fieiodic extension of a function
f (x) defined on an intervdl-L, L] by f,(x). Usually it is easier to understand
the periodic extension of a function graphically than itdagtve an understandable
formula for it. This is illustrated foif (x) = x in Figure 1. However, for the record,
the formula for the periodic extensidis

fp(x) = f(x —2kL) for(2k — 1L <x =< (2k+1L.

You will notice thatf, is periodic with period 2.

To get a feeling for whether or not the Fourier seriesf@kx) = x converges
to its periodic extensiorf,, we graph bothf, and the partial sum of order 21 in
Figure 2. Note that the graph &; (the blue curve) is close to the graph tf
except at the points of discontinuity df, which occur at the odd multiples of.
The accuracy of the approximation 6f(x) by $1(x) gets worse ag gets closer

4We studied periodic functions in Section 5.5, but let'sesfr our memory. A functiog(x) is periodic
with periodT if g(x+ T) = g(x) for all x. Notice that every integral multiple of a period is also aqer
The smallest period of casm x/L) and sinzx/L) is 2L/n, son - (2L/n) = 2L is also a period. Thus
each function in the partial su, in (2.2) is periodic with period R.

5Notice we use less thar:] at the lower endpoint of each interval and less than or egueat the upper
endpoint. A choice is necessary to avoid having two valuésea¢ndpoints. This is not the only possible
choice, but it is as good as any.
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-+

Figure 1 The partial sum of order 5 for the series in
Example 1.25 over three periods.

-

—t+

Figure 2 The partial sum of order 21 for the series in
Example 1.25 over three periods.

to a point of discontinuity. This is necessary, simply besgaeach partial sum is a
continuous function, whilef, is not. Furthermore, we see thé{(z) = 0 for all
N. Hence the Fourier series converges to @ aand not tof, () = #. The same
phenomenon occurs &at= (2k + 1)z for any integek, and these are the points of
discontinuity of f,.

We will see these considerations reflected in our conveydraorem.

Piecewise continuous functions

Suppose thaf is a function defined in an interval I. We define ttight-hand and
left-hand limits of f at a pointxg to be

f(xH = lim f(x) and f(x;)= lim f(x).
0 x—xg 0 X=Xy

The function f is continuous akg if and only if both limits exist andf (xg) =
f(xg) = f(Xo).

In Section 5.1, we defined a functiohto be piecewise continuous if it has
only finitely many points of discontinuity in any finite intexl, and if both the left-
and right-hand limits exist at every point of discontinuityhus, for a piecewise
continuous function the left- and right-hand limits exigeg/where.

You will notice that the periodic extensiofy, of f(x) = x on the interval
[—m, 7] that we saw in Example 1.25 is piecewise continuous. Thetpah
discontinuity for f, are at(2k + 1)z, the odd integral multiples of. We have
fo(l(2k+ Dm]*) = —m and fp([(2k + 1)7r]7) = =. Infact, if f is any function
that is continuous on the intervil-L, L], then the periodic extensiof}, is piece-
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wise continuous on all dr, and its only possible points of discontinuity are the odd
multiples ofL.

We will say that the functiorf hasleft-hand derivative at xq if the left-hand
limit f(x,) exists and the limit

i f(x)— f(x5)
m —,——-
X—>Xg X — Xo

)

exists. Similarly, we will say that hasright-hand derivative at xo if f(x{{) exists
and the limit
. f(x) — f(xar)
im ———
x—>x3’ X — Xo

exists. If f is differentiable ako, then f has left- and right-hand derivatives there
and both are equal td’(xp)-

For an example, we consider again the periodic extengjoof f(x) = x on
the interval[—7, 7]. The left- and right-hand derivatives exist at every poimd a
are equal to 1, even at the points of discontinuity. Anotlxangple is the saw-tooth
wave in Example 1.27. Notice that the saw-tooth functiomistimuous everywhere,
but fails to be differentiable whepeis an integer. However, at these points the left-
and right-hand derivatives of the saw-tooth wave exist.

Convergence

Since a Fourier series converges to a periodic function, \&g as well assume
from the beginning that the functioh is already periodic. If, as was the case in
Example 1.25, we are given a function that is not periodienth is necessary to
look at the periodic extension of the function.

We are now in a position to state our main theorem on the cgewee of Fourier
series. A proofis beyond the scope of this text, but one cdole in any advanced
book on Fourier series.

Supposef (x) is a piecewise continuous function that is periodic withiqe2L .
If the left- and right-hand derivatives df exist atxy then the Fourier series for
converges axg to
f(xg) + f(xg)
2

If f is continuous akg, thenf(x;{) = f(xy) = f(Xo), so assuming that the
left- and right-hand derivatives of exist atxp, Theorem 2.3 concludes that the
Fourier series convergesx@tto f (xp).

Theorem 2.3 assumes the existence of the left- and righd-tarivatives off
only at the pointxg, and concludes that the Fourier series conveoghsat Xo. This
indicates that it is only the smoothness oinearx, that affects the convergence
there. However, in most of the examples that we will consitter left- and right-
hand derivatives will exist everywhere. We will considastspecial case in the next
corollary.
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COROLLARY 2.4

EXAMPLE 2.6 C

EXAMPLE 2.7 O

EXAMPLE 2.8 O

Supposef (x) is a piecewise continuous function that is periodic withiqe2L .
Suppose in addition th&t has left- and right-hand derivatives at every point.

1. At every pointxy where f is continuous the Fourier series férconverges to
f (Xo).
2. At every pointxg where f is not continuous the Fourier series fbiconverges
to
fxg) + f(x5)

> . (2.5)

We have verified that the hypothesis of Corollary 2.4 holdstfe periodic extension
fp of f(x) =xon—m < x < m. Show that the conclusion of Corollary 2.4 holds
at any point of discontinuity.

