### Physics 121 - Electricity and Magnetism Lecture 12 - Inductance, RL Circuits Y&F Chapter 30, Sect 1 - 4

- Inductors and Inductance
- Self-Inductance
- **RL Circuits Current Growth**
- RL Circuits Current Decay
- Energy Stored in a Magnetic Field
- Energy Density of a Magnetic Field
- Mutual Inductance
- Summary

# **Induction: basics**

- Magnetic Flux:  $d\Phi_B \equiv \vec{B} \circ d\vec{A} = \vec{B} \circ \hat{n} dA$
- Faraday's Law: A changing magnetic flux through a coil of wire induces an EMF in the wire, proportional to the number of turns, N.

$$\mathcal{E}_{ind} = -N \frac{d\Phi_B}{dt}$$

• Lenz's Law: The current driven by an induced EMF creates an induced magnetic field that opposes the flux change.

 $\mathbf{B}_{\text{ind}}$  &  $\mathbf{i}_{\text{ind}}$  oppose changes in  $\Phi_{\text{B}}$ 

• Induction and energy transfer: The forces on the loop oppose the motion of the loop, and the power required to sustain motion provides electrical power to the loop.

 $P = \vec{F} \cdot \vec{v} = Fv$   $P = i\epsilon$   $\epsilon = -Blv$ 

- Transformer principle: changing current i<sub>1</sub> in primary induces EMF and current i<sub>2</sub> in secondary coil.
- A changing magnetic flux creates a non-conservative electric field.

$$\boldsymbol{\varepsilon} = \int \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -N \frac{d\Phi_{\mathsf{B}}}{dt}$$



Copyright R. Janow – Fall 2013

#### Changing magnetic flux induces electric fields:

 $\mathbf{B} = \mu_0 \mathbf{i} \mathbf{n}$ 

A thin solenoid, cross section A, n turns/unit length

- zero field outside solenoid
- inside solenoid:

Flux through a conducting loop:  $\Phi = BA = \mu_0 inA$ 

Current i varies with time, so flux varies and an EMF is induced in loop "A":

$$\mathcal{E}_{ind} = -\frac{d\Phi}{dt} = -\mu_0 nA \frac{di}{dt}$$
  
urrent induced in the loop is:  $i_{ind} = \frac{\mathcal{E}_{ind}}{R}$ 

Current induced in the loop is: <sup>I</sup>ind



If di/dt is positive, B is growing, then B<sub>ind</sub> opposes change and i<sub>ind</sub> is Counter-clockwise

 $d\Phi_B$ 

dt

#### What makes the current i<sub>ind</sub> flow?

- B = 0 there so it's not the Lorentz force
- An induced electric field E<sub>ind</sub> along the loop causes current to flow
- It is caused directly by dF/dt •
- Electric field lines are loops that don't terminate on charge. •
- E-field is there even without the conductor (no current flowing) •

 $E_{ind} \circ d\vec{s} =$ 

E-field is non-conservative (not electrostatic) as the line integral • around a closed path is not zero

1000000

Generalized Faradays' Law

Path must be constant

$$\therefore \xi_{ind} =$$

13

## Example: Find the induced electric field

$$\mathcal{E}_{ind} = \oint_{loop} \mathbf{E}_{ind} \circ d\vec{s} = -\frac{d\Phi_B}{dt}$$

$$\oint \vec{B} \circ d\vec{s} = \mu_0 i_{enc}$$

In the right figure, dB/dt = constant, find the expression for the magnitude E of the induced electric field at points within and outside the magnetic field.

