Physics 121 - Electricity and Magnetism Lecture 3 - Electric Field

Y&F Chapter 21 Sec. 4 – 7

- Recap & Definition of Electric Field
- Electric Field Lines
- Charges in External Electric Fields
- Field due to a Point Charge
- Field Lines for Superpositions of Charges
- Field of an Electric Dipole
- Electric Dipole in an External Field: Torque and Potential Energy
- Method for Finding Field due to Charge Distributions
 - Infinite Line of Charge
 - Arc of Charge
 - Ring of Charge
 - Disc of Charge and Infinite Sheet
- Motion of a charged paricle in an Electric Field
 - CRT example

Recap: Electric charge

Basics:

- Positive and negative flavors. Like charges repel, opposites attract
- Charge is conserved and quantized. $e = 1.6 \times 10^{-19}$ Coulombs
- Ordinary matter seeks electrical neutrality screening
- In conductors, charges are free to move around
 - \cdot screening and induction
- In insulators, charges are not free to move around
 - but materials polarize

Coulombs Law: forces at a distance enabled by a field

Superposition of Forces or Fields

$$\vec{F}_{net \text{ on } 1} = \sum_{i=2}^{n} \vec{F}_{1,i} = \vec{F}_{1,2} + \vec{F}_{1,3} + \vec{F}_{1,4+....}$$

opyright R. Janow – Fall 2016

Fields

Scalar Field Examples:	 Temperature - T(<u>r</u>) Pressure - P(<u>r</u>) Gravitational Potential energy - U(<u>r</u>) Electrostatic potential - V(<u>r</u>) Electrostatic potential energy - U(r) 	
Vector Field Examples:	 Velocity - <u>v(r)</u> Gravitational field/acceleration - <u>g(r)</u> Electric field - <u>E(r)</u> Magnetic field- <u>B(r)</u> Gradients of scalar fields 	

Fields "explain" forces at a distance – space altered by source

Gravitational Field versus force/unit mass $\vec{g}(\vec{r}) = \lim_{m_0 \to 0} (\frac{\vec{F}_g(\vec{r})}{m_0})$ \vec{E}_{m_0} is a "test mass"

Electrostatic Field

force/unit charge

$$\vec{\mathsf{E}}(\vec{\mathsf{r}}) = \underset{\mathsf{q}_0 \to 0}{\mathsf{Lim}}(\frac{\vec{\mathsf{F}}_{\mathsf{e}}(\vec{\mathsf{r}})}{\mathsf{q}_0})$$

 q_0 is a positive "test charge"

"Test" masses or charges map the direction and magnitudes of fields Copyright R. Janow – Fall 2016

Field due to a charge distribution

F (r)

Ē(r)

Test charge q₀:

- small and positive
- does not affect the charge distribution that produces \underline{E} .
- A charge distribution creates a field:
 - Map \underline{E} field by moving q_0 around and measuring the force \underline{F} at each point
 - <u>E(r)</u> is a vector parallel to <u>F(r)</u>
 - <u>E</u> field exists whether or not the test charge is present
 - <u>E</u> varies in direction and magnitude

$$\vec{\mathsf{F}}(\vec{\mathsf{r}}) = \mathsf{q}_0 \vec{\mathsf{E}}(\vec{\mathsf{r}})$$

- $\frac{F}{F} = Force on test charge q_0 at point \underline{r}$ due to the charge distribution
- <u>E</u> = External electric field at point <u>r</u> = Force/unit charge
- SI Units: Newtons / Coulomb later: V/m

Electrostatic Field Examples

Field Location	Value
Inside copper wires in household circuits	10 ⁻² N/C
Near a charged comb	10 ³ N/C
Inside a TV picture tube (CRT)	10 ⁵ N/C
Near the charged drum of a photocopier	10 ⁵ N/C
Breakdown voltage across an air gap (arcing)	3×10 ⁶ N/C
E-field at the electron's orbit in a hydrogen atom	5×10 ¹¹ N/C
E-field on the surface of a Uranium nucleus	3×10 ²¹ N/C

- Magnitude: E=F/q₀
- Direction: same as the force that acts on the positive test charge
- SI unit: N/C

Electric Field due to a point charge Q

- Magnitude E = KQ/r² is constant on any spherical shell (spherical symmetry)
- Visualize: E field lines are radially out for +|Q|, in for -|Q|
- Flux through any closed (spherical) shell enclosing Q is the same:

 $\Phi = EA = Q.4\pi r^2/4\pi\epsilon_0 r^2 = Q/\epsilon_0$ Radius cancels

The closed (Gaussian) surface intercepts all the field lines leaving Q

Use superposition to calculate net electric field at each point due to a group of individual charges

