## Chapter 11

**Energy in Thermal Processes** 



### **Energy Transfer**

- When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler increases
- The energy exchange ceases when the objects reach thermal equilibrium
- The concept of energy was broadened from just mechanical to include internal
  - Made Conservation of Energy a universal law of nature



# Heat Compared to Internal Energy

- Important to distinguish between them
  - They are not interchangeable
- They mean very different things when used in physics



### Internal Energy

- Internal Energy, U, is the energy associated with the microscopic components of the system
  - Includes kinetic and potential energy associated with the random translational, rotational and vibrational motion of the atoms or molecules
  - Also includes any potential energy bonding the particles together

## Heat

- Heat is the transfer of energy between a system and its environment because of a temperature difference between them
  - The symbol Q is used to represent the amount of energy transferred by heat between a system and its environment

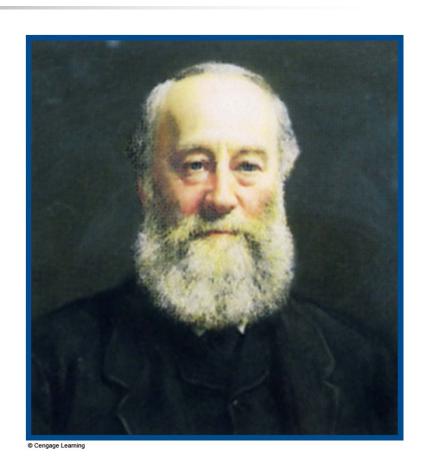


#### Units of Heat

#### Calorie

- An historical unit, before the connection between thermodynamics and mechanics was recognized
- A calorie is the amount of energy necessary to raise the temperature of 1 g of water from 14.5° C to 15.5° C.
  - A Calorie (food calorie) is 1000 cal




#### Units of Heat, cont.

- US Customary Unit BTU
- BTU stands for British Thermal Unit
  - A BTU is the amount of energy necessary to raise the temperature of 1 lb of water from 63° F to 64° F
  - 1BTU = 1055 J
  - 1 cal = 4.186 J
  - This is called the Mechanical Equivalent of Heat



#### James Prescott Joule

- **1818 1889**
- British physicist
- Conservation of Energy
- Relationship between heat and other forms of energy transfer



# 4

#### Specific Heat

- Every substance requires a unique amount of energy per unit mass to change the temperature of that substance by 1° C
- The specific heat, c, of a substance is a measure of this amount

$$\mathsf{c} = \frac{\mathsf{Q}}{\mathsf{m} \, \Delta \mathsf{T}}$$



### Units of Specific Heat

- SI units
  - J / kg °C
- Historical units
  - cal / g °C

## 4

### Heat and Specific Heat

- $Q = m c \Delta T$
- ΔT is always the final temperature minus the initial temperature
- When the temperature increases, ΔT and ΔQ are considered to be positive and energy flows into the system
- When the temperature decreases, ΔT and ΔQ are considered to be negative and energy flows out of the system

#### Specific Heats of Some Materials at Atmospheric Pressure

| Substance        | J/kg·°C | cal/g·°C   |
|------------------|---------|------------|
| Aluminum         | 900     | 0.215      |
| Beryllium        | 1 820   | 0.436      |
| Cadmium          | 230     | 0.055      |
| Copper           | 387     | 0.0924     |
| Ethyl<br>Alcohol | 2 430   | 0.581      |
| Germanium        | 322     | 0.077      |
| Glass            | 837     | 0.200      |
| Gold             | 129     | 0.030 8    |
| Ice              | 2 090   | 0.500      |
| Iron             | 448     | 0.107      |
| Lead             | 128     | $0.030\ 5$ |
| Mercury          | 138     | 0.033      |
| Silicon          | 703     | 0.168      |
| Silver           | 234     | 0.056      |
| Steam            | 2 010   | 0.480      |
| Tin              | 227     | 0.0542     |
| Water            | 4 186   | 1.00       |