**Due to symmetry:** 
$$\oint \vec{E} \cdot \vec{ds} = \oint Eds = E \oint ds = E(2\pi r)$$

For 
$$r < R$$
:  $\Phi_B = BA = B(\pi r^2)$   
So  $E(2\pi r) = \pi r^2 \frac{dB}{dt}$   $E = \frac{r}{2} \frac{dB}{dt}$ 

For r > R:  $\Phi_B = BA = B(\pi R^2)$ So  $E(2\pi r) = \pi R^2 \frac{dB}{dt}$   $E = \frac{R^2}{2r} \frac{dB}{dt}$ 

The magnitude of induced electric field grows linearly with r, then falls off as 1/r for r>R





### **Self-Inductance: Analogous to inertia**

ANY magnetic flux change is resisted. Changing current in a single coil induces a "back EMF"  $\mathcal{E}_{ind}$  in the same coil opposing the current change, an induced current  $i_{ind}$ , and a consistent induced field  $B_{ind}$ .

#### DISTINGUISH:

•Mutual-induction:  $di_1/dt$  in "transformer primary" <u>also</u> induces EMF and current  $i_2$  in "linked" secondary coil (transformer principle).

•Self-induction in a single Coil: di/dt produces "back EMF" due to Lenz & Faraday Laws:  $\Phi_{ind}$  opposes  $d\Phi/dt$  due to current change.  $\mathcal{E}_{ind}$  opposes di/dt.

- Changing current in a single coil causes magnetic field and flux created by this current to change in the same sense
- Flux Change induces flux opposing the change, along with opposing EMF and current.
- This back emf limits the rate of current (flux) change in the circuit



Inductance measures oppositon to the rate of change of current



# **Definition of Self-inductance**

Recall capacitance: depends only on geometry It measures energy stored in the E field

Self-inductance depends only on coil geometry

It measures energy stored in the B field

$$C \equiv \frac{Q}{V}$$

linked flux



**Joseph Henry** 1797 - 1878

number of turns \_ number of turns  $L \equiv \frac{N \Phi_B}{i}$  flux through one turn depends self-inductance  $L \equiv \frac{N \Phi_B}{i}$  on current & all N turns i cancels current dependence in flux above  $1 \text{Henry} \equiv 1 \text{ H.} \equiv 1 \text{ T.m}^2 / \text{Ampere} = 1 \text{ Weber} / \text{Ampere}$ SI unit of inductance: = 1 Volt.sec / Ampere ( $\Omega$ .sec)

Why choose Cross-multiply Take time derivative this definition?  $L\frac{di}{dt} = N\frac{d\Phi_{B}}{dt} = -\xi_{L}$  $Li = N \Phi_B$ di• L contains all the geometry• Eis the "back EMF" **Another form of Faraday's Law!** 

ow - Fall 2013

### Example: Find the Self-Inductance of a solenoid



**Check: Same L if you start with Faraday's Law for F**<sub>B</sub>:

$$\mathcal{E}_{\text{ind}} = -N \frac{d\Phi_{\text{B}}}{dt} \qquad \text{for solenoid use} \quad \Phi_{\text{B}} \quad \text{above}$$

$$\mathcal{E}_{\text{ind}} = -N \cdot \left(\mu_{0} \frac{NA}{\ell} \frac{di}{dt}\right) = \frac{-\mu_{0} N^{2} A}{\ell} \cdot \frac{di}{dt} \equiv -L \frac{di}{dt}$$

Note: Inductance per unit length has same dimensions as m<sub>0</sub>

•

$$\frac{L}{\ell} = \mu_0 N^2 \frac{A}{\ell^2} \qquad [\mu_0] = \frac{T.m}{A.} = \frac{H}{m}$$

#### Example: calculate self-inductance L for an ideal solenoid

$$\leftarrow \ell \longrightarrow L = \frac{\mu_0 N^2 A}{\ell} = \frac{4\pi \times 10^{-7} \times 10^6 \times \pi \times (5 \times 10^{-2})^2}{0.2}$$
$$\therefore L = 49.4 \times 10^{-3} \text{ Henrys} = 49.4 \text{ milli - Henrys}$$

Ideal inductor (abstraction):

Non-ideal inductors have internal resistance:



- Internal resistance r = 0 (recall ideal battery)
- B = 0 outside
- $B = \mu_0$  in inside (ideal solenoid)

N = 1000 turns, radius r = 0.5 m, length  $\ell = 0.2$  m

- $V_{ND} = \mathcal{E}_{L} ir = measured voltage$
- Direction of ir depends on current
- Direction of  $\mathcal{E}_{L}$  depends on di/dt
- If current i is constant, then induced  $\mathcal{E}_{L} = 0$ Inductor behaves like a wire with resistance r

# **Induced EMF in an Inductor**

12 – 1: Which statement describes the current through the inductor below, if the induced EMF is as shown?