The points of discontinuity ar&k + 1)x, the odd integral multiples of . We
havefy([(2k+ D ]1") = —w and fp([(2k + 1)r]7) = =. Therefore,
fo(l(2k + D) + fp(l(2k+ D7)
> =
We have also seen that the Fourier serie$ &f

0.

o _n+1
ZZ ( n) sinnx.
n=1

Whenx = (2k+ 1) every terminthe seriesis equal to 0. Hence the series apeser
to 0, so the conclusion of Theorem 2.5 is valikat (2k + 1)x. O

Let f(x) = x? on the interval-1 < x < 1. Without computing the Fourier
coefficients, explicitly describe the sum of the Fourieiesof f for all x.6

Of course,f (x) = x? is not periodic. Therefore, we must consider its periodic
extension,f,, graphed in black in Figure 3. Note th&§ is continuous everywhere,
and it is differentiable except at the odd integerss 2k + 1. At these points the
left- and right-hand derivatives exist. Thus the left- aigtht-hand derivatives exist
everywhere, and Corollary 2.4 implies that its Fourieregdonverges td,(x) for
all x. 0

Consider the function

-1, for—1<x <0,
f(x) =10, forx =0,
1, for0<x <1

Find the Fourier series fof, and describe the sum of its Fourier series.

5The computation of this series is Exercise 18 in Section 1.
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-3 -1 1 3

Figure 3 The partial sum Ss(x) for the function in
Example 2.7.

Since f is only defined over the intervél-1, 1], we are really looking at the
Fourier series of its periodic extensidp, shown plotted in black in Figure 4. For
obvious reasond, is called thesquare wave. Sincef (and fp) is an odd function,
Theorem 1.24 says that only the sine terms are present irotiméeF series, and that
the coefficients are

1 1
b, :2/ f(x)sinnnxdx:Z/ sinnnxdx:fi[(fl)”fl].
0 0 nmw
Hence 4

b =0 db = —

2n an 2n+1 2n+ D
The Fourier series associatedfto(and tof) is

fp(X) ~ f i ! sin(2n + 1) x (2.9)

P w1 ' '

The functionf, is piecewise continuous, with discontinuities at all of hiegers.
In addition, its left- and right-hand derivatives exist gwghere. Thus, the Fourier
series converges tb,(x) if x is not an integer. Ik = k is an integer, the series
converges to
fo(k") + fpk) 1+ (-1
2 2

In fact, each term of the Fourier series in (2.9) is equal thhénx = k is an integer.
The partial sum of the Fourier series of order 11 is showntgdion Figure 4. [

=0.

Gibb’s phenomenon

Suppose that the piecewise continuous funcfidmas a discontinuity aty, but that
the left- and right-hand derivatives dfexist atxy. As Theorem 2.3 points out, the
Fourier series off converges akg to [f(xar) + f(xy)1/2. However, if you look
closely at the graphs of the partial sums near the pointssebditinuity in Figures 1,
2,and 4, we see that the graph of the partial sum overredubgsaph of the function
on each side of the discontinuity. This effect is call@thb’s phenomenon.

To examine Gibb’s phenomenon a little more deeply, let'klabthe graphs of
some high order partial sums for the square wave. The partiiabS;o; and Sso1
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Figure 4 The partial sum S;;(x) for the square wave in

Example 2.8.
0 0
X X
—-0.01 0.01 -0.01 0.01
v%—{'
Figure 5 The partial sum Figure 6 The partial sum
S301(x) for the square wave. Seo01(x) for the square wave.

are plotted in Figures 5 and 6, but only fei0.01 < x < 0.01, so that we may
see the overrun clearly. Notice that both partial sums disfthe overrun that is
characteristic of Gibb's phenomenon. In the two cases trmuabof the overrun is
approximately the same, but for the higher order sum thetidures smaller.

It can be proved that whenever a functiérsatisfies the hypotheses of Theo-
rem 2.3, but has a discontinuity x4, the graphs of the partial sums of the Fourier
series display Gibb’s phenomenon ne@r Furthermore, the ratio of the length
of the interval between the upper peak and the lower peakeopértial sum to
| f(xg) — f(xg)lis approximately 1L.79 in every case.

The Riemann—Lebesgue Lemma

Notice that in every example we have considered, the Foroifficients approach 0
asthe frequency getslarge. This is demonstrated, in p&atjén Figures 3, 9, and 14
in Section 1. These examples are typical of the behavior ofiEpcoefficients, as
the next theorem, known as the Riemann-Lebesgue lemmagsshow

THEOREM 2.10 Supposef is a piecewise continuous function on the intervat x < b. Then

b b
lim f (x) coskx dx = kIim / f (x) sinkx dx = 0.
—> 00 a

k=00 Jq

As we will see in Section 5, this theorem has important apgibnis. Basically,
this theorem states that any given signal can be approximatey well by a few
dominant Fourier coefficients because most of the Fourigificients are near zero.
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The intuitive reason behind this theorem is thakagets very large, sikx and
coskx oscillate much more rapidly than doég(see Figures 1 and 2 in Section 1).
If kis large,f (x) is nearly constant on two adjacent periods ofksiror coskx. The
integral over each period is almost zero, since the areasabal below the-axis
almost cancel.

Interpretation of the Fourier coefficients

Suppose thaf is a function that satisfies the hypotheses of Corollary Z.Aen
f (x) is equal to its Fourier series

f(x) = % + i [an cos(?) + by sin (?)] , (2.11)

n=1

except at those points whefeis not continuous. Let's look more closely at thi
summand, which we can rewrite in terms of its amplitude arasghas

nm X N X
i i ) (2.12)

fa(X) = ap cos(?) + by sin (T) = A, cos(T — ¢n

whereA, = /a2 + b2 and tarp, = b,/a,. We see thaff,(x), defined in (2.12), is
an oscillation with amplitude\, and frequency/w, = nx/L. We will call f, the
component of f atfrequency w, = nx /L. Notice thatw, = nw;, wherew; = /L,
so all of the frequencies are integer multiples of filmledamental frequency w;.

We can interpret Corollary 2.4 as saying that any functiat Hatisfies its hy-
potheses is an infinite linear combination of oscillatorynponents at frequencies
that are integer multiples of the fundamental frequencye Tomponent off at
frequencywn has amplitudéd, = /a2 + b2. The amplitude is a numerical measure
of the importance of the component in the Fourier expansidy.the Riemann—
Lebesgue lemma, the Fourier coefficients decay taliasreases, so the amplitudes
A, do as well. As a result, the components at the smaller frezfjeselominate the
Fourier series in (2.11). This fact is illustrated by thetplof the magnitudes of the
coefficients in Figures 3, 9, and 14 in Section 1.

