Electricity and Magnetism Lecture 13 - Physics 121 Electromagnetic Oscillations in LC & LCR Circuits, Y&F Chapter 30, Sec. 5 - 6 Alternating Current Circuits, Y&F Chapter 31, Sec. 1 - 2

- Summary: RC and LC circuits
- Mechanical Harmonic Oscillator
- LC Circuit Oscillations
- Damped Oscillations in an LCR Circuit
- AC Circuits, Phasors, Forced Oscillations
- Phase Relations for Current and Voltage in Simple Resistive, Capacitive, Inductive Circuits.
- Summary

Recap: LC and RC circuits with constant EMF -

 $\tau_{C} = RC = capacitive time constant$

 $\tau_L = L/R = inductive time constant$

$$\begin{aligned} & \textbf{Growth Phase} \\ \textbf{Q}(t) = \textbf{Q}_{inf} \left(1 - e^{-t/RC}\right) \quad \textbf{Q}_{inf} \equiv C\mathcal{E} \qquad i(t) = i_{inf} \left(1 - e^{-t/\tau_{L}}\right) \quad i_{inf} \equiv \frac{\mathcal{E}}{R} \\ & \textbf{Decay Phase} \\ \textbf{Q}(t) = \textbf{Q}_{0}e^{-t/RC} \quad \textbf{Q}_{0} \equiv C\mathcal{E} \qquad i(t) = i_{0}e^{-t/\tau_{L}} \quad i_{0} \equiv \frac{\mathcal{E}}{R} \end{aligned}$$

Now LCR in same circuit, time varying EMF -> New effects

Generalized Resistances: Reactances, Impedance

$$R \quad X_{C} \equiv 1/(\omega C) \quad X_{L} \equiv \omega L \quad [Ohms]$$
$$Z \equiv \left[R^{2} + (X_{L} - X_{C})^{2} \right]^{1/2}$$

- New behavior: Resonant Oscillation in LC Circuit $\omega_{res} = (LC)^{-1/2}$
- New behavior: Damped Oscillation in LCR Circuit
- External AC can drive circuit, frequency ω_D=2πf

Recall: Resonant mechanical oscillations

Definition of an oscillating system:

- Periodic, repetitive behavior
- System state (†) = state(†+T) = ...= state(†+NT)
 - T = period = time to complete one complete cycle
- State can mean: position and velocity, electric and magnetic fields,...

Mechanical example: Spring oscillator (simple harmonic motion)

$$\mathbf{x} \rightarrow \mathbf{Q} \quad \mathbf{v} \rightarrow \mathbf{i} \quad \mathbf{m} \rightarrow \mathbf{L} \quad \mathbf{k} \rightarrow 1/\mathbf{C} \qquad \omega_0^2 = \mathbf{k}/\mathbf{m} \rightarrow \omega_0^2 = 1/\mathbf{L}\mathbf{C}$$
$$\mathsf{U}_{\mathsf{el}} = \frac{1}{2}\mathbf{k}\mathbf{x}^2 \quad \rightarrow \quad \mathsf{U}_{\mathsf{C}} = \frac{1}{2}\frac{\mathbf{Q}^2}{\mathbf{C}} \qquad \qquad \mathsf{K}_{\mathsf{block}} = \frac{1}{2}\mathbf{m}\mathbf{v}^2 \rightarrow \mathsf{U}_{\mathsf{L}} = \frac{1}{2}\mathsf{Li}^2_{\mathsf{lanow} - \mathsf{Fall 2013}}$$