- A. Rightward and constant.
- B. Leftward and constant.
- C. Rightward and increasing.
- D. Leftward and decreasing.
- E. Leftward and increasing.

 $\mathcal{E}_L$  -



$$\mathcal{E}_{L} \equiv -L \frac{\mathrm{di}}{\mathrm{dt}}$$

#### Lenz's Law applied to Back EMF



What if CURRENT i is constant?

Example: Current I increases uniformly from 0 to 1 A. in 0.1 seconds. Find the induced voltage (back EMF) across a 50 mH (milli-Henry) inductance.



Apply:
$$\mathcal{E}_{L} = -L \frac{di}{dt}$$
Substitute: $\frac{\Delta i}{\Delta t} = \frac{+1 \text{ Amp}}{0.1 \text{ sec}} = 10 \frac{\text{Amp}}{\text{sec}}$ 

$$\mathcal{E}_{L} = -50 \,\mathrm{mH} \cdot 10 \,\frac{\mathrm{Amp}}{\mathrm{sec}} = -0.5 \,\mathrm{Volts}$$

Negative result means that induced EMF is opposed to both di/dt and i.

# **Inductors in Circuits—The RL Circuit**

- Inductors, sometimes called "coils", are common circuit components.
- Insulated wire is wrapped around a core.
- They are mainly used in AC filters and tuned (resonant) circuits.
- Analysis of series RL circuits:
- A battery with EMF  $\mathcal{E}$  drives a current around the loop, producing a back EMF  $\mathcal{E}_L$  in the inductor.
- Derive circuit equations: apply Kirchoff's loop rule, convert to differential equations (as for RC circuits) and solve.



New rule: when traversing an inductor in the <u>same</u> direction as the assumed current, insert:



## **Series LR circuits**



- Inductance & resistance + EMF
- Find time dependent behavior
- Use Loop Rule & Junction Rule

• Treat 
$$\mathcal{E}_{L}$$
 as an EMF along current

*E*L≡−L
$$\frac{di}{dt}$$

ALWAYS

Given  $\mathcal{E}$ , R, L: Find i,  $\mathcal{E}_L$ , U<sub>L</sub> for inductor as functions of time

Growth phase, switch  
to "a". Loop equation:  
$$\mathcal{E} - iR - L\frac{di}{dt} = 0$$

Decay phase, switch to "b", exclude  $\mathcal{E}$ , Loop equation:

$$-$$
 iR  $-$  L $\frac{di}{dt} = 0$ 

- i through R is clockwise and growing:  $\mathcal{E}_{L}$  opposes  $\mathcal{E}$
- At t = 0, rapidly growing current but i = 0,  $\mathcal{E}_L = \mathcal{E}$ L acts like a broken wire
- As t  $\rightarrow$  infinity, large stable current, di/dt  $\rightarrow$  0
  - Back EMF  $\mathcal{E}_{L} \rightarrow 0$ ,  $i \rightarrow \mathcal{E} / R$ ,
    - L acts like an ordinary wire
- Energy is stored in L & dissipated in R
- Energy stored in L now dissipated in R
- Current through R is still clockwise, but collapsing
- $\mathcal{E}_{L}$  now acts like a battery maintaining current
- Current i at t = 0 equals  $\mathcal{E}/R$
- Current  $\rightarrow$  0 as t  $\rightarrow$  infinity energy depleted