Fourier coefficients for periodic functions

In this section we have been looking at periodic functiomsges it is only such
functions that can be the sums of Fourier series. It is wooihtpng out that for a
periodic function with period B, the coefficients can be computed by an integral
over any interval of lengthl2. More precisely, we have the following:

"See Section 4.4.

8This is an angular frequency. Remember that we are usinglanfgequencies instead of numerical
frequencies unless otherwise stated.
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PROPOSITION 2.13 Suppose thaf is a piecewise continuous function that is periodic withipe:2L .
Then for anyc the Fourier coefficients fof are given by

1 c+2L

anz—/ f(x)cos@dx, forn > 0,
L Je L
1 c+2L )

bn:—/ f(x)smmdx, forn> 1.
L Je L

We will leave the proof to the exercises.

EXERCISES

In Exercises 1-6 determine if the functidnis periodic or not. If it is periodic, find
the smallest positive period.

1. f(X) =]sinx|

2. f(X) =cos3rx

3. f(X) =x

4, f(x) = sin(x) + cogx/2)
5. f(x) = x2

6. f(x) =¢*

In Exercises 7-14 find the sum of the Fourier series for indatéunction at every
point in R without computing the series. Each of these is an exerciSedation 1.
Although that is not very important, the reference is ineldéh parentheses.

7. f(x) = 0, —m=x<0 on[—m, 7] (See Exercise 1.3)
X, 0<x<m

8. f(x) = O.’ —T=x<0, on[—m, 7] (See Exercise 1.4)
sinx, 0<x<wm

1+x, for—-1<x<0

% T00=1, for0 < x <1

on[—1,1] (See Exercise 1.7)

10. f(x) =4—x?0on[-2,2] (See Exercise 1.8)
11. f(x) =x%on[-1,1] (See Exercise 1.9)

0, for-1<x<0

“on[—1,1] (See Exercise 1.11
x2, forO<x<1 =14 )

12. f(x) = {

sinzx/2, for—-2<x<0

"on[-2,2] (See Exercise 1.12)
0, for0<x<2

13. f(x) = {



14.

15.

16.

17.

18.

19.

20.

21.

22.
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Fx) = 2, for—2<x<0

"on[-2,2] (See Exercise 1.16
2—x, forO<x<2 (=221 ( )

Compute the Fourier series for the functib(x) = |x| on the interval—=, 7 ].
(See Exercise 1.2.) Use the result and Theorem 2.3 to shaow tha

i 1 _712
2n+1)2 8

n=0

Compute the Fourier series for the functibix) = x2 on the interval —x, 7].
(See Example 2.7.) Use the result and Theorem 2.3 to show that

o (_l)n+l 7.[2 0 1 7T2

= — and — = —.
> =1 Y=
n=1 n=1

Compute the Fourier series for the functibtx) = x* on the interval -, 7.
Use the result, Theorem 2.3, and Exercise 16 to show that

2 (D™t gt 1 x*

——— =— and — = —.
> = 120 > i~ 9%
n=1 n=1

Expand the function

0, -1<x=<-1/2,
fo)=1{1 -1/2<x<1/2,
0, 1/2<x<1,

in a Fourier series valid on the intervall < x < 1. Plot the graph of and the
partial sums of ordeN for N = 5, 10, 20, and 40, as in Exercise 17 in Section
1. Notice how much slower the series converge$ tio this example than in
Exercise 17 in Section 1. What accounts for the slow rate m¥emence in this
example?

Expand the functiorf (x) = €* in a Fourier series valid form < x <. For
the case = 1/2, plot the partial sums of ordefd = 10, 20, and 30 of the
Fourier series along with the graph ©&f over the intervals-7 < x < = and
—2m < X < 2m.

Use the previous exercise to compute the Fourier coeffifemtthe function
f(x) = sinhx = (e — e *)/2 and f (X) = coshx) = (e* + e *)/2 over the
interval -7 < x <.

Use Theorem 2.3 to determine the sum of the Fourier seridsedimnction f
defined in Exercise 18 for eachin the interval-1 < x < 1.

Suppose thaf is periodic with periodl' and differntiable. Show that’ is also
periodic with periodr .
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23. Suppose that is periodic with periodl'. Show that

b+T a+T
/ f(x)dx:/ f(x) dx
b a

for anya andb. Use this result to prove Proposition 2.13.
24. Suppose that is periodic with periodr . Define

F0) =f0 () dy.

Show that iffoT f(y)dy = 0, thenF is periodic with periodl'. (Hint: Use
Exercise 23.)

12.3 Fourier Cosine and Sine Series
In this section we will examine the possibility of finding Faar series of the forms

f(x) = ansinnLLx, foro<x <L,
n=1
and
f(x) = % +ZancosnLLX, for0<x < L.
n=1
The basic idea behind our method comes from Theorem 1.24.

Fourier cosine series

According to Theorem 1.24, the Fourier series of an eventfoimecontains only
FAC)) cosine terms. If the functiori (x) is defined only for O0< x < L, we extend it to
—L < x < 0as an even function. Thewen extension of f is defined by

f(x), if0 <x <L,
f =
o) {f(—x), if L <x<0.
fn=d For the functionf (x) = €* on the interval0, 1], the even extensiofy is plotted in

x blue in Figure 1.

Since the functiorfe is an even function defined ¢a L, L], Theorem 1.24 tells
Figure 1 The even extension of us that its Fourier series has the form
f(x) = e*.

-1 0 1

a  — nmx
fa(X) > + nX;anCOS(T) , for—L<x=<lL, (3.1)

where .
2 nm X
ap = f/(; fa(X) cos(T) dx, forn>0.
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Since fe(X) = f(x) for 0 < x < L, this formula becomes

2 rt nm X
an = E./(; f(x) cos(T> dx, forn=>0. (3.2)
Furthermore, if we restrict ourselves to the intef@lL |, wherefe(x) = f(x),
we can write
f(x)w%-y-nz;ancos(rlLLX), for0<x <L, 3-3)

with the coefficients given by (3.2). The series in (3.3) vilte coefficients given
in (3.2), is called thé-ourier cosine seriesfor f on the intervalO, L].

EXAMPLE 3.4 10 Find the Fourier cosine series féx) = e* on the interval0, 1].