Example: for point charges at \underline{r}_1 , \underline{r}_2 $\vec{F}_{net} = \vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_n$ $\vec{E}_{net} = \frac{\vec{F}_{tot}}{q_0} = \frac{\vec{F}_1}{q_0} + \frac{\vec{F}_2}{q_0} + \dots + \frac{\vec{F}_n}{q_0}$ $= \vec{E}_1 + \vec{E}_2 + \dots + \vec{E}_n$

$$\vec{\mathsf{E}}_{\text{net at i}} = \frac{1}{4\pi\varepsilon_0} \sum_{j} \frac{\mathsf{q}_i}{\mathsf{r}_{ij}^2} \hat{\mathsf{r}}_{ij}$$

Do the sum above for every test point i

Copyright R. Janow - Fall 2016

Visualization: Electric field lines (Lines of force)

- Map direction of an electric field line by moving a positive test charge around.
- The tangent to a field line at a point shows the field direction there.
- The density of lines crossing a unit area perpendicular to the lines measures the strength of the field. Where lines are dense the field is strong.
- Lines begin on positive charges (or infinity and end on negative charges (or infinity).

DETAIL NEAR A POINT CHARGE

NEAR A LARGE, UNIFORM SHEET OF + CHARGE

- No conductor just an infinitely large charge sheet
- E approximately constant in the "near field" region (d << L)

Shell Theorem Conclusions

Outside point: Same field as point charge

Inside spherical distribution at distance r from center:

- E = 0 for hollow shell;
- $E = kQ_{inside}/r^2$ for solid sphere

Example: Find E_{net} at a point on the axis of a dipole

- Use superposition Positive side • Symmetry $\rightarrow E_{net}$ parallel to z-axis Hydrogen Hydrogen $\mathbf{r}^+ \equiv \mathbf{z} - \mathbf{d}/2$ and $\mathbf{r}^- \equiv \mathbf{z} + \mathbf{d}/2$ $E_{at O} = E^+ - E^- = \frac{kq}{r_+^2} - \frac{kq}{r_-^2}$ Negative side • Limitation: z > d/2 or z < - d/2 $E_{at 0} = kq \left[\frac{1}{(z - d/2)^2} - \frac{1}{(z + d/2)^2} \right]$ DIPOLE MOMENT + q $\vec{p} \equiv q\vec{d}$ \vec{d} points from - to + -q $E_{at O} = 2kqd \left| \frac{z}{(z^2 - d^2/4)^2} \right|$ Exact For z >> d : point "O" is "far" $[] \approx \frac{1}{z^3}$ since $\frac{d}{z} \ll 1$ <u>^</u>---+a from center of dipole d z = 0----√ $\therefore \mathsf{E}_{\mathsf{at}\,\mathsf{O}} \approx +\frac{\mathsf{qd}}{2\pi\varepsilon_0}\frac{1}{\mathsf{z}^3} = +\frac{\mathsf{p}}{2\pi\varepsilon_0}\frac{1}{\mathsf{z}^3}$
- Exercise: Do these formulas describe <u>E</u> at the point midway between the charges Ans: $E = -4p/2\pi\epsilon_0 d^3$
- \cdot Fields cancel as d \rightarrow 0 so E \rightarrow 0
- E falls off as $1/z^3$ not $1/z^2$
- \cdot E is negative when z is negative
- Does "far field" E look like point charge?

Electric Field

3-2: Put the magnitudes of the electric field values at points A,B, and C shown in the figure in decreasing order.

A) $E_{C} > E_{B} > E_{A}$ B) $E_{B} > E_{C} > E_{A}$ C) $E_{A} > E_{C} > E_{B}$ D) $E_{B} > E_{A} > E_{C}$ E) $E_{A} > E_{B} > E_{C}$

A Dipole in a Uniform EXTERNAL Electric Field Feels torque - Stores potential energy (See Sec 21.7)

Torque = Force x moment arm = $-2 q E \times (d/2) sin(\theta)$ = $-p E sin(\theta)$ (CW, into paper as shown) ASSSUME RIGID DIPOLE

minimum

Copyright K. Janow - Fall 2016

maximum

• U = 0 for $\theta = +/- \pi/2$

• U = - pE for θ = 0

• U = + pE for $\theta = \pi$

Potential Energy U = -W

$$U = -\int \tau d\theta = +pE \int sin(\theta) d\theta$$

$$= -pEcos(\theta)$$

$$U_E = -\vec{p} \cdot \vec{E}$$

3-3: In the sketch, a dipole is free to rotate in a uniform external electric field. Which configuration has the smallest potential energy?

3-4: Which configuration has the largest potential energy?