## LR circuit: decay phase solution

- After growth phase equilibrium, switch from a to b, battery out
- Current  $i_0 = \mathcal{E} / R$  initially still flowing CW through R
- Inductance tries to maintain current using stored energy
- Polarity of  $\mathcal{E}_{L}$  reverses versus growth. Eventually  $\mathcal{E}_{L} \rightarrow 0$

Loop Equation is : 
$$-iR + \mathcal{E}_L = 0$$
  
Substitute :  $\mathcal{E}_L(t) = -L\frac{di}{dt}$ 

Circuit Equation  
$$\frac{di}{dt} = -\frac{R}{L}i$$

di/dt <0 during decay, opposite to current

R

D

- First order differential equation with simple exponential solution
- At t = 0: large current implies large di / dt, so  $\mathcal{E}_{L}$  is large
- As t  $\rightarrow$  infinity: current stabilizes, di / dt and current i both  $\rightarrow$  0

Current decays exponentially:

$$i(t) = i_0 e^{-t/\tau_L} \quad i_0 \equiv \frac{\mathcal{E}}{R}$$
  
$$\tau_L \equiv L/R \equiv \text{ inductive time constant}$$



Back EMF  $\mathcal{E}_L$  and  $V_R$  decay exponentially:

$$\frac{di}{dt} = -\frac{\mathcal{E}}{R\tau_{L}} e^{-t/\tau_{L}} \Rightarrow \begin{cases} \mathcal{E}_{L} = +\mathcal{E} e^{-t/\tau_{L}} \\ V_{R} = -\mathcal{E}_{I} = -iR \end{cases}$$

Compare to RC circuit, decay  $Q(t) = C\mathcal{E}e^{-t/RC}$ RC = capacitive time constant

## LR circuit: growth phase solution

Loop Equation is : 
$$\mathcal{E} - i\mathbf{R} + \mathcal{E}_L = 0$$
  
Substitute :  $\mathcal{E}_L(t) = -L\frac{di}{dt}$ 

$$\quad \textbf{Circuit Equation:} \\
 i + \frac{L}{R}\frac{di}{dt} = \frac{\mathcal{E}}{R}$$

- First order differential equation again saturating exponential solutions
- As t  $\rightarrow$  infinity, di / dt approaches zero, current stabilizes at i<sub>inf</sub> =  $\mathcal{E}$  / R
- At t = 0: current is small, di / dt is large, back EMF opposes battery.

Current starts from zero, grows as a saturating exponential.

$$i(t) = i_{inf} \left( 1 - e^{-t/\tau_{L}} \right) \quad i_{inf} \equiv \frac{\mathcal{E}}{R}$$
  
$$\tau_{L} \equiv L/R \equiv \text{ inductive time constant}$$

i = 0 at t = 0 in above equation → di/dt = *E*/L fastest rate of change, largest back EMF

Back EMF  $\mathcal{E}_L$  decays exponentially

$$\frac{\mathrm{di}}{\mathrm{dt}} = \frac{\mathcal{E}}{\mathsf{R} \,\tau_{\mathsf{L}}} \mathbf{e}^{-t/\tau_{\mathsf{L}}} \Rightarrow \qquad \mathcal{E}_{\mathsf{L}} = -\mathcal{E} \, \mathbf{e}^{-t/\tau_{\mathsf{L}}}$$

Voltage drop across resistor  $V_R$ = -iR



| Compare to RC circuit, charging                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Q(t)} = \mathbf{C}\mathcal{E}\left(1 - \mathbf{e}^{-t/\mathbf{R}\mathbf{C}}\right)$ $\mathbf{R}\mathbf{C} \equiv \text{capacitive time constant}$ |
| $\mathbf{RC} \equiv \mathbf{capacitivetime \ constant}$                                                                                                    |

