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Fig. 5. Atomic scartering factors f for hydrogen, carbon and fluorine, plotted against
sin B/A.



Crystal Axes and Reciprocal Lattice

Text from B. E Warren, Chapter 2

A UlO/l ]]0/ A 2|0/
[ ] ® |
@l a 000 [ A 100 /| &4 200
n ) L L
.
a

0




We suppose that the different atoms in the unit cell are numbered
1,2,3,...,n, and that the positions of the atoms relative to the cell origin
are given by cell vectors ry, ry, Iy, . .., r,. We shall designate the different
unit cells by three integers m,, m,, my, such that cell m,m,m, is the one whose
origin is displaced from the crystal origin by m,a, + m,a, 4+ msa;. Finally
the position of the atom of type n in the unit cell m;m.m; is given by the
vector

R: = ma, + m.a; + myay + r,. (2.1)
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2.2 THE CRYSTALLOGRAPHIC PLANES hkl

In using the Bragg law, we consider diffraction in terms of a set of crystallo-
graphic planes hkl. A precise definition of this concept is indicated by Fig.
2.2. By the set of crystallographic planes hk/, we mean a set of parallel
equidistant planes, one of which passes through the origin, and the next
nearest makes intercepts a,/h, a,/k, and ay// on the three crystallographic
axes. The integers hk/ are usually called the Miller indices.
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Fig. 2.2 Representation of the crystallographic planes hkl.



2.3 RECIPROCAL VECTORS AND THE RECIPROCAL LATTICE
In terms of the crystal axes a,a,a;, we define a set of reciprocal vectors

b,b,b, :

b, = a, X A, , b, = a, X a, ! b, = a, X &, L @22)
q -8 X a, a; -8, X a4, a,-a, X a,
a b= I=)
i 'V : s
0, 17].

Hyy, = hb, + kb, + /b,
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Fig. 2.2 Representation of the crystallographic planes hkl.

From Fig. 2.2 it is evident that (a,/h — a,/k) and (a,/k — ay/l) are vectors
which are parallel to the hk/-planes. But from the relations expressed by
Eq' (23)1

(?'— ?) ‘Hy =

(- %) = (2

———

)*(nh‘+kba+fhs)=l--1=n,
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2 : )-(hh1+kh,+1b,)=1—-l=0.



Since H,;, is perpendicular to the hkl-planes, we can make up a unit vector
n by using H,,;,/|H;;,|. Hence the spacing is given by

a, (hby 4 kby+1b) _ 1
h [Hy |H,l

dhkl =
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Fig. 2.3 Relations involved in the
vector representation of the Bragg
law.
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Fig. 2.4 Reciprocal lattice representation of the satisfying of the Bragg law for a
set of planes hkl. The diffraction vector (s — sy)/4 must terminate on the point hk/
of the reciprocal lattice,




A very powertul and usetul way ol representing the satistying ol the Bragg
law is given by the sphere of reflection (Ewald sphere). The reciprocal lattice
is represented schematically in 2 dimensions by Fig. 2.5. The direction of
the primary beam is shown by the vector s,/4, a vector of length 1/4 termi-
nating on the origin of the reciprocal lattice. A sphere of radius 1/ centered
on the initial end of sy/A passes through the origin. Any reciprocal lattice
point Akl which happens to fall on the surface of the sphere, represents a
set of planes hkl for which the Bragg law is satisfied. The direction of the
diffracted beam is given by the vector s/4 from the center of the sphere to
the point Akl Tt is evident that the relation of the three vectors s,/4, s/4, and
H,,, shown by Fig. 2.5 is that of the Bragg law expressed by Eq. (2.5).
Although Fig. 2.5 shows the relations schematically in two dimensions, the
sphere of reflection construction is valid in three dimensions, and the point
hkl can be anywhere on the surface of the sphere.
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Fig. 2.5 Two-dimensional representation of the sphere of reflection in the reciprocal

lattice. The Bragg law is satisfied for any set of planes whose point Ak/ falls on the
surface of the sphere.
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Rhombohedral, a=b=c,a = fi = y:

di a’(l + 2cos® x — 3 cos® %)

Hexagonal,a = b, a = f = 90°, y = 120°:

1 4/ +hk + k3 P
= ‘( 2 ) +5-
‘fﬁﬂ'f 3‘ X a c”
Monoclinic, 2 = y = 90°:
Ak K*sin®p P 2hlcosf
d3,  sin® ﬁ’(a” + b? + c* ac )