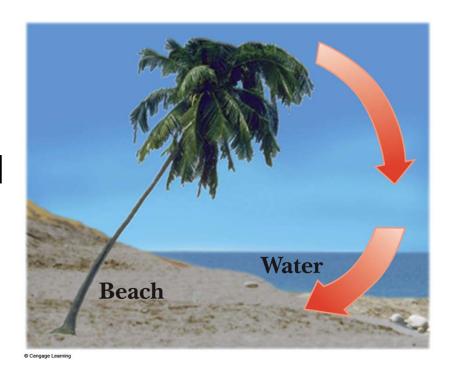


A steel strut is 2 m long, with a mass of 1.57 kg and cross-sectional area of 1x10<sup>-4</sup> m<sup>2</sup>. During the operation of the furnace the strut absorbs the net thermal energy of 2.5x10<sup>5</sup>J. Find the change in temperature of the strut. ( specific heat of steel is 448 J/kg·°C)



What is the temperature increase of 4.0 kg of water when heated by an 800-W immersion heater for 10 min? ( $c_w = 4.186 \text{ J/kg} \cdot ^{\circ}\text{C}$ )

A solar heating system has a 25.0% conversion efficiency; the solar radiation incident on the panels is 800 W/m<sup>2</sup>. What is the increase in temperature of 30.0 kg of water in a 1.00-h period by a 4.00-m<sup>2</sup>-area collector? ( $c_w = 4.186$  J/kg.°C)




A 2.00-kg copper rod is 50.00 cm long at 23°C. If 40 000 J are transferred to the rod by heat, what is its change in length?  $c_{copper} = 387 \text{ J/kg} \cdot ^{\circ}\text{C}$  and  $\alpha_{copper} = 17 \times 10^{-6}/^{\circ}\text{C}$ .



# A Consequence of Different Specific Heats

- Water has a high specific heat compared to land
- On a hot day, the air above the land warms faster
- The warmer air flows upward and cooler air moves toward the beach





#### Calorimeter

- One technique for determining the specific heat of a substance
- A calorimeter is a vessel that is a good insulator which allows a thermal equilibrium to be achieved between substances without any energy loss to the environment

# 4

### Calorimetry

- Analysis performed using a calorimeter
- Conservation of energy applies to the isolated system
- The energy that leaves the warmer substance equals the energy that enters the water
  - $\mathbf{Q}_{cold} = -\mathbf{Q}_{hot}$
  - Negative sign keeps consistency in the sign convention of ΔT

# Calorimetry with More Than Two Materials

- In some cases it may be difficult to determine which materials gain heat and which materials lose heat
- You can start with  $\Sigma Q = 0$ 
  - Each  $Q = m c \Delta T$
  - Use T<sub>f</sub> T<sub>i</sub>
  - You don't have to determine before using the equation which materials will gain or lose heat

A 125-g block of unknown substance with a temperature of 90°C is placed in a Styrofoam cup containing 0.326 kg of water at 20°C. The system reaches an equilibrium temperature of 22.4°C. What is the specific heat of the substance, if the heat capacity of the cup is neglected?

Find the final equilibrium temperature when 10.0 g of milk at 10.0°C is added to 160 g of coffee at 90.0°C. (Assume the specific heats of coffee and milk are the same as water and neglect the heat capacity of the container.)  $c_{water} = 1.00$  cal/g·°C = 4186 J/kg·°C



### Problem Solving Hint

- It is important to organize the information in a problem
- A table will be helpful
- Headings can be
  - Q<sub>material</sub>
  - m
  - C
  - $\blacksquare$   $\mathsf{T}_\mathsf{f}$
  - T<sub>i</sub>



#### Phase Changes

- A phase change occurs when the physical characteristics of the substance change from one form to another
- Common phases changes are
  - Solid to liquid melting
  - Liquid to gas boiling
- Phases changes involve a change in the internal energy, but no change in temperature