Copyright R. Janow – Fall 2013

Example: For growth phase find back EMF  $\mathcal{E}_L$  as a function of time Use growth phase solution  $i(t) = \frac{\mathcal{E}}{D}(1 - e^{-t/\tau_L})$ S  $R = 1\Omega$ At t = 0: current = 0 L = 0.1H $\mathcal{E} = 5V$   $i(t=0) = \frac{\mathcal{E}}{R}(1-e^0) = 0$ Back EMF is ~ to rate of change of current  $\tau_{\rm L} = \frac{\rm L}{\rm R} = \frac{0.1\rm H}{1\Omega} = 0.1 \, \, \rm sec$ Derivative  $\frac{di}{dt} = \frac{\mathcal{E}}{R} \frac{(-)(-)}{\tau_{L}} e^{-t/\tau_{L}}$  where  $\tau_{L} = \frac{L}{P}$ τ  $\mathcal{E}_{L} = -L \frac{dI}{dt} = -\mathcal{E} e^{-t/\tau_{L}}; \quad \text{At } t = 0: \quad \mathcal{E}_{L} = -\mathcal{E}$ ε<sub>L</sub> Back EMF  $\mathcal{E}_i$  equals the battery potential  $0.37 V_0$ causing current i to be 0 at t = 0iR drop across R = 0L acts like a broken wire at t = 0**-***E* After a very long (infinite) time: Current stabilizes, back EMF=0

$$i_{\infty} = \frac{\mathcal{E}}{R} = 5A$$

•\_L acts like an ordinary wire at t = infinity

## **Current through the battery - 1**

12 – 2: The three loops below have identical inductors, resistors, and batteries. Rank them in terms of current through the battery just after the switch is closed, greatest first.



Copyright R. Janow – Fall 2013

# **Current through the battery - 2**

12 – 3: The three loops below have identical inductors, resistors, and batteries. Rank them in terms of current through the battery a long time after the switch is closed, greatest first.



Hint: what kind of wire does L act like?  $i(t) = i_{inf} \left(1 - e^{-t/\tau_{L}}\right) \quad i_{inf} \equiv \frac{\mathcal{E}}{R_{eq}} \qquad \tau_{L} \equiv L/R_{eq} \equiv \text{ inductive time constant}$ Copyright R. Janow – Fall 2013

### **Summarizing RL circuits growth phase**

• When *t* is large:  $i = \frac{\varepsilon}{R}$ 

• When 
$$t$$
 is small (zero),  $i = 0$ .

$$i = \frac{\varepsilon}{R} (1 - e^{-Rt/L})$$

 The current starts from zero and increases up to a maximum of i = &/R with a time constant given by

$$\tau_L = \frac{L}{R}$$
 Inductive time constant

Compare:  $\tau_{C} = RC$  Capacitive time constant

• The voltage across the resistor is

$$V_{R} = -iR = -\varepsilon(1 - e^{-Rt/L})$$

The voltage across the inductor is

$$V_{L} = -\varepsilon - V_{R} = -\varepsilon + \varepsilon (1 - e^{-Rt/L}) = -\varepsilon e^{-Rt/L}$$





Copyright R. Janow – Fall 2013

## Summarizing RL circuits decay phase

The switch is thrown from a to b

 Kirchoff's Loop Rule for growth was:

$$\varepsilon - iR - L\frac{di}{dt} = 0$$

• Now it is:

$$iR + L\frac{di}{dt} = 0$$

• The current decays exponentially:

$$i = \frac{\epsilon}{R} e^{-Rt/L}$$

• Voltage across resistor also decays:

$$V_R = -iR = -\epsilon e^{-Rt/L}$$

Voltage across inductor:

$$V_{L} = +L\frac{di}{dt} = +L\frac{\varepsilon}{R}\frac{d}{dt}e^{-Rt/L} = -\varepsilon e^{-Rt/L}$$







# **Energy stored in inductors**

### **Recall: Capacitors store energy in their electric fields**



## Inductors also store energy, but in their magnetic fields

- U<sub>B</sub> grows as current increases, absorbing energy
- When current is stable,  $U_B$  and  $u_B$  are constant
- U<sub>B</sub> diminishes when current decreases. It powers the persistent EMF during the decay phase for the inductor