ADDAN

Method for finding the electric field at point P -- given a known *continuous* charge distribution

This process is just superposition

$$\vec{\mathsf{E}}_{\mathsf{P}} = \frac{1}{4\pi\epsilon_0} \lim_{\Delta q \to 0} \sum_{i} \frac{\Delta q_i}{r_i^2} \hat{\mathsf{r}}_i \implies \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r^2}$$

1. Find an expression for dq, the "point charge" within a differentially "small" chunk of the distribution

$$dq = \begin{cases} \lambda dI & \text{for a linear distribution} \\ \sigma dA & \text{for a surface distribution} \\ \rho dV & \text{for a volume distribution} \end{cases}$$

2. Represent field contributions at P due to a point charge dq located anyhwere in the distribution. Use symmetry where possible.

$$\Delta \vec{\mathsf{E}} = \frac{1}{4\pi\varepsilon_0} \frac{\Delta q}{r^2} \hat{\mathsf{r}} \quad \Longrightarrow \quad \mathsf{d} \vec{\mathsf{E}} = \frac{\mathsf{d} q}{4\pi\varepsilon_0 r^2} \hat{\mathsf{r}}$$

3. Add up (integrate) the contributions dE over the whole distribution, varying the displacement and direction as needed.

Use symmetry where possible.

$$\vec{E}_{P} = \int d\vec{E}$$
 (line, surface, or volume integral)
dist

Example: Find electric field on the axis of a charged rod

- Rod has length L, uniform positive charge per unit length λ_i , total charge Q. ٠ $\lambda = Q/L$.
- Calculate electric field at point P on the axis of the rod a distance a from one ٠ end. Field points along x-axis.

$$dq = \lambda dx$$

$$dE = \frac{1}{4\pi\epsilon_0} \frac{dq}{x^2} = \frac{1}{4\pi\epsilon_0} \frac{\lambda dx}{x^2}$$

Add up contributions to the field ٠ from all locations of dq along the rod (x ε [a, L + a]).

$$\mathsf{E} = \int_{a}^{L+a} \frac{\lambda}{4\pi\epsilon_{0}} \frac{\mathrm{d}x}{x^{2}} = \frac{\lambda}{4\pi\epsilon_{0}} \int_{a}^{L+a} \frac{\mathrm{d}x}{x^{2}} = \frac{\lambda}{4\pi\epsilon_{0}} \left[-\frac{1}{x} \right]_{a}^{L+a} = \frac{1}{4\pi\epsilon_{0}} \frac{\mathsf{Q}}{\mathsf{L}} \left(\frac{1}{a} - \frac{1}{\mathsf{L}+a} \right)$$

$$\therefore \ \mathsf{E} = \frac{\mathsf{Q}}{4\pi\varepsilon_0}\mathsf{a}(\mathsf{L} + \mathsf{a})$$

Interpret Limiting cases:

y

- L => 0 rod becomes point charge
 L << a same, L/a << 1

$$\cdot$$
 L >> a a/L << 1,

Copyright R. Janow – Fall 2016

Electric field at center of an ARC of charge

Copyright R. Janow – Fall 2016

Electric field due to a straight LINE of chargeSEE Y&F ExamplePoint P on symmetry axis, a distance y off the line21.10

Electric field due to a RING of charge **SEE Y&F Example** at point P on the symmetry (z) axis 21.9 • Uniform linear charge density along circumference: $\lambda = Q/2\pi R$ $dE\cos\theta$ • dq = λ ds = charge on arc segment of length ds = Rd ϕ • P on symmetry axis \rightarrow xy components of E cancel Net <u>E</u> field is along z only, normal to plane of ring $d\vec{E}_{P} = \frac{kdq}{r^{2}}\hat{r} \rightarrow dE_{z,P} = \frac{k\,dq\,cos(\theta)}{r^{2}}\hat{k}$ $dq \equiv \lambda\,ds = \lambda\,R\,d\phi \qquad cos(\theta) = z/r \qquad r^{2} = R^{2} + z^{2}$ $d\vec{E}_{P,z} = \frac{k \lambda Rz d\phi}{a} \hat{k}$ • Integrate on azimuthal angle ϕ from 0 to 2π $\vec{E}_{P,z} = \frac{k \lambda R z}{\left[R^2 + z^2\right]^{3/2}} \vec{k} \int_0^{2\pi} d\phi \quad \longleftarrow \quad \text{integral} = 2\pi$ $2\pi R\lambda \equiv Q$ total charge on disk $\vec{\mathsf{E}}_{\mathsf{P},\mathsf{z}} = \frac{\mathsf{k}\mathsf{Q}\mathsf{z}}{[\mathsf{R}^2 + \mathsf{z}^2]^{3/2}} \hat{\mathsf{k}} \qquad \begin{array}{c} \mathsf{E}_\mathsf{z} \to \mathsf{0} \text{ as } \mathsf{z} \to \mathsf{0} \\ \text{(see result for arc)} \end{array}$ $ds = R d\phi d\phi$ Limit: For P "far away" use z >> R

 $E_{P,z} \rightarrow \frac{kQ}{z^2}$ Ring looks like a point charge if point P is very far away!