#### Latent Heat

- During a phase change, the amount of heat is given as
  - Q = ±m L
- L is the *latent heat* of the substance
  - Latent means hidden
  - L depends on the substance and the nature of the phase change
- Choose a positive sign if you are adding energy to the system and a negative sign if energy is being removed from the system



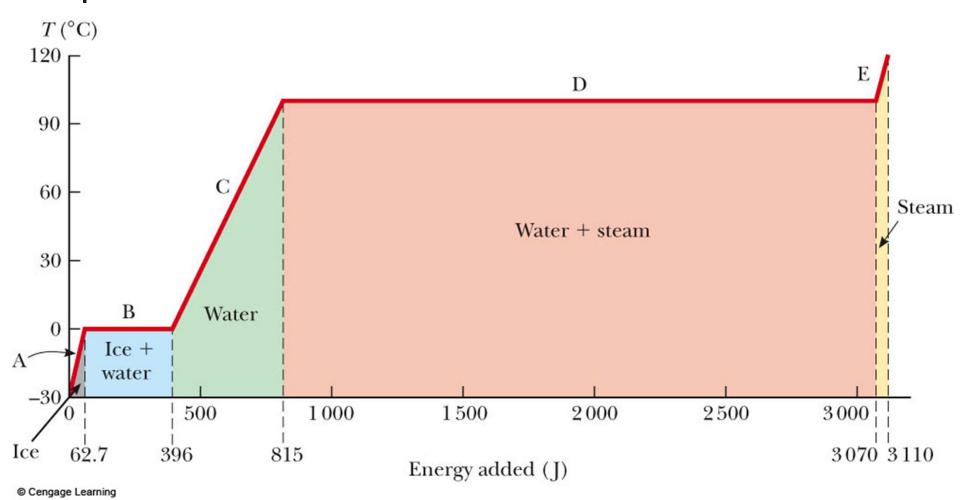
#### Latent Heat, cont.

- SI units of latent heat are J / kg
- Latent heat of fusion, L<sub>f</sub>, is used for melting or freezing
- Latent heat of vaporization, L<sub>v</sub>, is used for boiling or condensing
- Table 11.2 gives the latent heats for various substances



#### Sublimation

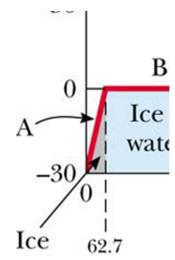
- Some substances will go directly from solid to gaseous phase
  - Without passing through the liquid phase
- This process is called sublimation
  - There will be a latent heat of sublimation associated with this phase change

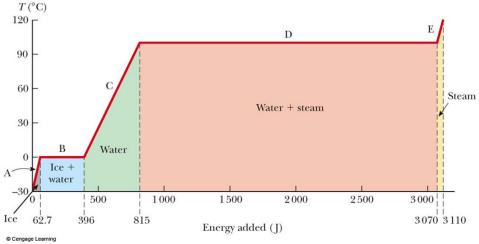



#### Latent Heats of Fusion and Vaporization

| Substance     | Melting<br>Point (°C) | Latent Heat<br>of Fusion |       | Boiling    | Latent Heat of<br>Vaporization |       |
|---------------|-----------------------|--------------------------|-------|------------|--------------------------------|-------|
|               |                       | (J/kg)                   | cal/g | Point (°C) | (J/kg)                         | cal/g |
| Helium        | -269.65               | $5.23 \times 10^{9}$     | 1.25  | -268.93    | $2.09 \times 10^{4}$           | 4.99  |
| Nitrogen      | -209.97               | $2.55 \times 10^{4}$     | 6.09  | -195.81    | $2.01 \times 10^{5}$           | 48.0  |
| Oxygen        | -218.79               | $1.38 \times 10^{4}$     | 3.30  | -182.97    | $2.13 \times 10^{5}$           | 50.9  |
| Ethyl alcohol | -114                  | $1.04 \times 10^{5}$     | 24.9  | 78         | $8.54 \times 10^{5}$           | 204   |
| Water         | 0.00                  | $3.33 \times 10^{5}$     | 79.7  | 100.00     | $2.26 \times 10^{6}$           | 540   |
| Sulfur        | 119                   | $3.81 \times 10^{4}$     | 9.10  | 444.60     | $3.26 \times 10^{5}$           | 77.9  |
| Lead          | 327.3                 | $2.45 \times 10^{4}$     | 5.85  | 1 750      | $8.70 \times 10^{5}$           | 208   |
| Aluminum      | 660                   | $3.97 \times 10^{5}$     | 94.8  | 2 450      | $1.14 \times 10^{7}$           | 2 720 |
| Silver        | 960.80                | $8.82 \times 10^{4}$     | 21.1  | 2 193      | $2.33 \times 10^{6}$           | 558   |
| Gold          | 1 063.00              | $6.44 \times 10^{4}$     | 15.4  | 2 660      | $1.58 \times 10^{6}$           | 377   |
| Copper        | 1 083                 | $1.34 \times 10^5$       | 32.0  | 1 187      | $5.06 \times 10^{6}$           | 1 210 |