### Sample problem: energy storage in magnetic field of an inductor during growth phase

a) At equilibrium (infinite time) how much energy is stored in the coil?

$$i_{\infty} = \frac{\mathcal{E}}{R} \text{ (Coil acts like a wire)} = \frac{12}{0.35} = 34.3 \text{ A}$$

$$U_{\infty} = \frac{1}{2} \text{ L} \cdot i_{\infty}^{2} = \frac{1}{2} \text{ x} 53 \text{ x} 10^{-3} \text{ x} (34.3)^{2}$$

$$U_{\infty} = 31 \text{ J}$$

$$U_{\infty} = 31 \text{ J}$$

b) How long  $(t_{1/2})$  does it take to store half of this energy?

At 
$$t_{1/2}$$
:  $U_B = \frac{1}{2}U_{\infty} \implies \frac{1}{2}Li_{1/2}^2 = \frac{1}{2} \cdot \frac{1}{2} \cdot L \cdot i_{\infty}^2 \implies i_{1/2} = \frac{i_{\infty}}{\sqrt{2}}$   
 $i_{1/2} = \frac{i_{\infty}}{\sqrt{2}} = i_{\infty}(1 - e^{-t_{1/2}/\tau_L})$   
 $e^{-t_{1/2}/\tau_L} = \frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 1 - 1/\sqrt{2}$   
take natural log of both sides  
 $t_{1/2} = -\tau_L \ln(1 - 1/\sqrt{2}) = 1.23 \tau$   
 $\tau_L = L/R = 53 \times 10^{-3}/0.35$ 

# **Mutual Inductance**

- Example: a pair of co-axial coils
- di/dt in the first coil induces current in the second coil, in addition to self-induced effects.
- M<sub>21</sub> depends on geometry only, as did L and C
- Changing current in primary (i₁) creates varying flux through coil 2 → induced EMF in coil 2



The smaller coil radius determines how much flux is linked, so.....

 $\equiv \mathbf{M}$ 

$$\mathcal{E}_1 \equiv -\mathsf{M}_{12} \frac{\mathsf{d}\mathsf{I}_2}{\mathsf{d}\mathsf{t}} \qquad \mathsf{M}_{12} = \mathsf{M}_{21}$$

proof not obvious Copyright R. Janow – Fall 2013

Coil 2

8

### Calculating the mutual inductance M



Flux through Loop 2 – depends on area A<sub>2</sub> & B<sub>1</sub>

$$\Phi_{21} = B_1 A_2 = \frac{\mu_0 i_1 N_1}{2R_1} \pi R_2^2$$
 (for each loop in coil 2)

#### If current in Loop 1 is changing:



$$\mathcal{E}_{2} = \text{ induced voltage in loop2} = -N_{2} \frac{d\Phi_{21}}{dt} = -\frac{\mu_{0}N_{1}N_{2}\pi R_{2}^{2}}{2R_{1}} \frac{di_{1}}{dt} = -M_{21} \frac{di_{1}}{dt}$$
$$\therefore M_{21} \equiv M = \frac{\mu_{0}N_{1}N_{2}}{2R_{1}}\pi R_{2}^{2} \qquad \text{smaller radius } (R_{2})$$
$$\frac{\text{smaller radius } (R_{2})}{\text{determines the linkage}}$$
$$\text{Summarizing results for mutual inductance:} \qquad \mathcal{E}_{2} = -M_{21} \frac{di_{1}}{dt} \qquad M_{21} = \frac{N_{2}\Phi_{21}}{i_{1}}$$
$$M_{21} = M = \frac{N_{2}\Phi_{21}}{i_{1}} = \frac{N_{1}\Phi_{12}}{i_{2}}$$
$$\text{now - Fall 2013}$$