Electrical Oscillations in an LC circuit, zero resistance Charge capacitor fully to $Q_0 = C\mathcal{E}$ then switch to "b" +Kirchoff loop equation: $V_{C} - \mathcal{E}_{L} = 0$ $V_{C} = \frac{Q}{C}$ and $\mathcal{E}_{L} = -L\frac{di}{dt} = -L\frac{d^{2}Q}{dt^{2}}$ Substitute: $\frac{d^2Q(t)}{dt^2} = -\frac{1}{LC}Q(t) \quad \begin{array}{l} \text{An oscillator} \\ \text{equation where} \end{array} \sqrt{1/LC} \equiv \omega_0$ solution: $Q(t) = Q_0 \cos(\omega_0 t + \phi)$ $Q_0 = C\mathcal{E}$ $\mathbf{i}(\mathbf{t}) = \frac{d\mathbf{Q}(\mathbf{t})}{d\mathbf{t}} = \mathbf{i}_0 \sin(\omega_0 \mathbf{t} + \phi) \qquad \mathbf{i}_0 \equiv \omega_0 \mathbf{Q}_0$ $\omega_0^2 = \frac{1}{\tau_c \tau_L}$ What oscillates? Charge, current, B & E fields, U_B , U_E Peaks of current and charge are out of phase by 90° where $\tau_{c} = RC, \tau_{I} = L/R$ Show: Total potential energy is constant $U_{tot} = U_E(t) + U_B(t)$ $U (= U_B + U_E)$ $U_{\rm E} = \frac{Q^2(t)}{2C} = \frac{Q_0^2}{2C} \cos^2(\omega_0 t + \phi) \qquad \qquad U_{\rm B} = \frac{{\rm Li}^2(t)}{2} = \frac{{\rm Li}_0^2}{2} \sin^2(\omega_0 t + \phi) \qquad \qquad \frac{Q^2}{2C} \sum_{i=1}^{N-1} \frac{Q^2}{2C} \sum_{i=1}^{$ $U_E(t)$ Inergy Peak Values Are Equal $U_{B} \equiv \frac{Li_{0}^{2}}{2} = \frac{L\omega_{0}^{2}Q_{0}^{2}}{2} = \frac{LQ_{0}^{2}}{2}\frac{1}{1C} = \frac{Q_{0}^{2}}{2C} \equiv U_{E}$ Are Equal $U_{B}(t)$ \blacksquare $U_{E_0} = U_{B_0} \blacksquare$ U_{tot} is constant T/2TСо Time

Details: use energy conservation to deduce oscillations

• Oscillator solution:
$$\mathbf{Q} = \mathbf{Q}_0 \cos(\omega_0 \mathbf{t} + \phi)$$

• To evaluate ω_0 : plug the first and second derivatives of the solution into the differential equation.

$$\frac{dQ}{dt} = -Q_0\omega_0\sin(\omega_0t + \phi)$$

$$\frac{d^2Q}{dt^2} = -Q_0\omega_0^2\cos(\omega_0t + \phi)$$

$$\frac{d^2Q}{dt^2} = -Q_0\omega_0^2\cos(\omega_0t + \phi)$$

• The resonant oscillation frequency ω_0 is:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 ght R. Janow – Fall 2013

Oscillations Forever?

13 – 1: What do you think will happen to the oscillations in a true LC circuit (versus a real circuit) over a long time?

A.They will stop after one complete cycle.

B.They will continue forever.

C.They will continue for awhile, and then suddenly stop.

D.They will continue for awhile, but eventually die away.

E.There is not enough information to tell what will happen.

Potential Energy alternates between all electrostatic and all magnetic – two reversals per period τ

Example: A 4 μ F capacitor is charged to $\mathcal{E} = 5.0$ V, and then discharged through a 0.3 Henry inductance in an LC circuit

Use preceding solutions with $\varphi=0$

a) Find the oscillation period and frequency $f = \omega / 2\pi$

$$\omega_{0} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(0.3)(4 \times 10^{-6})}}$$

= 913 rad/s
$$f = \omega_{0}/2\pi = 145 \text{ Hz}$$
$$T = \text{Period} = \frac{1}{f} = \frac{2\pi}{\omega_{0}} = 6.9 \text{ ms}$$

b) Find the maximum (peak) current (differentiate Q(t))

$$Q(t) = Q_0 \cos(\omega_0 t)$$

$$Q_0 = C\mathcal{E}$$

$$i(t) = \frac{dQ}{dt} = Q_0 \frac{d}{dt} \cos(\omega_0 t) = -Q_0 \omega_0 \sin_0 (\omega_0 t)$$

$$i_{max} = Q_0 \omega_0 = C\mathcal{E} \omega_0 = 4x10^{-6} x 5 x 913 = 18 \text{ mA}$$

c) When does the first current maximum occur? When $|sin(\omega_0 t)| = 1$

Maxima of Q(t): All energy is in E field Maxima of i(t): All energy is in B field Current maxima at T/4, 3T/4, ... (2n+1)T/4 First One: $T = \frac{1}{f} = 6.9 \text{ ms} \Rightarrow \frac{T}{4} = 1.7 \text{ ms}$ Others at: 3.4 ms increments

Copyright R. Janow – Fall 2013

Example

- a) Find the voltage across the capacitor in the circuit as a function of time.
 - $L=30~mH,\ C=100~\mu F$

The capacitor is charged to $Q_0 = 0.001$ Coul. at time t = 0.