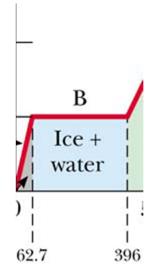

### Graph of Ice to Steam

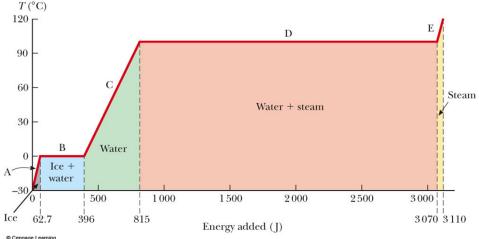





#### Warming Ice

- Start with one gram of ice at -30.0° C
- During A, the temperature of the ice changes from -30.0° C to 0° C
- Use  $Q = m c \Delta T$
- Will add 62.7 J of energy



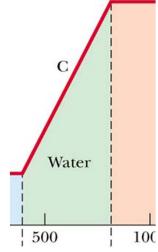



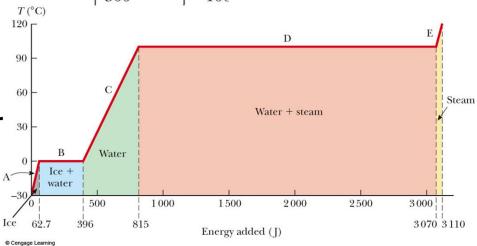



#### Melting Ice

- Once at 0° C, the phase change (melting) starts
- The temperature stays the same although energy is still being added
- Use  $Q = m L_f$
- Needs 333 J of energy



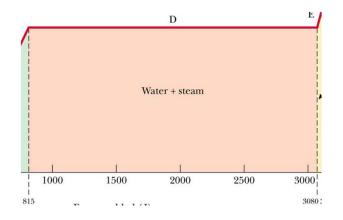


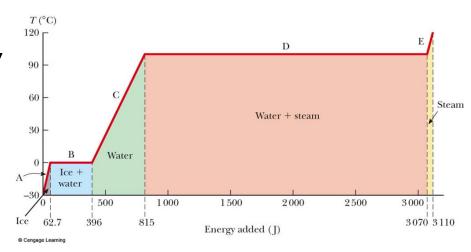


Iced tea is made by adding ice to 1.8 kg of hot tea, initially at 80°C. How many kg of ice, initially at 0°C, are required to bring the mixture to 10°C? ( $L_f = 3.33 \times 10^5 \text{ J/kg}$ ,  $c_w = 4.186 \text{ J/kg}$ .°C)



#### Warming Water

- Between 0° C and 100° C, the material is liquid and no phase changes take place
- Energy added increases the temperature
- Use  $Q = m c \Delta T$
- 419 J of energy ar added

