Figure 6.18 The reflection sphere in reciprocal space. The extension of the
analysis in Figure 6.17 to a three-dimensional crystal is to draw a sphere with ra-
dius 1/nA. Each reciprocal lattice point that intersects the surface of the sphere
(filled points) is a reflection in reciprocal space. The points included in the vol-
ume of the sphere of reflections (open points) represent points along the surface
of smaller concentric spheres.



Crystal Axes and Reciprocal Lattice

Text from B. E Warren

2.3 RECIPROCAL VYECTORS AND THE RECIPROCAL LATTICE
In terms of the crystal axes a,a,a;, we define a set of reciprocal vectors
bbb, :
a, X X a a, Xa
hl —_ 2 ag , be — a3 1 , ha — 1 2 . (2'2)
8 +8; X 3y a, -8, X a, a,-a, X a4

Hyy, = hb, + kb, + /b,



-]

Fig. 2.2 Representation of the crystallographic planes hkl.

From Fig. 2.2 it is evident that (a,/h — a,/k) and (a,/k — ay/l) are vectors
which are parallel to the hk/-planes. But from the relations expressed by
Eq' (23}1

(p3) e -

(E:...E#).Hm=(!ka_

)*(hhl+kba+fha)=1--1=n,

~ 12

~ P

. )-(hh,+kh,+fb,)=1—-l=0.
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Fig. 2.3 Relations involved in the
vector representation of the Bragg
law.

/

Fig. 2.4 Reciprocal lattice representation of the satisfying of the Bragg law for a
set of planes hkl. The diffraction vector (s — sy)/4 must terminate on the point hk/
of the reciprocal lattice,




In a crystal whose Bravais lattice is face-centered, for every atom with
fractional coordinates x,y,z,, there must be three identical atoms with
coordinates x,, + %, y, + %, z,; x, + 4, Vps 2, + d;and x,,, v, + 3,2, + §.
If the cell contains n atoms, there are n/4 groups of four, all four atoms in

each group having the same scattering factor. The structure factor can be
expressed as a sum over such groups of 4 atoms:

Fupy = z f {ezri(hmn+kvn+lzn) + 2T ih{2nt1/2Hklynt1/2H 12,)
d n

4
™ + ezlri (hlent+1/2H-kvpt+i[20+1/2]) 4 e 2ri(hant+k(va+1/2HUzn+1/2)) }

This can be written in the simpler form

Fhkl — [1 + e:n'(h+k)+ eri(h+l) + etn'(k+l)] zl4fne2ri(hm,.+k1ln+lzn). (311)
n



This can be written in the simpler form

Fhkl — [1 + en'(h+k)+ eri(h+l) 4 en‘(k+l)] z“fnezri(hz,ﬁkv,ﬁlz,.). (311)

If mis an integer, e"'™ = (—1)™, and hence the first factor takes the value 4
if hkl are unmixed (all odd or all even) and the value zero if hkl are mixed:

hkl unmixed: Fp,, = 4 Y f, e 7 hantkvatiza), (3.12)

nf4
hkl mixed: F,;,=0.

Regardless of the atomic coordinates x,5,2,, Fi.; = 0 for all reflections with
mixed hkl. Hence the face-centered Bravais lattice is recognized by the fact
that all reflections with mixed indices are missing.
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Figure 6.5 The 14 Bravais lattices in crystallography. [Adapted from G.H. Stout
and L. H. Jensen (1989), X-Ray Structure Determination, a Practical Guide, 2d
ed., John Wiley & Sons, New York, p. 50.]



Rhombohedral, a=b=c,a = fi = y:

di a’(l + 2cos® x — 3 cos® %)

Hexagonal,a = b, a = f = 90°, y = 120°:

1 4/ +hk + k3 P
= ‘( 2 ) +5-
‘fﬁﬂ'f 3‘ X a c”
Monoclinic, 2 = y = 90°:
Ak K*sin®p P 2hlcosf
d3,  sin® ﬁ’(a” + b? + c* ac )

Orthorhombic, » = g = y = 90°:

N S
L_rmL e

¥ '
dpy o 07

Tetragonal, d = b, o = fi = y = 90°:

Cubic,a=b=c,2=p=v=90"

_(h* 4 K+ *)sin®a 4+ 2(hk + kI + lh)(cos® « — cos a)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)