The coefficients in (3.2) become

la, |

1
* an = 2/ eX cosnrx dx = (-D"e—1].
0

1+ n?7? [

1 This evaluation can be done by direct computation, by logkire integral up in an
integral table, or by using a computer and a symbolic algplbmgram. The magni-

tude of these coefficients is plotted in Figure 2. Notice hovekly the coefficients
decay to 0. The Fourier series is

0 n

0

N S (-De—1
Figure 2 The Fourier cosine e~ e-1+ 22 EET cosnm X
coefficients for f(x) = e*. n=1 (3.5)
2e+1) 2e—1)

~((e—-1 — X + COS2rX + ...

1172 O T T g2
on the interval0, 1].

The partial sun&s(x) is plotted in blue in Figure 3. The black curve in Figure 3
is the periodic extension of the even extension of the foncfi(x) = €. We will
call this theeven periodic extension of f, and we will denote it byfe,. Since, in
this case fep is continuous and satisfies the hypotheses of Corollarytt2edrourier

series converges everywhereftg(x). O
2/ Fourier sine series
M In a similar manner, a functiof can be expanded in a series which involves only
0 N sine terms. Again motivated by Theorem 1.24, we consideoddextension of f,
-1 0 1 which is defined by
o f (x), ifO<x=<Ll,
fu(x) fo(x) - 0, |f X = O,

—f(—x), if L <x<0.
Figure 4 The odd extension of

f(x) = e*. The odd extension of (x) = € is plotted in blue in Figure 4. Since the functidg
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EXAMPLE 3.8 O

3 ) i 0 1 2 3"

Figure 3 The partial sum S; of the Fourier cosine series for
f(x) = e* plotted over three periods.

is an odd function defined dn-L, L], Theorem 1.24 tells us that its Fourier series
has only sine terms. Proceeding as before, we find that

f(x)~ ) bysinnx, for0<x <L, (3.6)
n=1
where .
2 . /nmTXx
b, = f/(; f(x)sin (T> dx, forn> 1. 3.7)

The series in (3.6), with the coefficients given in (3.7), adled theFourier sine
seriesfor f on the intervalO, L].

Find the Fourier sine series fdnx) = e* on the interval0, 1].

The coefficients in (3.7) become
2n[1— (—1)"e]
1+ n2g2
This evaluation can be done by direct computation, by logkire integral up in an

integral table, or by using a computer and a symbolic algpbogram. Thus we
have

1
b, = 2/ e“sinnrxdx =
0

X 2n7[l— (=1)"e]

e ~ Z T sinnzx
n=1 (3.9)
2r(e+ 1) . dr(e—1) . 6r(e+1) .
NM fusmz-[x_i_Msm:}[x_k”.
1+ n? + 4n? 1+ 972
2-.
/ 0
_ > _ 0 3"
_2--

Figure 6 The partial sum S; of the Fourier sine series for
f(x) = e* plotted over three periods.
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b on the interval0, 1]. The magnitude of the coefficients is plotted in Figure 5. bloti
. that the sine coefficients do not decay nearly as rapidly aieloosine coefficients
! in Figure 2. The partial sum of order 3 is plotted in blue inufg 6. It is inter-

esting to compare this figure with Figure 3. The black curvEigure 6 is theodd
periodic extension of f(x) = €%, which we denote byf,,. In this casef,, satis-
fies the hypotheses of Corollary 2.4 and fails to be contisumly at the integers.
Consequently, the Fourier sine series convergegjx) everywhere except at the

T I T integers. O
% tlelset 1:) n Note that while we used the even and odd extensionfs @ff, and f,) to help

) o derive the cosine and sine expansions, the formulaafandb, involve only the
Figure 5 The Fourier sine function f on the intervalO, L]. This is reflected by the fact that the cosine and sine
coefficients for f(x) = e*. expansions converge tb only on (0, L). Outside this interval the cosine and sine

expansions converge tfy, and fop, respectively. Examples 3.4 and 3.8 illustrate
these facts, but another example might help to put thingsgatspective.

EXAMPLE 3.10 0 Find the complete Fourier series forx) = € on the interval -1, 1].

From (1.10) we have

1
e—1/e
= e“cosnrxdx = (—1)"———, forn>0
8n ./1 & 1 14+ n2g2’ -
while from (1.11) we have
1
. nz(e—1/e
by = / e sinnrx dx = (fl)”“M, forn > 1.
-1 1+ n2m?

. . : . . «
la,l and by Again there are several ways to verify this. Hence the cotapleurier series fo

on[—1,1]is
) 1 1 ad (=Dn .
2 ee=e—=)1= ———[cosnzx — nz sinnzx] ¢ . 3.11
(- 2) {3+ X s toosmms - nesine]. @
1 The magnitude of the coefficients is plotted in Figure 7, v in black and
I |bn| in blue. The partial sum of order 3 is plotted in blue Figure 8.

o " The periodic extension & satisfies the hypotheses of Corollary 2.4 and fails to

0 10 be continuous only at the odd integers. Consequently, thei¢faseries converges
Figure 7 The coefficients of the to the periodic extension everywhere except at the oddémnseg g
complete Fourier series for f(x) = Now we have three Fourier series that convergé t®) = e* on the interval

e’. (0, 1). Thefirstin (3.5) contains only cosine terms. The secon8.B)contains only

sine terms. The third in (3.11) contains both sine and cdsimas. It is interesting
to compare graphs of the partial sums in Figures 3, 6, and 8 difference between
the three is what happens outside of the inte¢0all). The cosine series converges
to fep, the even periodic extension d¢f The sine series converges tg,, the odd
periodic extension off, except at the integers. And, finally, the full Fourier sgrie
converges tdf,, the periodic extension off, except at the odd integers.

Of course, the same three series can be considered for axgnpge continuous
function defined on an interval of the forin L, L].
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X
-3 -2 -1 0 1 2 3

Figure 8 The partial sum S; of the complete Fourier series
for f(x) = e* plotted over three periods.

EXERCISES

In exercises 1-4 sketch the graph of the odd extension ofitieion f . Also sketch
the graph of the odd periodic extension with period 2 ovezdlperiods.

1. f(x)=1-xX
2. fxX)=1-2x
3 f(x)=x2-1
4. f(x)=x2-2
In exercises 5-8 sketch the graph of the even extension dutiaion f. Also
sketch the graph of the even periodic extension with periode? three periods.
5, fx)=1-xX

6. f(X) =1-—2x
7. f(x)=x2-1
8. f(x)=x%2-2

In Exercises 9 — 20 expand the given function in a Fouriemeoseries valid on the
interval 0< x < &. Plot the function and two partial sums of your choice over th
interval 0< x < 7. Plot the same partial sums and the function the series cgese
to over the interval-37 < x < 3.

