Chapter 17

Current and Resistance

4

Electric Current

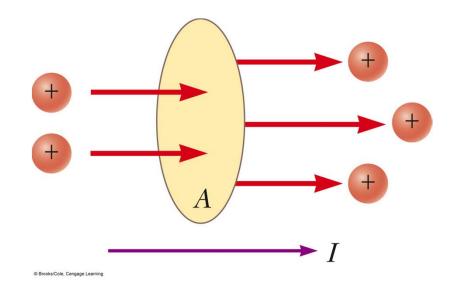
- The current is the rate at which the charge flows through a surface
 - Look at the charges flowing perpendicularly through a surface of area A

$$I_{av} \equiv \frac{\Delta Q}{\Delta t}$$

- The SI unit of current is Ampere (A)
 - -1 A = 1 C/s

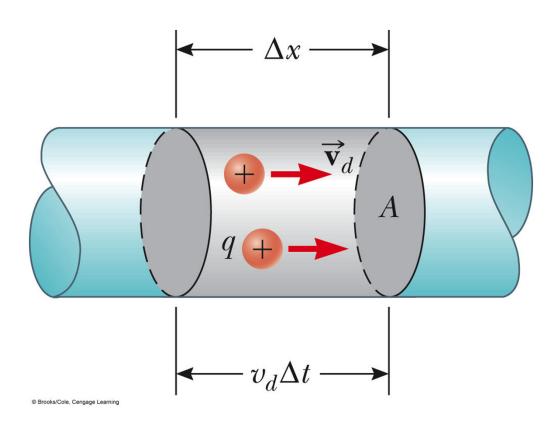
Instantaneous Current

The instantaneous current is the limit of the average current as the time interval goes to zero:


$$I = \lim_{\Delta t \to 0} I_{av} = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t}$$

If there is a steady current, the average and instantaneous currents will be the same

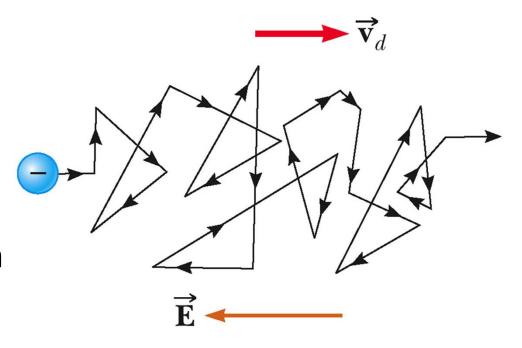
Electric Current, cont


- The direction of the current is the direction positive charge would flow
 - This is known as conventional current direction
 - In a common conductor, such as copper, the current is due to the motion of the negatively charged electrons
- It is common to refer to a moving charge as a mobile charge carrier
 - A charge carrier can be positive or negative

Current and Drift Speed

- Charged particles move through a conductor of crosssectional area A
- n is the number of charge carriers per unit volume
- n A Δx is the total number of charge carriers

Current and Drift Speed, cont


- The total charge is the number of carriers times the charge per carrier, q
 - $\Delta Q = (n A \Delta x) q$
- The drift speed, v_d, is the speed at which the carriers move
 - $\mathbf{v}_{d} = \Delta \mathbf{x} / \Delta \mathbf{t}$
- Rewritten: $\Delta Q = (n A v_d \Delta t) q$
- Finally, current, $I = \Delta Q/\Delta t = nqv_dA$

- If the conductor is isolated, the electrons undergo random motion
- When an electric field is set up in the conductor, it creates an electric force on the electrons and hence a current

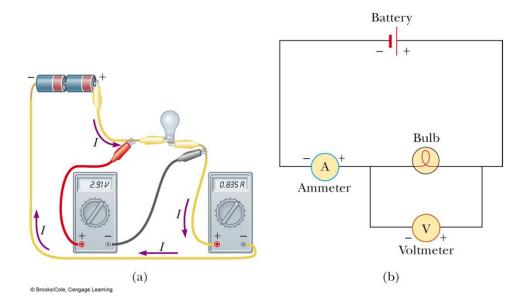
Charge Carrier Motion in a Conductor

- The zig-zag black line represents the motion of a charge carrier in a conductor
 - The net drift speed is small
- The sharp changes in direction are due to collisions
- The net motion of electrons is opposite the direction of the electric field