TABLE 6.3 RELATIONSHIP BETWEEN UNIT CELL PARAMETERS IN REAL SPACE AND RECIPROCAL
SPACE

Lattice type Real Space Reciprocal Space
Orthorhombic -
and higher a ot = 1
symmetry a
1
* =
b b b
c c* = !
c
a = 90° a* = 90°
B =90° B* = 90°
v = 90° y* = 90°
Vv V* = ‘l/ = g*b*c*
Monoclinic
a a* = 1
asin 3
1
b b* = —
b
1
* =
¢ ¢ csin B
a=90° a* = 90°
B # 90° p* =180° -8
v =90° y* = 90°
Vv v = ‘1} = a*b*c* sin g*
Triclinic
2 ot = bc sin a
|4
. _acsinf
b b v
c o+ = ab sin y
Vv
o £ 90° cos a* = cosﬂ.cos -y.— COSs a
sin B sin y
B # 90° cos f = cosa'cos-y'—cosﬁ
sin a sin ¥
CcOs @ cos 3 — cos y
# 90° =
¥ 8T sin a sin 8
1% V* = a*b*c*V1 — cos? a* — cos? B* — cos? y* + 2 cos a cos B oS y

[From G. H. Stout and L. H. Jensen (1989), X-Ray Structure Determination, a Practical Guide, 2d ed., John Wiley &
Sons, New York, p. 37.]




[ — g2 S (m/A)s — ) - Nyay sin® (/A)(s — S) - Noa,
T sin*(afA)(s — sp) -, sin® (w/A)(s — so) - &,
% sin® (w/A)(s — s,) - Njag

sin® (w/A)(s — So)- g

, (3.6)

where

4 2
I, =1, e (l <+ cos 26)

me*R® 2



) . X —(2g: —gn)(R,’4+8,¢
I=1, z f,e‘z""“"""’ (Ry+5)) z fre (27i/}s—sq)-(Ry'+8y7)
! I/



e sin® (m/A)(s — sp) < Nya, sin® (w/2) (s— s,) - Npa,

I - IGFT . 9 .
sin® (w/A)(s — sp) . a; sin“(w/A) (s — sy) * A,
sin® (m/4) (s — so) * Njag
8 sin® (wf1) (s — Sp) a5 (3:23)
where

FT — z fne—lll,.eh'i({w,,-i-kvn-i-lzn). (324)

n



- If the three Laue equations were exactly satisfied, Eq. (3.23) would
predict a maximum intensity:

(I)max = I.FnNINZNE.



Fig. 4.1 The geometry involved in calculating the integrated intensity from a small
single crystal which is rotated at constant angular velocity w about an axis normal

to the paper.

Hyy, = hb, + kb, + /b,



SEHS;—?AS . Nlal - Sil’le Tr(plbl + pgbg + pgba) . Nlal - 5in2 ﬂ‘Nlpl‘
The total diffracted energy given by Eq. (4.1) can now be expressed by

=1 -—F2 ”‘Ism wN1py sin® #ngz sin® wN:,pad dBdy. (4.4)

sinfwp, sin®wp, sin®wp,

R*Fa J' J‘ J‘ sin® -:erp1 sin® ‘”ngg sin® wNap, dv 4.5)
‘ w sin 20 sin® #p, sin® 7Py sin® 'n'ps '

E=1I dp,

0 .2
" J’* sin wN:ps dp,.
—o  (wps)

RSJSI;QT +o0 Siﬂz ”Nlpl. p J'-!-ao Sil‘lz ‘"‘Nspa
‘wvgsin20 J-o  (7p)® Vo (mpy)




|d(AS),| = de,  |d(AS),| = df,  |d(AS),| = dy

are shown by Fig. 4.1. As a result of these three changes, the terminal point
of the vector AS traces out a volume element in reciprocal space:

dv = d(AS), - d(AS), x d(AS), = sin 20 de dB dy.

R*F’ f J‘ J‘ sin® lepl sin® -»:-Nspa sin® wNap, dv 4.5)
* w sin 20 sin® wp, sin® wp, sin® wp, '

RSJ'SFET -+ Siﬂz ’erpl +o sm '"'Napa
E=I——" | ——=dp : dps
Wy, sin 20 J-o»  (7py) ~o  (7py)

0 .2
" J" sin® 7w Ngps dp,,
—a0 (‘ll';'o'a)2



=1_0( ¢ );PaVF',.(l + cos® 26)' (4.6)

e
w\m*/ o2 2 sin 20
The factor (1 4 cos? 26)/2 sin 26 is the Lorentz-polarization factor for a
single crystal inran unpolarized primary beam. Notice that the total diffracted
energy E depends only upon the volume 6V of the crystal. The restriction
which we made when we assumed the crystal to have the shape of a parallelo-
pipedon was a real restriction as long as we talked about intensity. As soon

as we change to the experimentally observable quantity “total energy” or
“integrated intensity,” the restriction vanishes. A small single crystal, which



Text from B. E Warren

THE POWDER METHOD

The ideal powder sample consists of an enormous number of very tiny
crystals of size 10~ cm or smaller with completely random orientation.