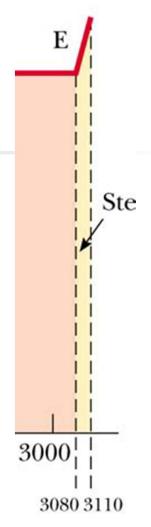


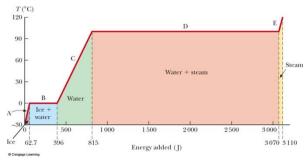






### **Boiling Water**

- At 100° C, a phase change occurs (boiling)
- Temperature does not change
- Use Q = m Lv
- 2 260 J of energy are needed






#### Heating Steam

- After all the water is converted to steam, the steam will heat up
- No phase change occurs
- The added energy goes to increasing the temperature
- Use  $Q = m c \Delta T$
- To raise the temperature of the steam to 120°, 40.2 J of energy are needed







### Problem Solving Strategies

- Make a table
  - A column for each quantity
  - A row for each phase and/or phase change
  - Use a final column for the combination of quantities
- Use consistent units

# Problem Solving Strategies, cont

- Apply Conservation of Energy
  - Transfers in energy are given as Q=mc∆T for processes with no phase changes
  - Use  $Q = m L_f$  or  $Q = m L_v$  if there is a phase change
  - Start with  $\Sigma Q = 0$ 
    - Or  $Q_{cold} = -Q_{hot}$ , but be careful of sign
  - ΔT is T<sub>f</sub> T<sub>i</sub>
- Solve for the unknown



#### Methods of Heat Transfer

- Need to know the rate at which energy is transferred
- Need to know the mechanisms responsible for the transfer
- Methods include
  - Conduction
  - Convection
  - Radiation



#### Conduction

- The transfer can be viewed on an atomic scale
  - It is an exchange of energy between microscopic particles by collisions
  - Less energetic particles gain energy during collisions with more energetic particles
- Rate of conduction depends upon the characteristics of the substance

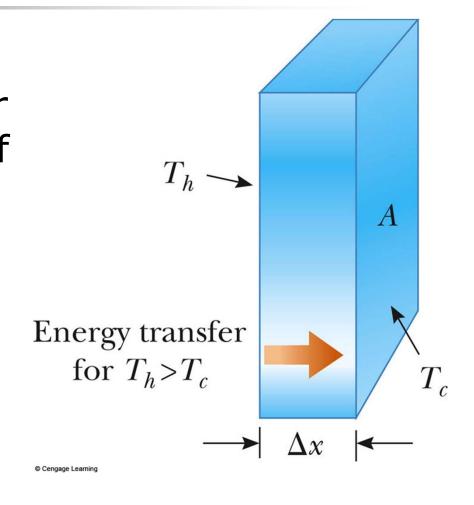
## Conduction example

- The molecules vibrate about their equilibrium positions
- Particles near the stove coil vibrate with larger amplitudes
- These collide with adjacent molecules and transfer some energy
- Eventually, the energy travels entirely through the pan and its handle





### Conduction, cont.


- In general, metals are good conductors
  - They contain large numbers of electrons that are relatively free to move through the metal
  - They can transport energy from one region to another
- Conduction can occur only if there is a difference in temperature between two parts of the conducting medium



### Conduction, equation

 The slab allows energy to transfer from the region of higher temperature to the region of lower temperature

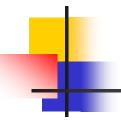
$$\wp = \frac{Q}{\Delta t} = kA \frac{T_h - T_c}{L}$$



## Conduction, equation explanation

- A is the cross-sectional area
- L = Δx is the thickness of the slab or the length of a rod
- P is in Watts when Q is in Joules and t is in seconds
- k is the thermal conductivity of the material
  - See table 11.3 for some conductivities
  - Good conductors have high k values and good insulators have low k values