Orthorhombic, » = g = y = 90°:
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Tetragonal, d = b, o = fi = y = 90°:

Cubic,a=b=c,2=p=v=90"

_(h* 4 K+ *)sin®a 4+ 2(hk + kI + lh)(cos® « — cos a)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)




Diffraction by as Small Crystal

From B. E Warren, Chapter3

Eye®

€, = f,, cos I:Zmrt - 277? (x, + xz)].

mc®R

We assume that the crystal is so small, relative to the distance R to the point
Of observation, that the scattered beam can also be treated by the plane-wave
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Fig. 3.1 Diffraction of a parallel primary beam by a small crystal.
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The summations over m;mym; have the form of geometric progressions
for which the sum is given by

S=a+ar+ar2+-°-+l=ﬂ_a

—y (3.3)

where a is the first term, /is the last term, and r is the ratio. Using Eq. (3.3),
the sum over m; becomes

Ni1-1 (27i/1)(s—8g) N
12 e(2r:‘ll)(s-—so)-m1al —_ e Ti/ANs—e0) Mot 1

mi1=0

e(2rill’(s—so)°a1 -1

With similar expressions for the sums over m, and m;, the instantaneous
field at P can be written

(278/AMs—so)-N181 __ | (27i/AM(s—80) Neap _ {
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Following the rules set up in Chapter 1, we now write the complex
conjugate € :
—(27i/AN(s—sp) N1ay __ 1 e—(2rill)(s—so)°Ngag -1

2
G* —_ Eoe e—2u’i[vt—(Rll)]F* e
= mecR p—\2milM ) s—sp)my __ | o—(2mi/A)s—sg)ag _ 1

e—(zrill)(s—so)-Naaa -1

X

e—(2ri/l)(s—so)-ag -1 ’

where by the complex conjugate of the structure factor we mean

F* = z f:e—(‘.’.zill)(s—so)-r,.. (34)
In taking the product € €¥, there will be products of the form
(e‘N‘” — l) (e“'""” — 1) 2 —2cos Nx _ sin® Nx/2
e —1/\e*—1 2 —2cos x sin® x/2

and hence
s _ _Eqe' ppysin® (m/A)(s — o) - Nyay sin® (w/A)(s — o) - Ny

€6, =
% mPc*R? sin® (w[A)(s — sp) <@, sin® (w/A)(s — s,) - &,
v sin® (7/A)(s — sy) « Nja,

sin® (w/A)(s — sp) + 83

(3.5)



[ = 1 p2 SR ([AXs — s) « Nuay sin® (m/2)(s — o) - Noay
T sin®(n[A)(s — sp) -2, sin® (w/A)(s — s9) - &y
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where

IB=10

et (l + cos® 26)
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Fig. 3.2 The function (sin® Nx)/sin? x for N = 20. The function peaks at values of
x which are integral multiples of =, and it is essentially zero everywhere else.



The value of the intensity at the point of observation depends sharply upon
the three quotients of Eq. (3.6). These are of the form

sin® Nx
. 2 9
sin® x

where x; = (w/A)(s — s,) - ;. Figure 3.2 shows the function

sin® Nx
sin? x

y=

for N =20. The function rises to high maxima y = N?® at the positions
x = nw. For the average crystal which we shall be considering, N is con-
siderably greater than 20, and the peaks are accordingly much higher and
sharper than those of Fig. 3.2. We can say that the function y = (sin® Nx)/
sin? x is essentially zero everywhere except in the immediate vicinity of x = n,
where it rises to high maxima. Hence the intensity I, will be essentially zero
unless the three quotients are simultaneously close to their maximum values.
For I, to be a maximum, we must simultaneously satisfy the three conditions

(7/A)(s — o) - 8, = h'm,
(7[A)(s — o) * 8, = k'm,
(11'/2.)(8 — S A = l'w,



Since a diffracted beam exists only if the 5 Laue equations are simul-
aneously satisfied, these three equations together must be equivalent to the
Bragg law. To show that this is so, let any arbitrary vector r be represented
n terms of the three reciprocal vectors:

r = pib; + pb; + psbs.
F'o determine the coefficient p,, take the scalar product with a,:
r-a; = (pb; + pob, + psbs) - a;, = p,.