The CuKo,a; doublet (A = 1.542 A) with a Ni filter (A = 1.488 A) is prob-
ably used more than any other source. A wavelength of radiation which is
just shorter than an absorption edge wavelength in the sample is always to be
avoided, since these conditions lead to a high absorption coefficient and

strong fluorescence radiation. For example, CuKa (A = 1.542 A) would
never be used with a sample of iron (A, = 1.743 A).



Fig. 5.5 Schematic representation of
the counter diffractometer as used for
recording powder patterns.

w/2
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Fig. 5.6 Diffractometer recording of the powder pattern of NaCl using Ni filtered
CuKa radiation.



The 26-values for the different reflections are read directly from the chart
recording and tabulated in column 1. The corresponding values of 1/d? =
4 sin® 0/A® are computed and recorded in column 2. Rock salt is a cubic
crystal, but even when the crystal system is unknown, we would start out by
trying to index the pattern in terms of a cubic lattice. If it is not cubic, this
will quickly turn out to be impossible, and we would then fall back on the
various schemes for handling systems of lower symmetry.

From Eq. (2.14) for a cubic crystal,

asin® 1 _ K +K 4P
2 P a® '

(3.7



For a face-centered cubic lattice, we have seen that for every atom with
coordinates xyz there must be three identical atoms at coordinates x + §,
y+4 z;x+%, y,z+ 4, and x, y+ 4, 2+ 3. Hence if we choose as
origin the position of one of the Cl, the coordinates of the four Cl atoms will
be000,430,404%,04%3. If weplace one of the Na at xyz, the positions of
the other three Na are fixed at x + 4, y+ 3, z; x+ 4, y, z + ; and x,
y + 1, z + §. But there are only 3 unoccupied sets of xyz-values which will
allow cubic symmetry in a crystal with the 4 Cl already placed. These three
possible sets of Na positionsare 44 4; } }1; and § # §. Since the third can
be obtained from the second by rotating the crystal 90°, we need consider
only the first two sets.



We next consider the evaluation of the structure factor for two common
structures having the face-centered cubic Bravais lattice. In rock salt, the
cubic cell contains 4 Na and 4 Cl at the following positions:

0 00 $ § 1
1 4+ 0 0 0 3}
CI§0§Na0§0
0 § 3% 1 00

To evaluate the structure factor using Eq. (3.12), we can choose any one of

the positions in each group of 4 atoms. Using 000 for Cl and } } 4 for Na,
the structure factor is given by

hkl mixed: F’lkl = 0
hkl unmixed:  Fpp = 4[fc) + fra€” *H0)
For rock salt, the structure factor takes the three forms:

hk] a" cven: Fhkl = 4({(1 +f}\'a)’

hkl all odd: Fie = 4(f1 = fxa)» (3.149)
hk’ mixed: Fhkl == 0.



Table 5.1
POWDER DIFFRACTOMETER PATTERN OF NaCl (i = 1.542 A)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Y 4 sin%6 TR y sin 0 F? L F2m(LP) A, Col. 12
A% +E+ ' a(4) A Ja Ixa m | (LP) 1000 arb. unit | corrected
273 0.0940 3 111 | 565 | 0.154 13.50 | 8.90 338 8 {33.5 91 116 102
31.7 0.1255 4 200 | 5.65 | 0.177 12.70 | 8.70 | 7330 6 | 24.0 1057 1260 1160
45.5 0.2516 8 220 | 5.64 | 0.251 10.50 | 7.65 | 5280 12 | 10.9 690 694 697
53.9 0.3455 11 311 | 5.64 | 0.294 9.60 | 7.00 107 | 24| 74 19 23 18
56.5 0.3768 12 222 | 5.64 | 0.307 9.35 | 6.75 | 4150 8| 6.6 219 200 201
66.3 0.503 16 400 | 5.64 | 0.354 8.65 | 6.10 | 3490 6 4.7 98 92 82
73.2 0.598 19 331 | 5.64 | 0.386 8.30 | 5.65 112 | 24| 3.8 10 13 8
75.4 0.629 20 420 | 5.64 | 0.396 820 | 550 | 3010 | 24 | 3.60 260 198 195
84.1 0.755 24 422 | 5.64 | 0434 7.85 | 505 | 2660 | 24 | 3.05 195 136 136
511 24
90.6 0.849 27 333 5.64 | 0.461 7.60 | 4.75 130 8 2.80 12 10 8




sin26

2M = 2B —;

sin® 0
LI

n (IOOOA) =InK— 2B
F*mLP

A theoretical 'expres;ion for the Deb}e factor 2M = 2B sin? 0/4% is
developed in Chapter 11. For a cubic element

12*T

2B =
mk®?®

{CD(x) + ‘i] (5.9)



A theoretical expression for the Debye factor 2M = 2Bsin? /4% is
developed in Chapter 11. For a cubic element

2
2B = 12h T[

X
2h o) + 4], (5.9)
where h is Planck’s constant, T is the absolute temperature, m is the mass of
the atom, k is the Boltzmann constant, ©® is the Debye characteristic
temperature of the substance, x = O/T, and {®(x) + x/4} is a tabulated
function which is approximately unity for T > ©. Approximating NaCl
as an element with average atom mass, m = (23.0 4+ 35.5)/(2 x 0.602 x 102)
and using h = 6.62 x 10~%, T = 300°K, k = 1.38 x 10716, @ = 281°K,
and {®(x) + x/4} = 1.02, we obtain 2B = 3.02 A2 The value 2B = 2.94 A?
which we obtained from the logarithmic plot is in satisfactory agreement.