## -


#### Home Insulation

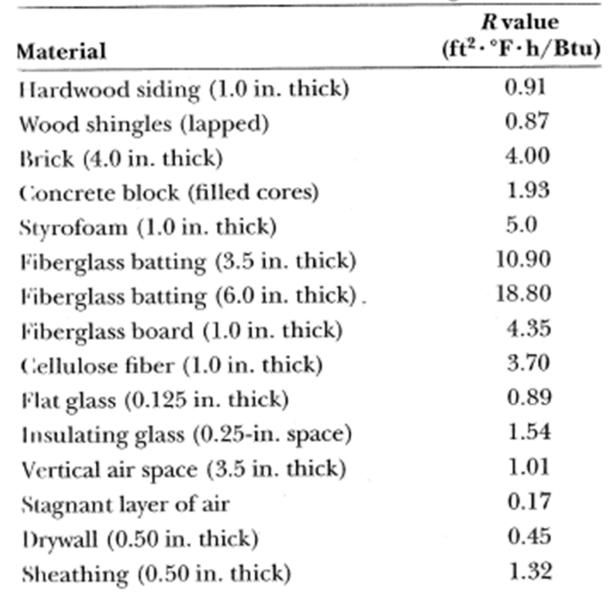
- Substances are rated by their R values
  - R = L / k
  - See table 11.4 for some R values
- For multiple layers, the total R value is the sum of the R values of each layer
- Wind increases the energy loss by conduction in a home



# Conduction and Insulation with Multiple Materials

- Each portion will have a specific thickness and a specific thermal conductivity
- The rate of conduction through each portion is equal

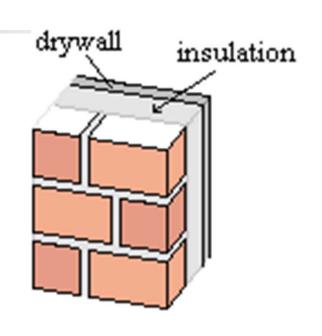



#### Multiple Materials, cont.

The rate through the multiple materials will be

$$\frac{Q}{\Delta t} = \frac{A(T_h - T_c)}{\sum_{i} \frac{L_i}{K_i}} = \frac{A(T_h - T_c)}{\sum_{i} R_i}$$

 T<sub>H</sub> and T<sub>C</sub> are the temperatures at the outer extremities of the compound material


#### R-Values for Some Common Building Materials





#### Example 8

A wall of a house consists of a layer of 10.2 –cm- thick layer of brick, a layer of fiber glass insulation 8.9 cm thick and a 1.25-cm-thick drywall. If inside the house the temperature is



23 °C and the outside temperature is 0° C, determine the rate of energy transfer through  $1m^2$  of the wall. ( $k_{brick} = 0.84 \text{ J/s·m·K}$ ,  $k_{insul} = 0.048 \text{ J/s·m·K}$ ,  $k_{drvwall} = 0.48 \text{ J/s·m·K}$ ,

## Example 9

A thermopane window consists of two glass panes, each 0.05 m thick, with a 1-cm-thick sealed layer of air in between. If inside the room temperature is  $23^{\circ}$ C and the outside temperature is  $0^{\circ}$ C, determine the rate of energy transfer through  $1\text{m}^2$  of the window. (  $k_{glass} = 0.84 \text{ J/smK}$   $k_{air} = 0.0235 \text{ J/smK}$  )



#### Convection

- Energy transferred by the movement of a substance
  - When the movement results from differences in density, it is called natural conduction
  - When the movement is forced by a fan or a pump, it is called forced convection



#### Convection example

- Air directly above the flame is warmed and expands
- The density of the air decreases, and it rises
- The mass of air warms the hand as it moves by

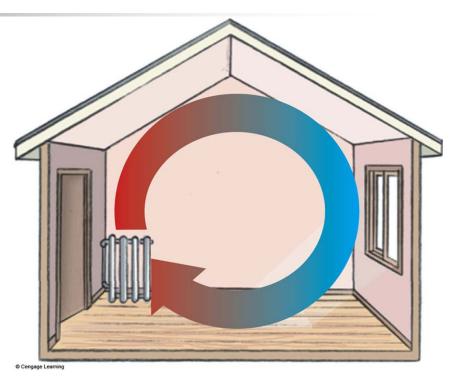




### Example 10

A Styrofoam box has a surface of 0.72 m<sup>2</sup> and a wall thickness of 7.4 cm. The temperature of the inner surface is 1.3°C, and of the outside 36°C. If it takes 4 hours for 6 kg of ice to melt in the container, find the thermal conductivity of the Styrofoam.