9. f(X) =x
10. f(x) = sinx
11. f(x) = cosx
12. fx)=1
13. fX)=m —X
14. f(x) = x?
15. f(x) = x°

16. f(x) = x*
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1, O0<x<um/2
17. f(x) =17 - '
*x) {o, T/2<x<m

X, O0<x<m/2,

18. 100 = {n/Z, T/2<X<m

19. f(X) = xcosx

20. f(x) = xsinx

In Exercises 21 — 32 expand the given function in a Fouriex saries valid on the
interval 0< x < &. Plot the function and two partial sums of your choice over th

interval 0< x < m. Plot the same partial sums and the function the series cgese
to over the interval-37 < x < 3.

21. Same as Exercise 9

22. Same as Exercise 10
23. Same as Exercise 11
24. Same as Exercise 12
25. Same as Exercise 13
26. Same as Exercise 14
27. Same as Exercise 15
28. Same as Exercise 16
29. Same as Exercise 17
30. Same as Exercise 18
31. Same as Exercise 19
32. Same as Exercise 20

33. Show that the functions c@srx/L), n = 0,1, 2, ... are orthogonal on the
interval[0, L]. This means that

L
/ cognrx/L) cogprx/L)Ydx =0, if p#n
0

Hint: Use Exercise 23.

34. Show that the functions sinzx/L), n = 1,2,3,... are orthogonal on the
interval[0, L]. This means that

L
/ sin(ntx/L) sin(prx/L)dx =0, if p#n
0

Hint: Use Exercise 23.
35. Show that L
/ cos2nz X) sin(2kz x) dx = 0.
0
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Hint: Use Exercise 23.

36. If f(x) is continuous on the interval & x < L, show that its even periodic
extension is continuous everywhere. Does this statemdaitiothe odd peri-
odic extension? What additional condition(s) is (are) ssaey to ensure that
the odd periodic extension is everywhere continuous?

12.4 The Complex Form of a Fourier Series
If the piecewise continuous functioh is periodic with period 2, then its Fourier

series is
f(x)~—+2[ancos(nl_ )—i—bn |n(nLX>], 4.1)

where the coefficients are given by

L

a, = l/ f(x)cos(n ) dx, forn=>0,and
L/ L

(4.2)

1 L
b, = 3 /L f(x)sm( 3 )dx forn > 1.
Sometimesitis usefulto express the Fourier series in cexipim using the complex
exponentialsg™ for n = 0,41, +2,.... This is possible because of the close
connection between the complex exponentials and the wigeiric functions. We
explored this connection in the appendix to this book andeictiSn 4.3. The most
important facts to know about the complex exponential alef&uformula

e = cosy + i siny, (4.3)

which defines the exponential, and that all of the familiavparties of the real
exponential remain true for the complex exponential.
If we write down Euler’s formula witty replaced by-y, we get
e Y =cosy —i siny. (4.4)
Solving (4.3) and (4.4) for cogand siny, we see that

iy —iy iy _ gy
cosy:el% and siny:elTe. (4.5)

Let’s substitute these expressions into the Fourier sé4id3. Thenth term in the
sum is the component df at the frequency, = nz /L, and it becomes

fn(x) = ancos<n7Lt >+bnsm<n7ix>

— % (einnx/L + efinnX/L) + E (einnx/L _ efinnx/L)
2 2 (4.6)
_ &~ Ib"e‘“”x/'- n an + |bne7inﬂx/|_

2 2
— O[nemnx/L + a,nef'mx/l‘,
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where we have substituted

_ib ib
a”z " and a,n:an—; " forn> 1. 4.7)

op =

We will also write the constant term dg(x) = «g = ag/2. Separating the positive
and negative terms, the Fourier series can be written as

FOO~ > apd™t, (4.8)

n=—00

Notice that by (4.6), the component éfat frequencyw, = nz/L is given by
fa(X) = an€®* 4+ a_,e7'“"X. As a result, when we talk in terms of low frequency
components we have to consider the coefficieqtanda_,, for small values oh.

We can use (4.2) to express the coefficieni$n terms of the functionf. For
example, fom > 1 we have

an —iby

2
L

= % N f(x) [cos(?) —isin (?)} dx
L

:Z L

op =

f (x)e ""X/L dx.

The corresponding formulas for= 0 and forn < 0 can be computed in the same
way, and we discover that

L

= f(x)e ""*/Ldx, foralln. (4.9)
oL/,

On

It is important to notice that while, is the coefficient o™/t in the Fourier
series (4.8), iti® "/t which appears in the integral in (4.9).

The series (4.8), with the coefficients computed using (4s%alled thecom-
plex Fourier series for the functionf. There are several differences between the
Fourier series involving cosines and sines, given in Dédinil.20, and the Fourier
series using complex exponentials presented here. Fiestdmplex Fourier series
involves a sum fronm = —oo to n = oo, rather than a sum from = 0 ton = oco.
Next, for the complex Fourier series, there is one succioehiila (4.9) for the
Fourier coefficients, rather than the two separate formigdas,, andb, in (1.18)
and (1.19). For this reason, and also because computatamg exponentials are
easier than those using trigonometric functions, manysisis and engineers prefer
to use the complex version of the Fourier series.

Find the complex Fourier series for the functibtx) = €* on the interval—1, 1].

This is the function we examined in Examples 3.4, 3.8, an@.3.Eor this
function it is much easier to compute the complex Fourieffaments than the real
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lo, |

uu??ﬂﬂ %Tfﬂnu "

-10 0 10

Figure 1 The coefficients of the
complex Fourier series for f(x) =
e’.

EXAMPLE 4.12 O

ones. Theth coefficient is

1t
anz—/ ‘e " dx
2)4

1 ! 1-inmt

= E'/le( X dx
B 1

- 21—inm) [
o =n
- 2(1—inm)

l1-inm efl+inn]
(e—1/e).