#### Summary: Lecture 12 Chapter 30 – Induction II – LR Circuits

CHAPTER 30 SUMMARY

Mutual inductance: When a changing current  $i_1$  in one circuit causes a changing magnetic flux in a second circuit, an emf  $\mathcal{E}_2$  is induced in the second circuit. Likewise, a changing current  $i_2$  in the second circuit induces an emf  $\mathcal{E}_1$ in the first circuit. If the circuits are coils of wire with N1 and  $N_2$  turns, the mutual inductance M can be expressed in terms of the average flux  $\Phi_{B2}$  through each turn of coil 2 caused by the current i1 in coil 1, or in terms of the average flux  $\Phi_{B1}$  through each turn of coil 1 caused by the current  $i_2$  in coil 2. The SI unit of mutual inductance is the henry, abbreviated H. (See Examples 30.1 and 30.2.)

Self-inductance: A changing current *i* in any circuit causes a self-induced emf E. The inductance (or self-inductance) L depends on the geometry of the circuit and the material surrounding it. The inductance of a coil of N turns is related to the average flux  $\Phi_B$  through each turn caused by the current *i* in the coil. An inductor is a circuit device, usually including a coil of wire, intended to have a substantial inductance. (See Examples 30.3 and 30.4.)

Magnetic-field energy: An inductor with inductance L carrying current I has energy U associated with the inductor's magnetic field. The magnetic energy density u (energy per unit volume) is proportional to the square of the magnetic field magnitude. (See Example 30.5.)

$$E_{2} = -M \frac{di_{1}}{dt} \text{ and}$$

$$E_{1} = -M \frac{di_{2}}{dt} \qquad (30.4)$$

$$M = \frac{N_{2}\Phi_{B2}}{i_{1}} = \frac{N_{1}\Phi_{B1}}{i_{2}} \qquad (30.5)$$

$$E = -L \frac{di}{dt} \qquad (30.7)$$

$$L = \frac{N\Phi_{B}}{i} \qquad (30.6)$$

$$U = \frac{1}{2}LI^{2} \qquad (30.9)$$

$$u = \frac{B^{2}}{2\mu_{0}} \text{ (in vacuum)} \qquad (30.10)$$

$$U = \frac{1}{2}LI^{2} \qquad (30.9)$$

$$U = \frac{1}{2}LI^{2} \qquad (30.9)$$

$$U = \frac{1}{2}LI^{2} \qquad (30.9)$$

$$U = \frac{B^{2}}{2\mu_{0}} \text{ (in vacuum)} \qquad (30.10)$$

$$U = \frac{B^{2}}{2\mu_{0}} \text{ (in a material with magnetic } (30.11)}$$

$$U = \frac{1}{2}LI^{2} \qquad (30.9)$$

permeability  $\mu$ )

*R-L* **circuits:** In a circuit containing a resistor *R*, an inductor *L*, and a source of emf, the growth and decay of current are exponential. The time constant  $\tau$  is the time required for the current to approach within a fraction 1/e of its final value. (See Examples 30.6 and 30.7.)

 $au = \frac{L}{R}$ 



*L-C* circuits: A circuit that contains inductance *L* and capacitance *C* undergoes electrical oscillations with an angular frequency  $\omega$  that depends on *L* and *C*. This is analogous to a mechanical harmonic oscillator, with inductance *L* analogous to mass *m*, the reciprocal of capacitance 1/C to force constant *k*, charge *q* to displacement *x*, and current *i* to velocity  $v_x$ . (See Examples 30.8 and 30.9.)

*L-R-C* series circuits: A circuit that contains inductance, resistance, and capacitance undergoes damped oscillations for sufficiently small resistance. The frequency  $\omega'$  of damped oscillations depends on the values of *L*, *R*, and *C*. As *R* increases, the damping increases; if *R* is greater than a certain value, the behavior becomes overdamped and no longer oscillates. (See Example 30.10.)

$$=\sqrt{\frac{1}{LC}}$$

 $\omega =$ 