Answer: k = 0.41J/sKm



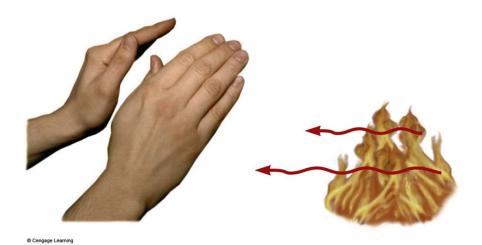

## Convection applications

- Boiling water
- Radiators
- Upwelling
- Cooling automobile engines
- Algal blooms in ponds and lakes

## Convection Current Example

- The radiator warms the air in the lower region of the room
- The warm air is less dense, so it rises to the ceiling
- The denser, cooler air sinks
- A continuous air current pattern is set up as shown






#### Radiation

- Radiation does not require physical contact
- All objects radiate energy continuously in the form of electromagnetic waves due to thermal vibrations of the molecules
- Rate of radiation is given by Stefan's Law



#### Radiation example



- The electromagnetic waves carry the energy from the fire to the hands
- No physical contact is necessary
- Cannot be accounted for by conduction or convection



### Radiation equation

- $\wp = \sigma AeT^4$ 
  - The power is the rate of energy transfer, in Watts
  - $\sigma = 5.6696 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$
  - A is the surface area of the object
  - e is a constant called the emissivity
    - e varies from 0 to 1
  - T is the temperature in Kelvins



## Energy Absorption and Emission by Radiation

 With its surroundings, the rate at which the object at temperature T with surroundings at T<sub>o</sub> radiates is

$$\bullet \wp_{net} = \sigma A e \left( T^4 - T_o^4 \right)$$

- When an object is in equilibrium with its surroundings, it radiates and absorbs at the same rate
  - Its temperature will not change



#### Example 10

A radiator has an emissivity of 0.8 and its exposed area is 1.3 m<sup>2</sup>. The temperature of the radiator is 85°C and the surrounding temperature is 20°C. What is the net heat flow rate due to radiation from the radiator?

 $\sigma = 5.6696 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$ 

## 4

#### Ideal Absorbers

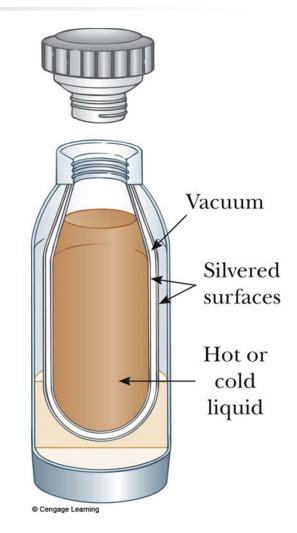
- An ideal absorber is defined as an object that absorbs all of the energy incident on it
  - e = 1
- This type of object is called a black body
- An ideal absorber is also an ideal radiator of energy



#### Ideal Reflector

- An ideal reflector absorbs none of the energy incident on it
  - e = 0




## Applications of Radiation

- Clothing
  - Black fabric acts as a good absorber
  - White fabric is a better reflector
- Thermography
  - The amount of energy radiated by an object can be measured with a thermograph
- Body temperature
  - Radiation thermometer measures the intensity of the infrared radiation from the eardrum



## Resisting Energy Transfer

- Dewar flask/thermos bottle
- Designed to minimize energy transfer to surroundings
- Space between walls is evacuated to minimize conduction and convection
- Silvered surface minimizes radiation
- Neck size is reduced





### Global Warming

- Greenhouse example
  - Visible light is absorbed and reemitted as infrared radiation
  - Convection currents are inhibited by the glass
- Earth's atmosphere is also a good transmitter of visible light and a good absorber of infrared radiation