The last identity follows since™ = e """ = (—1)".
The magnitude of the coefficients is plotted in Figure 1. blwthat we included
negative indices. The complex Fourier series is

e—1/e
2

00 S
Z 1(—)e'””x for—1<x <1 0

et~
—inm

n=—oc

Relation between the real and complex Fourier series

We derived the complex Fourier series from the real seriedoing so we found that
the complex coefficients can be computed from the real cieifis using (4.7). In

turn, we can solve these relationships for the real coefffisie terms of the complex
coefficients, getting

=20, ah=oant+ap, and by=i(en—a_n), forn>1  (4.11)

These equations simplify somewhat if the functibrs real valued. In that case

f(x) = f(x), so

L

an = i f (x)e—inmx/Ldx = i /L W e-intx/L dx
2L |, 2L /.,

L

:Z L

f e/ dx = a_p.

Consequently, iff is real valued,
an=oan+ayg=2Rex, and b,=i(en—ay) = —-2Imay.
Compute the coefficients of the real Fourier series for thetion f (x) = €* on the
interval[—1, 1].
We computed the complex coefficients in Example 4.10 anddabat

G 0
- 2(1—inm)

Qn

(e—1/e).
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Since the function is real valued, we can use (4.11) to find tha

_ (-D"(e—1/e)

ap = 2Rea;, = T e and
(—D)"nhr(e - 1/e)
by=-2Ima, = T 122 ) O

EXERCISES

1. Show that the complex Fourier coefficients for an even, vaaled function are
real. Show that the complex Fourier coefficients for an oell-valued function
are purely imaginary (i.e., their real parts are zero).

In Exercises 2—11 find the complex Fourier series for thergiumction on the
interval[—m, 7].

2. f(X) =x

3. f(X) = |x|

4 f(x):{_l’ -1 <X <0,
1, O<x<m

0, —7<x<0,
> f(x):{l, O<x<mw

6. f(x) = x2
7. f(x) =™
8. f(x)=x3
9. fX)=m — X

10. f(x) = | cosx|
11. f(X) = |sinx|
12. Two complex valued functiorf andg are said to be orthogonal on the inter-

val [a, b] if j{f f (x)g(x)dx = 0. Show that The functiong ™ ande' % are
orthogonal ori—=, 7] if p andq are different integers.

13. Use the method of proof of Theorem 1.17, and Exercise 12 tw ghat if
f(x)=> 0 on€™for—m < x < m,then

by

on = 1 f (x)e "™ dx.
27 )_,
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12.5 The Discrete Fourier Transform and the FFT

Suppose thaf (t) is piecewise continuous for8 t < 27.° Then

0 21
ft)~ Y e, where o= %fo f(t)e M dt. (5.1)

k=—o00

The Fourier coefficientsy are often too difficult to compute exactly. In such a case
it is useful to approximate the coefficients using a numeérntagration technique
such as the trapezoid rule.

We remind you that for a functiof defined on the interva0, 2 |, the trapezoid

rule for approximating the integrg(]f" F(t) dt with step sizeh = 27/N is

2r
/ Ft)dt ~h EF(O) +F(h)+ F@h)+ -+ F(N - Dh) + %F(Nh)]
0

If F(t) is 2r-periodic, thenF(0) = F(2x) = F(Nh), and the preceding formula
becomes

2 N-1 2 N-1
/0 FOdt~hY F(ih) = S5 ) Frj/N).
j=0 j=0

Applying this formula to the integral for the Fourier coefffiot in (5.1), we get

1 N—-1

2 X 1 B
= — —ikt X — i 72”'Jk/N
ok 271./0 f(He " dt N ,-Eo f(2rj/N)e . (5.2)

Let's set '
yj = f2rj/N) and w=e""/N,

Thenw = e 2"'/N and the approximation becomes
g N2
~ = Wk, 5.3
o N Jz(:) yjw (5.3)

The sum on the right side of equation (5.3) involves the discvaluesy; =
f(2zj/N). The values off (t) fort # 2xj/N are ignored. It is a common
occurrence in the digital age to replace a time dependeatibimwith such a discrete
sample of that function. For exampli(t) may represent a music signal that we want
to transmit over the internet. The internet, or any other pot®r network, allows
only discrete signals, so to transmit the music we replaeedmtinuous signal (t)
with the discrete samplg; = f(27j/N) for j =0,1,2,..., N - 1.

In many digital applications signals arise that are notesented by a continuous
function at all. Instead, they arise as discrete valyest a discrete set of times.
Such a signal is illustrated in Figure 1. Here, the horizbaxés represents time,
which has been divided into many small time intervals.

91n most applications of the material in this section, thection f represents a time dependent signal.
Consequently, we will useinstead ofx as the independent variable.
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The discrete Fourier transform

Even for discrete signals such as that illustrated in Figyri is often useful to
Leseett . . consider the transform we found in equation (5.3). We wifiase that the signal
: : is an infinite sequence = {y;| — co < | < oo} that isperiodic with period N,
meaning thatyn,j = y; for all j. Wherever the sequengg comes from, the
transform on the right-hand side of (5.3) is important.

DEFINITION 5.4 Lety = {y;} be a sequence of complex numbers that is
Figure 1 A discrete signal. periodic with periodN. Thediscrete Fourier transform of y is the sequence
¥ = {Vi}, where

N-1 N-1
Y= yje NN =3 "ywlk for—co<k<oo. (55)
i=0 =0

For the last expression in (5.5) we use the notatios: €*'/N| so thatw =
e27i/N

An important property ofy = €#/N js thatwN = ¥ = 1. Of course, it
follows thatw™ = 1. From this we see that

N-1 N—-1 N—-1
o —j(k+N —jk—jN —ik _ o
Vern =y yjw N =S ypwltaN = 3 "yl = g
j=0 j=0 j=0

Thus the discrete Fourier transform is also periodic ofqueN.

Let’s look back at equation (5.3), where we used the trapezde to approx-
imate ok, the kth Fourier coefficient of the functiori. Using (5.5), we can now
write (5.3) as R

. Yk

ok ~ N . (56)
It follows from the Riemann—Lebesgue lemma that— 0 ask — +oo. On
the other hand, the sequergeis periodic. This implies that (5.3) is not a good
approximation for largé&. In fact, The trapezoid rule algorithm used to approximate
the integralin (5.2) loses accuracy as the integriise’ * becomes more oscillatory
as the frequency (and indeik)ncreases. Therefore we would expect equation (5.3)
to provide a good approximation only fkithat are relatively small comparediia

There is another, related factor to consider. We have puslyjctalked of the
importance ofthe low frequency components of a functionewie use the complex
Fourier series, this means that we include beatrando_ for small values ok.