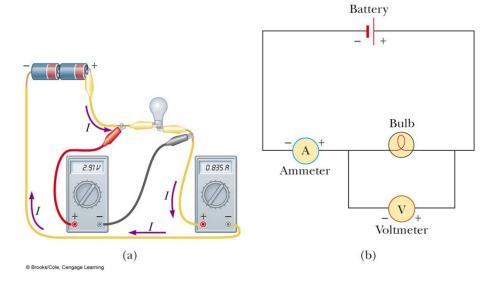
© 2006 Brooks/Cole - Thomson

Electrons in a Circuit

- Assume you close a switch to turn on a light
- The electrons do not travel from the switch to the bulb
- The electrons already in the bulb move in response to the electric field set up in the completed circuit
- A battery in a circuit supplies energy (not charges) to the circuit


Electrons in a Circuit, cont

- The drift speed is much smaller than the average speed between collisions
- When a circuit is completed, the electric field travels with a speed close to the speed of light
- Although the drift speed is on the order of 10⁻⁴ m/s, the effect of the electric field is felt on the order of 10⁸ m/s


- A circuit is a closed path of some sort around which current circulates
- A circuit diagram can be used to represent the circuit
- Quantities of interest are generally current and potential difference

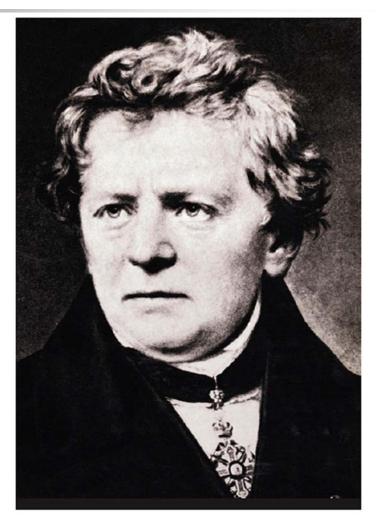
- An ammeter is used to measure current
 - In line with the bulb, all the charge passing through the bulb also must pass through the meter

- A voltmeter is used to measure voltage (potential difference)
 - Connects to the two contacts of the bulb

Resistance

- In a conductor, the voltage applied across the ends of the conductor is proportional to the current through the conductor
- The constant of proportionality is the resistance of the conductor

$$R \equiv \frac{\Delta V}{I}$$

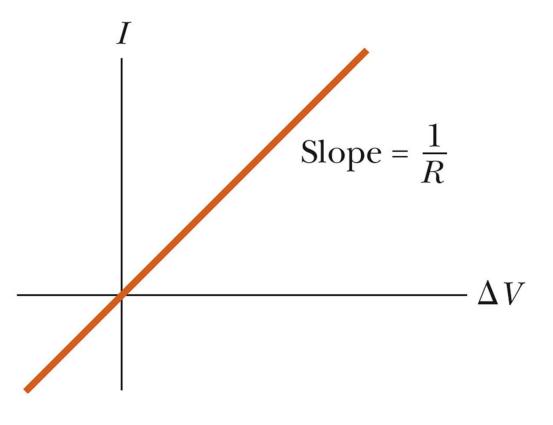

Resistance, cont

- Units of resistance are *ohms* (Ω)
 - $1 \Omega = 1 V / A$
- Resistance in a circuit arises due to collisions between the electrons carrying the current with the fixed atoms inside the conductor