The resonant frequency is:

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(3 \times 10^{-2} \text{H})(10^{-4} \text{F})}} = 577.4 \text{ rad/s}$$

The voltage across the capacitor has the same time dependence as the charge:

$$V_{c}(t) = \frac{Q(t)}{C} = \frac{Q_{0}\cos(\omega_{0}t + \phi)}{C}$$

At time t = 0, $Q = Q_0$, so choose phase angle $\phi = 0$.

$$V_{C}(t) = \frac{10^{-3}C}{10^{-4}F}\cos(577t) = 10\cos(577t) \text{ volts}$$

- b) What is the expression for the current in the circuit? The current is:
- $i = \frac{dQ}{dt} = -Q_0 \omega_0 \sin(\omega_0 t) = -(10^{-3} \text{C})(577 \text{ rad/s}) \sin(577 t) = -0.577 \sin(577 t) \text{ amps}$
- c) How long until the capacitor charge is reversed? That happens every $\frac{1}{2}$ period, given by:

$$\frac{\Gamma}{2} = \frac{\pi}{\omega_0} = 5.44 \,\mathrm{ms}$$

Copyright R. Janow – Fall 2013

Which Current is Greatest?

13 – 2: The expressions below could be used to represent the charge on a capacitor in an LC circuit. Which one has the greatest maximum current magnitude?

A. $Q(t) = 2 \sin(5t)$

B.
$$Q(t) = 2 \cos(4t)$$

- C. $Q(t) = 2 \cos(4t + \pi/2)$
- D. $Q(t) = 2 \sin(2t)$

E.
$$Q(t) = 4 \cos(2t)$$

$$\mathbf{Q}(t) = \mathbf{Q}_0 \cos(\omega_0 t + \phi) \qquad \mathbf{i} = \frac{\mathbf{d}\mathbf{Q}(t)}{\mathbf{d}t}$$

Time needed to discharge the capacitor in LC circuit

13 – 3: The three LC circuits below have identical inductors and capacitors. Order the circuits according to their oscillation frequency in ascending order.

$$\omega_0 \equiv \sqrt{1/LC} = \frac{2\pi}{T} \quad C_{\text{para}} \equiv \sum C_i \quad \frac{1}{C_{\text{ser}}} \equiv \sum \frac{1}{C_i}$$

Copyright R. Janow – Fall 2013

LCR circuits: Add series resistance Circuits still oscillate but oscillation is *damped*

Resonant frequency with damping

13 – 4: How does the resonant frequency ω_0 for an ideal LC circuit (no resistance) compare with ω' for an under-damped circuit whose resistance cannot be ignored?

A. The resonant frequency for the non-ideal, damped circuit is *higher* than for the ideal one $(\omega' > \omega_0)$.

B. The resonant frequency for the damped circuit is *lower* than for the ideal one ($\omega' < \omega_0$).

Copyright R.

C. The resistance in the circuit does not affect the resonant frequency—they are the same ($\omega' = \omega_0$).

D. The damped circuit has an *imaginary* value of ω '.

$$\boldsymbol{\omega}' \equiv \left[\, \boldsymbol{\omega}_0^2 - (\mathsf{R} \, / \, 2 \, \mathsf{L})^2 \, \right]^{1/2}$$

Alternating Current (AC) - EMF

- AC is easier to transmit than DC
- AC transmission voltage can be changed by using a transformer.
- Commercial electric power (home or office) is AC, not DC.
- The U.S., the AC frequency is 60 Hz. Most other countries use 50 Hz.
- Sketch: a crude AC generator.
- EMF appears in a rotating a coil of wire in a magnetic field (Faraday's Law)
- Slip rings and brushes allow the EMF to be taken off the coil without twisting the wires.
- Generators convert mechanical energy to electrical energy. Power to rotate the coil can come from a water or steam turbine, windmill, or turbojet engine.

windmill, or turbojet engine. Represent outputs as $\varepsilon_{ind}(t) = \varepsilon_m \sin \omega_d t$ sinusoidal functions: $i = i_0 \sin(\omega_d t - \phi)$