By (5.6) and the periodicity of the sequenge

—~

~ Q _ YNk
N N
Therefore, when considering small frequency componeniiewbking the discrete

Fourier transform, we must include bofia andyy ¢ for small nonnegative values
of the indexk.

ok
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EXAMPLE 5.7 O

OOU vn o

-2

Figure 2 The function in
Example b.7.

19l

Figure 3 The discrete Fourier
transform of the discretization of
the function in Example 5.7.

Use the discrete Fourier transform to compute approximalel first 64 Fourier
coefficients of the function

f(t) = e “/1%[sin 2t + 2 cos 4 + 0.4 sint sin 1Q]

on the interval0, 2 1.

The functionf is plotted in Figure 2. Because of the terms involving sia2d
cos 4, we would expect that the Fourier coefficients of order 2 amdbdld be large.
With N = 64, we sety; = f(2rj/N) for0 < j < N — 1. Then we use the fast
Fourier transform function in Matlab to compute the diser€burier transforny.
The magnitude of thg is plotted in Figure 3. Indeed, the coefficients correspogdi
tok =4 andk = 60 = N — 4 are the largest. Notice how the coefficients with index
k andN — k are largest for smakk. Thus the coefficients corresponding to small
frequency components dominate. 0

Now let’s look at (5.5) and restrict ourselveskoe= 0, 1, ..., N — 1. Thekth
equation expresség as a linear combination dfy; |0 < j < N — 1}. TheseN
eqguations can be expressed as the single matrix equation

Yo 1 1 1 1 Yo
Vi 1 w w2 . whL Vi
% ol=|1 @ ot . @D 2 |. (5.8)
Jno1 1 N1 EN-D L p(N-D)? VN1

It will be useful to use vector notation. We will set

y= (Yo, Y1, ---»Yn-1)', and
V=0V .- -1

With this notation, equation (5.8) becomes

y=Fy, (5.9)
where
1 1 1 1
1 w w2 A T
F-|1 w° ot we N (5.10)

—N_ — _ —(N—_1)2
1 N—-1 wZ(N A w(N 1
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The inverse discrete Fourier transform

Equation (5.8) gives the formula for computing the discketerier coefficients in
terms of the original discrete signal. Many applicationguiee the reverse oper-
ation, the computation of the original discrete signagl,from its discrete Fourier
coefficients,yx. Therefore, we would like to solve for thg in equation (5.8) or,
equivalently, we need to find the inverse of the makiin (5.10).

Computing the inverse df is somewhat difficult, so we will simply give the
result. Consider the complex conjugateFof

1 1 1 cee 1

1 w w? wN-1
F=|1 w? w* B

1 wN-1 p2N-1 w(Nfl)Z

Direct computation shows that
— 1—
F-F=NI o F!'=Z2F.
N

The computation of - F is not too difficult. For example, wheN = 3,

1 1 1 1 1 1
F-F=[1 w w? 1 w w
1 w2 w* 1 w? wt
An explicit computation shows that this matrix product s 3For example, the
(2, 1)-entry of this matrix product is
1—ws

1+ w4+ w?= =0,
1—w

sincew® = 1. On the other hand, th@, 2)-entry is

1+ |w)?+ lwl* = 3.

We summatrize this discussion in the next theorem.

THEOREM 5.11 The original signayj, j =0, ..., N — 1, can be computed from its discrete Fourier
transformyi, k =0, ..., N — 1, using

N
yj = Ng?kwlk, for —oo < j < oo.

We can write this in matrix form as

_1lgy (5.12)
y=yFv :
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g(t)

lm‘ ll 'W“JHW\\M
i

Lk

Noise filtering

Practical applications of this theorem are numerous. Wemantion two. The
first involves filtering noise from a signal. When a signalrensmitted, it is often
corrupted by interference from background radiation oepfiources. The corrupted
partofthe signalis called noise. In many applicationsnibise appears with a certain
frequency range thatis different from the dominant freqiesof the original signal.
To filter out noise, a discrete Fourier transform of the sigmeomputed using (5.8).
Then, the Fourier coefficients, corresponding to the noisy, undesirable frequencies
are setequal to zero. The signalis then recomputed fronetivé-ourier coefficients
using equation (5.12). Since the frequency componentgsponding to the noise
have been removed, the resulting signal should contain rfasshnoise than the
original.

Frequently, noise occurs at relatively high frequenciegpp®se that we add the
noise termN(t) = 2sin(50t) to the function in Example 5.7. The resulting signal
isg(t) = f(t)+ N(), and it is plotted in Figure 4. It is difficult to see that the
signal of interest is the functiof(t) plotted in Figure 2. We set; = g(27j/N) for
0<j < N-—1,withN = 256, and take the discrete Fourier transform. The result
is plotted in Figure 5. Notice the large termskat 50 andk = 206= N — 50. To
eliminate the high frequency noise, we “zero out” the higlgfrency coefficients by
settingyx = 0for 13 < k < N — 13 = 243 and compute the inverse transform. The
resulting functionis plotted in blue in Figure 6, while thigginal function f is plotted
in black. The graphical comparison shows that we have éffdgtrecovered the
wanted signal from the noisy one. The most significant diffiee occurs at the two
endpoints. This is a result of Gibb’s phenomenon. Sifigehe periodic extension
of f,is not continuous, we have to expect this.

/\ ANDEN

O\J \/ N “/Vznt

19l

S

(=]

0 128 255k -2
Figure 4 A signal in the Figure 5 The discrete Fourier Figure 6 The result of filtering
presence of high frequency transform of the noisy signal. out the high frequencies.

noise.

Data compression

A second application involves data compression. The go@l &ore or transmit
a signal using the fewest possible bits of data. One way toraplish this is to
store or transmit only the dominant Fourier coefficients gheen signal. In view
of the Riemann—Lebesgue Lemma, Theorem 2.10, only a finitgbeu of Fourier
coefficients are dominant, since these coefficients get sl as the frequency
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Figure 7 The result of removing

small coefficients.
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gets large. Thus, a compression routine can be implememtethree-step process.
First, we compute the discrete Fourier coefficients usingéqgn (5.8). Then we set
all of the small Fourier coefficients equal to zero, storintydhe dominant Fourier
coefficients. Finally, to recover the compressed signad,agiation (5.12). What
constitutes “small” depends on the application and thedolee for error. There is
a trade-off between the number of Fourier coefficients thesat equal to zero and
the accuracy of the compressed signal. The larger the anebanmpression, the
more coefficients that are set equal to zero, and the grdeatifference between
the compressed signal and the original signal.