Georg Simon Ohm

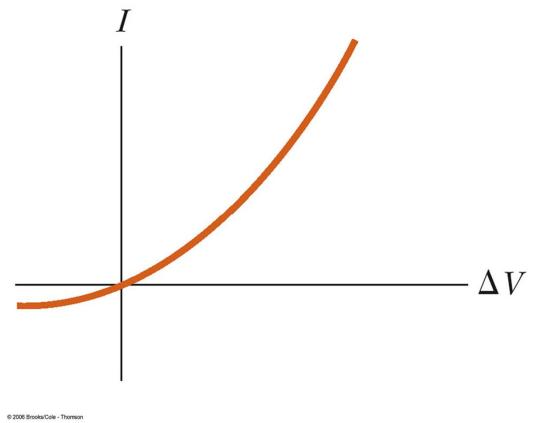
- 1787 1854
- Formulated the concept of resistance
- Discovered the proportionality between current and voltages

4


Ohm's Law

- Experiments show that for many materials, including most metals, the resistance remains constant over a wide range of applied voltages or currents
- This statement has become known as Ohm's Law
 - $\Delta V = I R$
- Ohm's Law is an empirical relationship that is valid only for certain materials
 - Materials that obey Ohm's Law are said to be ohmic

Ohm's Law, cont


- An ohmic device
- The resistance is constant over a wide range of voltages
- The relationship between current and voltage is linear
- The slope is related to the resistance

© 2006 Brooks/Cole - Thomson

- Non-ohmic materials are those whose resistance changes with voltage or current
- The current-voltage relationship is nonlinear
- A diode is a common example of a nonohmic device

Resistivity

 The resistance of an ohmic conductor is proportional to its length, L, and inversely proportional to its crosssectional area, A

$$R = \rho \frac{\ell}{A}$$

- p is the constant of proportionality and is called the resistivity of the material
- See table 17.1

- For most metals, resistivity increases with increasing temperature
 - With a higher temperature, the metal's constituent atoms vibrate with increasing amplitude
 - The electrons find it more difficult to pass through the atoms

Temperature Variation of Resistivity, cont

 For most metals, resistivity increases approximately linearly with temperature over a limited temperature range

$$\rho = \rho_o [1 + \alpha (T - T_o)]$$

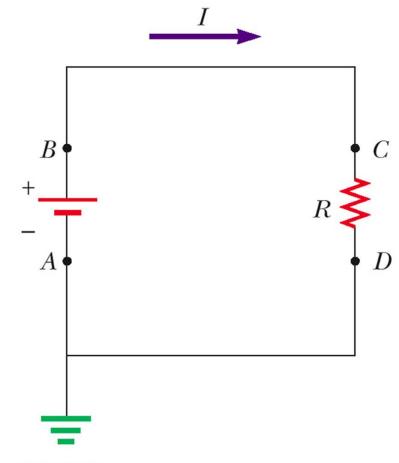
- ρ is the resistivity at some temperature T
- ρ_o is the resistivity at some reference temperature T_o
 - T_o is usually taken to be 20° C
- α is the temperature coefficient of resistivity

4

Temperature Variation of Resistance

 Since the resistance of a conductor with uniform cross sectional area is proportional to the resistivity, you can find the effect of temperature on resistance

$$R = R_o[1 + \alpha(T - T_o)]$$



- In a circuit, as a charge moves through the battery, the electrical potential energy of the system is increased by ΔQΔV
 - The chemical potential energy of the battery decreases by the same amount
- As the charge moves through a resistor, it loses this potential energy during collisions with atoms in the resistor
 - The temperature of the resistor will increase

Energy Transfer in the Circuit

- Consider the circuit shown
- Imagine a quantity of positive charge,
 △Q, moving around the circuit from point A back to point A

@ 2006 Brooks/Cole - Thomson

Energy Transfer in the Circuit, cont

- Point A is the reference point
 - It is grounded and its potential is taken to be zero
- As the charge moves through the battery from A to B, the potential energy of the system increases by ΔQΔV
 - The chemical energy of the battery decreases by the same amount

- As the charge moves through the resistor, from C to D, it loses energy in collisions with the atoms of the resistor
- The energy is transferred to internal energy
- When the charge returns to A, the net result is that some chemical energy of the battery has been delivered to the resistor and caused its temperature to rise