External AC EMF 🕖 driving a circuit

External, sinusoidal, instantaneous EMF applied to load:

$$\mathcal{E}(t) = \mathcal{E}_{max} \sin(\omega_D t)$$

The potential across the load $V_{load}(t) = \mathcal{E}(t)$

 ω_D = the driving frequency

 $\omega_D \neq$ resonant frequency ω_0 , in general

Current in load flows with same frequency ω_D ...but may be retarded or advanced (relative to \mathcal{E}) by "phase angle" Φ (due to inertia L and stiffness 1/C) Current has the same amplitude and phase everywhere in a branch

 $\mathcal{E}_{max} \equiv \text{amplitude}$

$$I(t) = I_{max} \sin(\omega_{D}t - \Phi)$$

Example:

Series LCR Circuit

Everything oscillates at driving frequency ω_{D}

At "resonance":
$$\omega_D = \omega_0 = \sqrt{1/LC}$$

 Φ is zero at resonance – circuit acts purely resistively.

Otherwise Φ is + or - (current leads or lags applied EMF)

Copyright R. Janow – Fall 2013

R

Instantaneous, peak, average, and RMS quantities for AC circuits

$$\mathcal{E}(t) = \mathcal{E}_{\max} \sin(\omega_D t) \qquad i(t) = i_{\max} \sin(\omega_D t - \Phi)$$

Instantaneous voltages and currents:

- depend on time through argument: ωt
- · periodic, repetitive, oscillatory

Emax

- possibly advanced or retarded relative to each other by phase angles
- represented by rotating "phasors" see below

Peak voltage and current amplitudes are just the coefficients out front

i _{max}

Simple time averages of periodic quantities are zero (and useless).

• Example: Integrate over a whole number of periods – one τ is enough ($\omega t=2\pi$)

$$\int_{0}^{\tau} \sin(\omega t - \Phi) dt = 0$$

Integrand is odd
$$i_{av} = \frac{1}{\tau} \int_{0}^{\tau} \mathcal{E}(t) dt = \mathcal{E}_{max} \frac{1}{\tau} \int_{0}^{\tau} \sin(\omega_{D} t) dt = 0$$
$$i_{av} = \frac{1}{\tau} \int_{0}^{\tau} i(t) dt = i_{max} \frac{1}{\tau} \int_{0}^{\tau} \sin(\omega_{D} t - \Phi) dt = 0$$

"RMS" averages are used the way instantaneous quantities were in DC circuits • "RMS" means "root, mean, squared".

$$\frac{1}{\tau} \int_{0}^{\tau} \sin^{2}(\omega t - \Phi) dt = 1/2$$
Integrand is even
$$E_{rms} \equiv \left[\left\langle E^{2} \right\rangle_{av} \right]^{1/2} = \left[\frac{1}{\tau} \int_{0}^{\tau} E^{2}(t) dt \right]^{1/2} = \frac{E_{max}}{\sqrt{2}}$$

$$i_{rms} \equiv \left[\left\langle i^{2}(t) \right\rangle_{av} \right]^{1/2} = \left[\frac{1}{\tau} \int_{0}^{\tau} i^{2}(t) dt \right]^{1/2} = \frac{i_{max}}{\sqrt{2}}$$

$$013$$

Phasor Picture:

Show current and potentials as vectors rotating at frequency ω_D

- The measured instantaneous values of i(t) and $\mathcal{E}(t)$ are projections of the phasors on the y-axis.
- The lengths of the vectors are the *peak* amplitudes.
 - Φ = "phase angle" measures when peaks pass
 - Φ and $\omega_D t$ are independent

• Current is the same (phase included) everywhere in a single branch of any circuit.

• EMF $\mathcal{E}(t)$ applied to the circuit can lead or lag the current by a phase angle Φ in the range [- $\pi/2$, + $\pi/2$].