With p, and p,; determined in a similar way, we can write the general relation
'or expressing a vector r in terms of the reciprocal vectors b,b,b,:

r=(r-a)b, + (r-ay,)b, 4+ (r- a,)b,. (3.9)
We now let r be the vector (s — s,), and combine Eq. (3.8) with the 3 Laue
2quations:
(8 — Sp) = (5 — Sp) - a;b; + (5 — Sp) * ab, + (S — Sp) < A3hy,
= A(h’bl 'I" k'bg + l’b3), (3.9)

s — 5o = AH},p-.
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3.3 STRUCTURE FACTOR FOR A BRAGG REFLECTION

The structure factor depends upon the atomic positions and these were
represented by the cell vectors r,. It is convenient to express the cell vectors
in terms of components along a,aa; by means of fractional coordinates
Xns Vns Zn» Which are numbers between zero and unity. As illustrated by
Fig. 3.3, r, = x,a, + y,a, + z,8;3. For an hkl-reflection, we are interested
in the value of the structure factor when the Bragg law is satisfied for this
set of planes, and hence when s — s, = AH,,,. Expressing the cell vectors in
terms of fractional coordinates, and using the (s — s,) value which corre-
sponds to an /kl-reflection, Eq. (3.2) becomes

Fhkl — Zf"e‘.’.ri(hb1+kbg+lb3)'(.r,.ari'y"aa-l-znaa) — z f"e?.ﬂ'i(h.r,,+kyn+lzn). (3.10)

n n



Fig. 3.3 Representation of the basis
vector r,, in terms of the fractional
coordinates x,, y,, and z,.




In a crystal whose Bravais lattice is face-centered, for every atom with
fractional coordinates x,y,z,, there must be three identical atoms with
coordinates x,, + %, y, + %, z,; x, + 4, Vps 2, + d;and x,,, v, + 3,2, + §.
If the cell contains n atoms, there are n/4 groups of four, all four atoms in

each group having the same scattering factor. The structure factor can be
expressed as a sum over such groups of 4 atoms:

Fupy = z f {ezri(hmn+kvn+lzn) + 2T ih{2nt1/2Hklynt1/2H 12,)
d n

4
™ + ezlri (hlent+1/2H-kvpt+i[20+1/2]) 4 e 2ri(hant+k(va+1/2HUzn+1/2)) }

This can be written in the simpler form

Fhkl — [1 + e:n'(h+k)+ eri(h+l) + etn'(k+l)] zl4fne2ri(hm,.+k1ln+lzn). (311)
n



This can be written in the simpler form

Fhkl — [1 + en'(h+k)+ eri(h+l) 4 en‘(k+l)] z“fnezri(hz,ﬁkv,ﬁlz,.). (311)

If mis an integer, e"'™ = (—1)™, and hence the first factor takes the value 4
if hkl are unmixed (all odd or all even) and the value zero if hkl are mixed:

hkl unmixed: Fp,, = 4 Y f, e 7 hantkvatiza), (3.12)

nf4
hkl mixed: F,;,=0.

Regardless of the atomic coordinates x,5,2,, Fi.; = 0 for all reflections with
mixed hkl. Hence the face-centered Bravais lattice is recognized by the fact
that all reflections with mixed indices are missing.



In a crystal whose Bravais lattice is body-centered, for every atom with
fractional coordinates x,y,z,, there must be an identical atom with co-
ordinates x,, + 4, y, + %, and z, 4+ 1. The structure factor is expressed as
a sum over such groups of 2 atoms:

Fhkl = [l + eﬂ'“’H'k-I-l)] z fne""”i("xa+kﬂn+12n)
n/2



and hence
h + k + ]l = even: Fhkl = 2 2 fnezri(hw,.+ky,.+lz,.),
w2 (3.13)
h+4+k+41=o0dd: Fpr, = 0.

The body-centered Bravais lattice is recognized from the fact that all
reflections will be missing for & + k + I = odd.



We next consider the evaluation of the structure factor for two common
structures having the face-centered cubic Bravais lattice. In rock salt, the
cubic cell contains 4 Na and 4 Cl at the following positions:

0 00 1 11
1 £ 0 0 0 %
Cl§0§Na0§0
0 % 4 1 00



To evaluate the structure factor using Eq. (3.12), we can choose any one of

the positions in each group of 4 atoms. Using 0 00 for Cl and 1 } for Na,
the structure factor is given by

hkl mixed: Fpu=0
hkl unmixed:  Fp, = 4[fc + frae™ *HH.

For rock salt, the structure factor takes the three forms:

hkl a" even. Fhkl = 4(fcl +f1\'a)9

hk’ a" Odd: ‘Fhkl —— 4(_,‘(-1 —j:\va), (3.14)
hkl mixed: Fip = 0.