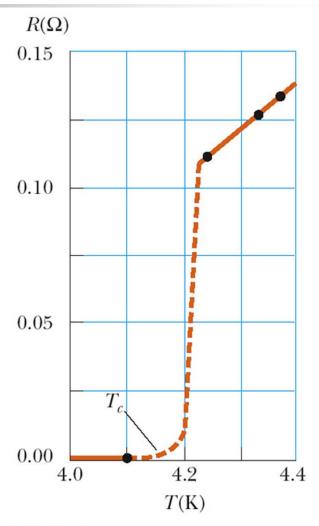
Electrical Energy and Power, cont

The rate at which the energy is lost is the power

$$\wp = \frac{\Delta Q}{\Delta t} \Delta V = I \Delta V$$

 From Ohm's Law, alternate forms of power are

$$\wp = I^2 R = \frac{\Delta V^2}{R}$$


Electrical Energy and Power, final

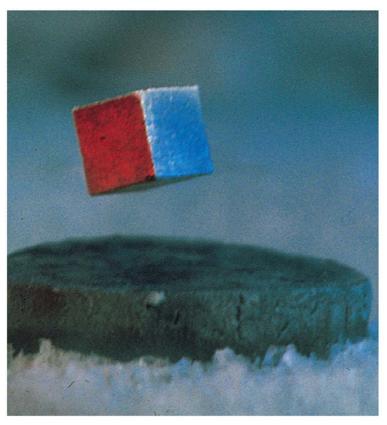
- The SI unit of power is Watt (W)
 - I must be in Amperes, R in ohms and AV in Volts
- The unit of energy used by electric companies is the kilowatt-hour
 - This is defined in terms of the unit of power and the amount of time it is supplied
 - \bullet 1 kWh = 3.60 x 10⁶ J

Superconductors

- A class of materials and compounds whose resistances fall to virtually zero below a certain temperature, T_C
 - T_C is called the critical temperature
- The graph is the same as a normal metal above T_C, but suddenly drops to zero at T_C

Superconductors, cont

- The value of T_C is sensitive to
 - Chemical composition
 - Pressure
 - Crystalline structure
- Once a current is set up in a superconductor, it persists without any applied voltage
 - Since R = 0

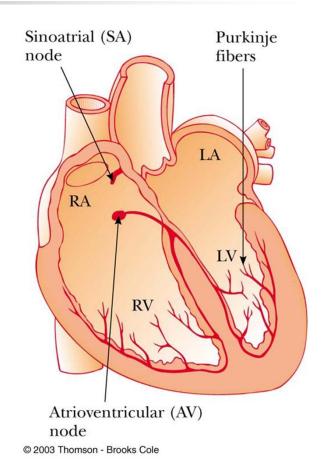

Superconductor Timeline

- 1911
 - Superconductivity discovered by H. Kamerlingh Onnes
- **1986**
 - High temperature superconductivity discovered by Bednorz and Müller
 - Superconductivity near 30 K
- **1987**
 - Superconductivity at 96 K and 105 K
- Current
 - Superconductivity at 150 K
 - More materials and more applications

Superconductor, final

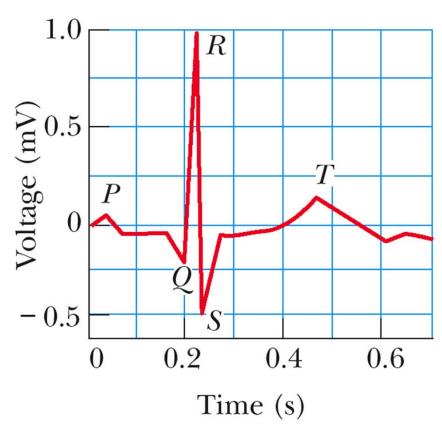
- Good conductors do not necessarily exhibit superconductivity
- One application is superconducting magnets