As an example, we set all coefficients for the function in Egn®.7 equal to
0 that were smaller tharn/10 of the largest coefficient. This resulted in 21 nonzero
coefficients. Again we computed the inverse transform, dottiqul the resultin blue
in Figure 7. The functiorf (t) is plotted in black. The comparison shows that there
is loss, but not a great deal.

The fast Fourier transform

Calculating the discrete Fourier transform using equgtod) or (5.8) involves lots
of computations. Computing eagh using (5.5) requires the sum df products of
two numbers. We will call the combination of a multiplicatiand an addition a
multiply-add, and we will refer to it as an MA. Thus computing eagirequiresN
MAs. Computing the complete discrete Fourier transformmsemmputingy for
0 <k < N — 1. This requiresN? MAs.

The computation can be speeded up using the multiplicatitere ofN. Sup-
pose thalN = pq, where the factorg andq are both bigger than 1. The index in the
sumin (5.5) can be written gs= ap+ g, where0< o <g—21and0< g < p—1.

In terms ofw andp, the sum in (5.5) becomes the double sum

p—19g-1 p—-1 /gq-1
Te=D D Vaprgw PP =" <Z Yap+ﬁmapk) w. (5.13)
p=0 a=0 p=0 \a=0
We will isolate the inner sum by setting
q-1
Yok =Y Yaprp™™~. (5.14)
a=0
Then (5.13) becomes
p—1
Yo=Y Ypuaw™, for0<k=<N-1 (5.15)
=0

The idea is to comput§; i first using (5.14), and then compute the Fourier
transform using (5.15). The savings in the computation cofren realizing that
Y.k is periodic ink with periodg. To see this, we first remember that' = 1 and
N = pg. Then we have

q-1

gq-1
< —ap(k+ —apk _ <5
yﬂ.k+q el Z yap+/3wwp( Q) — Z yap_HSuJ‘Xp el yﬁk
a=0 a=0
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Thus we only need to compufg x for0 < 8 < p—1and 0< k < q — 1. Since
computing eaclj « requiresy MAs, computing all of them requirgsy-q = pg? =
Ng MAs. Now computing theN components of the Fourier transform using (5.15)
requiresNp additional MAs, for a total oN(p + ). If N, p, andq are all large
numbers, the surp + g is much smaller than the produst= pg.

The process outlined in the previous paragraph can bedtkiaN has more
factors. IfN = p;- p2-...- pn, the number of MAs required is reduced to
N(p1+ p2+ - -+ pn). This algorithm for computing the discrete Fourier tramsfo
is called thefast Fourier transform (FFT). Clearly the FFT works best i has a
large number of very small factors, the best being wheis a power of 2. This
is the most commonly used case. WHén= 2" the FFT can compute the Fourier
coefficients with only aboull - 2L = 2N log, N MAs. For example, ifN = 210 =
1024, the FFT requires only about 20,000 MAs versus the ofimmobr so that
are required using (5.8). The savings get more impressivid ggts larger. A
similar FFT routine exists for computing the inverse disefeourier transform. The
mathematical computer programs Matlab, Mathematica, ampl®/&all have built-in
commands for the FFT and inverse FFT.

EXERCISES

All of these exercises are designed to be done with a matlheahedmputer program
such as Matlab, Maple, or Mathematica.

1. Consider the function
f(t) = e /2% (cos2 + 2sin4 + 0.4c0os 2 cos 4Q) .

For what values oh would you expect the Fourier coefficients to be largest?
Why? Compute the coefficients numerically througk 50 and see if you are
right. (You can use a fast Fourier transform algorithm vith= 256 to do this if
you wish.) Plot the partial sum of the Fourier series of order 6 and compare
with the plot of the originalf (x).

2. Consider the function
g(t) = e t/8 [cosZ +2sin4 + 0.4cos2cos 1Q],

for 0 <t < 2x. Compute numerically the partial sum of the Fourier series of
orderN = 25. Zero out any coefficients that have absolute value sntabe
10% of the maximum. Plot the resulting series and compaire thé original
functiong(t). Try experimenting with different tolerances (other th@§4).

3. Show that ify = {yn} is a sequence of real numbers that is periodic with period
N andyis the discrete Fourier transform pfthen the complex conjugate @,
isYn_m. (As aresult, whem is small relative td\, Yy _m has to be considered
a low frequency coefficient, since it is equal to the conjegzty,,, which is
approximately equal to the conjugate of theh Fourier coefficient.)

The next three problems require the use of the fast Foudastorm on a computer
(e.g., Maple or Matlab’s FFT routine).
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4. Filtering Let
f(t) = e /19(sin(2t) + 2 cog4t) + 0.4 sin(t) sin(50t)) .

Discretize f by settingyx = f(2kw/256), for k = 0...255. Use the fast
Fourier transform to compufg for 0 < k < 255. According to Exercise 3, the
low-frequency coefficients aig) . . . Yim and¥ase m . - - Y255 for some low value
of m. Filter out the high-frequency terms by settifig= 0 form < k < 255-m
with m = 6. Apply the inverse fast Fourier transform to this new segjofo
compute they (now filtered); plot the new values gk and compare with the
original function. Experiment with other valuesrof

5. Compression Let tol = 0.01. In Exercise 4, ifVk| < tol x M, whereM =
maxo<k<2s5 | Yk|, S€tVk equal to zero. Apply the inverse fast Fourier transform
to this new set ofjx to compute they. Plot the new values ofx and compare
with the original function. Experiment with other valuestof. Keep track of
the percentage of Fourier coefficients that have been filteu¢. Matlab’s sort
command is useful for finding a value for tol in order to filtart@ specified
percentage of coefficients.

6. Repeat the previous two exercises over the intervaltO< 1 with the function

f(t) = —52% 4+ 100> — 49t + 2 + N(100(t — 1/3))
+ N(200(t — 2/3))

whereN(t) = te .