Series LCR circuit: Relate internal voltage drops to phase of the current

• Voltage across L leads the current by 900 Copyright R. Janow - Fall 2013

AC circuit, resistance only \rightarrow current and voltage in phase

Kirchoff loop rule:
$$\boldsymbol{\varepsilon} - V_R(t) = 0$$

 $\boldsymbol{\omega} V_R(t) = \boldsymbol{\varepsilon}(t) = \boldsymbol{\varepsilon}_M \sin(\omega_D t)$
Current $i_R(t) = i_{R \max} \sin(\omega_D t - \Phi)$

Voltage drop across R: $V_R(t) \equiv i_R(t)R$ (definition of resistance)

Example $\boldsymbol{\varepsilon}_{M} = 10V$, f = 60 Hz applied to a 20 Ω Resistor. Find the current i(t) at $t = \frac{1}{240}$ s $\boldsymbol{\varepsilon}_{M} \qquad \boldsymbol{\omega}_{D} = 2\pi f = 120\pi \qquad \tau = 1/60$ s. $t = \tau/4$ i(t) $= i_{Rmax} \sin(\boldsymbol{\omega}_{D}t) = \frac{\mathcal{E}_{m}}{R} \sin(120\pi \cdot 1/240)$ i(t) $= \frac{10}{20} \sin \frac{\pi}{2} = \frac{1}{2}A$

Copyright R. Janow – Fall 2013

Inductance-only AC circuit: current lags voltage by $\pi/2$

Current & voltage phases in pure R, C, and L circuits

Current is the same everywhere in a single branch (including phase) Phases of voltages in elements are referenced to the current phasor

- Apply sinusoidal voltage $\mathcal{E}(t) = \mathcal{E}_{m} sin(\omega_{D} t)$
- For pure R, L, or C loads, phase angles are 0, $\pi/2$, $-\pi/2$
- Reactance" means ratio of peak voltage to peak current (generalized resistances).

 $i_C v_c$

$$V_{max} / i_{R} \equiv R$$

 $V_{c} \text{ lags } i_{c} \text{ by } \pi/2$ Capacitive Reactance $V_{max} / i_{c} \equiv X_{c} = \frac{1}{\omega_{D}C}$

 V_{L} leads i_{L} by $\pi/2$ Inductive Reactance $V_{max}/i_{L} \equiv X_{L} = \omega_{D}L$

Series LCR circuit driven by an external AC voltage

Apply EMF:

 $\mathcal{E}(t) = \mathcal{E}_{max} \sin(\omega_D t)$ ω_D is the driving frequency

The current i(t) is the same everywhere in the circuit i(t) = $i_{max} sin(\omega_D t - \Phi)$

• Same frequency dependance as $\mathcal{E}(t)$ but...

• Current leads or lags $\mathcal{E}(t)$ by a constant phase angle Φ

• Same phase for the current in *E*, R, L, & C

Phasors all rotate CCW at frequency ω_D

Lengths of phasors are the peak values (amplitudes)

• The "y" components are the measured values.

Plot voltages in components with phases relative to current phasor i_m :

- V_R has same phase as $i_m V_R = i_m R$
- V_C lags i_m by π/2
 V_L leads i_m by π/2

 $V_{R} = I_{m}R$ $V_{C} = i_{m}X_{C}$ $V_{I} = i_{m}X_{I}$

Kirchoff Loop rule for potentials (measured along y)

$$\vec{\mathcal{E}}(t) - \vec{V}_{R}(t) - \vec{V}_{L}(t) - \vec{V}_{C}(t) = 0$$

$$\vec{\xi}_{m} = \vec{V}_{R} + (\vec{V}_{L} + \vec{V}_{C})$$
 \vec{V}_{C} lags \vec{V}_{L} by 180⁰
along i_{m}^{\checkmark} \checkmark perpendicular to i_{m}

Summary: Lecture 13/14 Chapter 31 - LCR & AC Circuits, Oscillations

Summary: RC and RL circuit results

RECAP RC CIRCUITS LR CIRCUITS TIME CONSTANT Te=RC T2 = 4/R MEASURE OF C=QNE L = N DA = "FLUX LINKASE" (GEONOTRY CAPACITY DB = FLUX TAROUGH ONE COIL 930 = CE Un= EIR LIMITTING VALUES LOOP RULE Ve = Q/c. EL = - Lault (FARADAYS) VOLME & DED. EQUATION - iR - Ldu =0 E-RdQ - Q =0 ((t) = & (1-e-t/R) GROWTH i(t) = % e the PHARE V(6) = - EE # (BACK EMF) SOLUTION V(t) = -2VR(T) = L(t)R V(c) = U(t)K. -trn) $(\mathcal{O}(t))$ Dece ((t) =) $V_{L}(t) = ict)R = F \overline{e}^{4}R$ Dhns4 Soution $V_{i}(t) =$ D(t) = CF (