© 2006 Brooks/Cole - Thomson



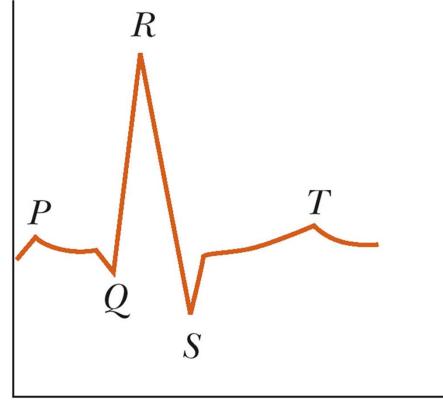
- Every action involving the body's muscles is initiated by electrical activity
- Voltage pulses cause the heart to beat
- These voltage pulses are large enough to be detected by equipment attached to the skin

Operation of the Heart

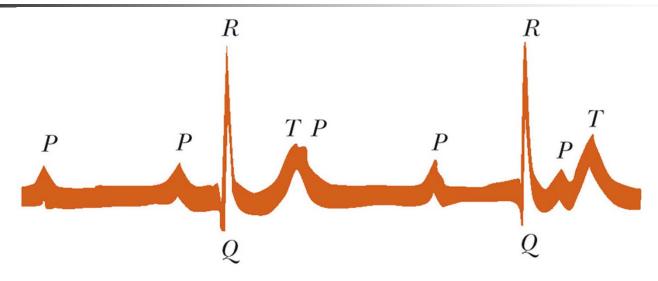

- The sinoatrial (SA) node initiates the heartbeat
- The electrical impulses cause the right and left artial muscles to contract
- When the impulse reaches the atrioventricular (AV) node, the muscles of the atria begin to relax
- The ventricles relax and the cycle repeats

Electrocardiogram (EKG)

- A normal EKG
- P occurs just before the atria begin to contract
- The QRS pulse occurs in the ventricles just before they contract
- The T pulse occurs when the cells in the ventricles begin to recover



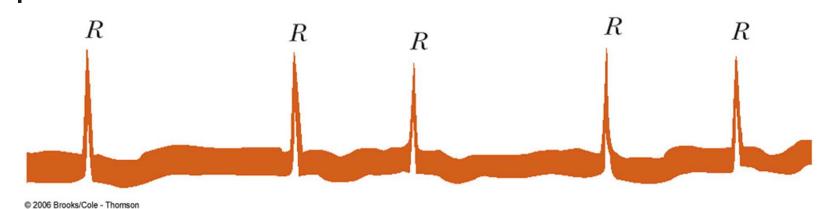
© 2006 Brooks/Cole - Thomson



Abnormal EKG, 1

- The QRS portion is wider than normal
- This indicates the possibility of an enlarged heart

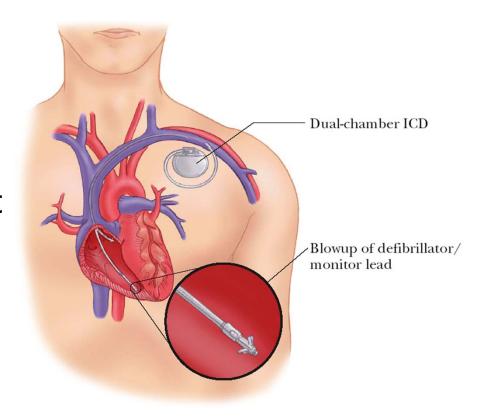
Abnormal EKG, 2



© 2006 Brooks/Cole - Thomson

- There is no constant relationship between P and QRS pulse
- This suggests a blockage in the electrical conduction path between the SA and the AV nodes
- This leads to inefficient heart pumping

Abnormal EKG, 3




- No P pulse and an irregular spacing between the QRS pulses
- Symptomatic of irregular atrial contraction, called fibrillation
- The atrial and ventricular contraction are irregular

Implanted Cardioverter Defibrillator (ICD)

- Devices that can monitor, record and logically process heart signals
- Then supply different corrective signals to hearts that are not beating correctly

Functions of an ICD

- Monitor atrial and ventricular chambers
 - Differentiate between arrhythmias
- Store heart signals for read out by a physician
- Easily reprogrammed by an external magnet

More Functions of an ICD

- Perform signal analysis and comparison
- Supply repetitive pacing signals to speed up or show down a malfunctioning heart
- Adjust the number of pacing pulses per minute to match patient's activity