Fppo = [1 4 "N 1 P2rilhantkyntiza)
n/2

To evaluate the structure factor using Eq. (3.12), we can choose any one of

the positions in each group of 4 atoms. Using 00 0 for Cl and 4 }  for Na,
the structure factor is given by

hk: miXEd: Fhkl - 0
hk! unmixed: Fhkl = 4[f('-] +fNae'“h+k+"].
For rock salt, the structure factor takes the three forms:

hk] a“ cveén: F’lkl = 4({(_1 +fNﬂ)’

Wkl all odd:  Foy = 4(fey — fuca)s (3.14)
hk! mixed: Fhkl _— 0.



For a more accurate treatment it is necéssary to allow for different values
of M(Cl) and M(Na):

A(meas)

= K f. e MO o o —M(Nay2
m (LP) {f Cl f Na }
With the abbreviation 02 = A(meas)/m(LP), we have two cases:

hkl all even: Q(even) = K[fn eV 4 fy e~ 2 (N,

hkl all odd  Q(odd) = K[fye 2V — f, e~ MNa)|,



Table 5.2

INTERPRETATION OF NaCl PATTERN IN TERMS OF
ZINC BLENDE STRUCTURE

F2m(LP) A
1000 arb. units

hkl fa [ F? m (LP)

111 13.50 8.90 4180 8 33.5 1120 116
200 12.70 8.70 256 6 24.0 37 1260
220 10.50 7.65 5270 12 10.9 690 694

By plotting the measured values of Q against sin /4, we can treat Q(even)
and Q(odd) as continuous functions of sin 0/A. From the sums and
differences, we obtain

In "Q(even) + Q(odd)] _ In K — B(Cl) (SiLﬁ)z’
i 2f(Cl) A

In '_Q(even) — Q(odd)' — In K — B(Na) (& 2. (5.10)
X 2f(Na) A




ZINC BLENDE STRUCTURE

Table 5.2
INTERPRETATION OF NaCl PATTERN IN TERMS OF

F2>m(LP) A
hkl Je fxu Ft m (LF) 1000 arb. units
111 13.50 8.90 4180 8 33.5 1120 116
200 12.70 8.70 256 6 24.0 37 1260
220 10.50 7.65 5270 12 10.9 690 694

By plotting the measured values of Q against sin 6/4, we can treat Q(even)

and Q(odd) as continuous functions of sin 0/A.

differences, we obtain

In

In

"Q(even) + O(odd)]

! 2f(CD)

From the sums and

sin 6\

| =1k — B (T)

'Q(even) — Qodd)] _ o B(Na) sin 0 0)2 (5.10)
_ 2f(Na) ( =)

From plots of the left-hand side of Eq. (5.10) against (sin 0/1)%, the slopes
give directly the values of B(Cl) and B(Na).



5.5 ANALYSIS OF ORTHORHOMBIC POWDER PATTERNS

Following the cubic, tetragonal, and hexagonal systems, the next in order of
increasing difficulty is the orthorhombic system. For orthorhombic crystals
there are three axes, a, b, ¢, and graphical methods are not practical. A
numerical method described by Lipson* can, however, be used. We start
with the spacing formula:

1 S

Fok) Tt

For all pairs of reflections with the same 4 and k but different /,

1 1
d*(hkl))  d*(hkly)
Similarly for pairs of reflections with the same k and / but different 4 there

will be differences (A} — /2)(1/a%), and for pairs of reflections with the same
I and h but different k there will be differences (k§ — k3)(1/b2).

=i =B/ =(,3,4,5,8,...)1/c).



We now tabulate the differences of all pairs of experimental 1/d* values and
plot the frequency of occurrence. Differences which occur several times are
likely to include the numbers (1, 3,4,5,8,...)(1/a®*)or (1,3,4,5,8,...)(1/b%
or (1,3,4,5,8,...)(1/c?). With a little trial and error consideration, it is
often possible to obtain the axes from these occurrences. Since spurious
multiple occurrences are to be expected, it is very important to have extremely
accurate (1/d%)-values. The method works best for simple orthorhombic
lattices; for centered lattices, the number of coincidences is reduced.