Exercise: Where is E_z a maximum? Set dE_z/dz = 0 Ans: z = R/sqrt(2)

Electric field due to a DISK of charge for point P on z (symmetry) axis

- Uniform surface charge density on disc in x-y plane $\sigma = Q/\pi R^2$
- Disc is a set of rings, each of them dr wide in radius
- P on symmetry axis \rightarrow net E field only along z
- dq = charge on arc segment $rd\phi$ with radial extent dr

$$dA = r dr d\phi \quad dq \equiv \sigma dA = \sigma r dr d\phi$$
$$cos(\theta) = z/s \quad s^{2} = r^{2} + z^{2}$$
$$d\vec{E}_{z} = \frac{k dq}{s^{2}} cos(\theta) \hat{k} = \frac{1}{4\pi\epsilon_{0}} \frac{\sigma z r dr d\phi}{\left[r^{2} + z^{2}\right]^{3/2}} \hat{k}$$

• Integrate twice: first on azimuthal angle ϕ from 0 to 2π which yields a factor of 2π then on ring radius r from 0 to R

$$\vec{E}_{z} = \frac{2\pi\sigma}{4\pi\varepsilon_{0}} z_{0}^{R} \frac{r \, dr}{[r^{2} + z^{2}]^{3/2}} \vec{k}$$
Note Anti-
derivative
$$\frac{r}{[r^{2} + z^{2}]^{3/2}} = \frac{d}{dr} \left\{ \frac{-1}{[r^{2} + z^{2}]^{1/2}} \right\}$$

$$\vec{E}_{disk} = \frac{\sigma}{2\varepsilon_{0}} \left[1 - \frac{z}{[z^{2} + R^{2}]^{1/2}} \right] \hat{k}$$

Electric field due to a DISK of charge, continued

Exact Solution:

$$\vec{\mathsf{E}}_{disk} = \frac{\sigma}{2\epsilon_0} \left[1 - \frac{z}{\left[z^2 + R^2 \right]^{1/2}} \right] \hat{\mathsf{k}}$$

Near-Field: z<< R: P is close to the disk. Disk looks like infinite sheet.

for z/R << 1:
$$\vec{E}_{disk} = \frac{\sigma}{2\epsilon_0} \left[1 - \frac{z}{R \left[1 + (z/R)^2 \right]^{1/2}} \right] \hat{k} \approx \frac{\sigma}{2\epsilon_0} \left[1 - \frac{z}{R} \right] \hat{k} \approx \frac{\sigma}{2\epsilon_0}$$

"near field" is constant – disk approximates an infinite sheet of charge

.

Far-Field: R<< z: P is far from to the disk. Disk looks like a point charge.

for R/z << 1:
$$\vec{E}_{disk} = \frac{\sigma}{2\epsilon_0} \left[1 - \frac{z}{z \left[1 + (R/z)^2 \right]^{1/2}} \right] \hat{k}$$
 Recall $\sigma = Q/\pi R^2$

Series Expansion

$$(1+s)^{n} = 1 + ns/1! + n(n-1)s^{2}/2! + ...$$
converges quickly for s << 1
$$n = 1 + ns/1! + n(n-1)s^{2}/2! + ...$$

$$\therefore \vec{E}_{disk} \approx \frac{\sigma}{2\epsilon_0} \left[1 - 1 + \frac{1}{2} \frac{R^2}{z^2} \right] \hat{k} = \frac{\sigma}{4\epsilon_0} \frac{R^2}{z^2} \hat{k} \qquad \vec{E}_{disk} \approx \frac{Q}{4\pi\epsilon_0} \frac{1}{z^2} \hat{k} \qquad formula$$

 $4 \left(- \right)^2$

Copyright R. Janow – Fall 2016

Infinite (i.e. "large") uniformly charged sheet Non-conductor, fixed surface charge density σ Infinite sheet \rightarrow d<<L \rightarrow "near field" \rightarrow uniform field $E = \frac{\sigma}{2\epsilon_0}$ for infinite, non - conducting charged sheet Positive test charge (a)(b) (c)

Method: solve non-conducting disc of charge for point on z-axis then approximate z << R R. Janow - Fall 2016

Motion of a Charged Particle in a Uniform Electric Field

- Stationary charges produce <u>E</u> field at location of charge q
- Acceleration <u>a</u> is parallel or anti-parallel to <u>E</u>.
- •Acceleration is \underline{F}/m not $\underline{F}/q = \underline{E}$
- Acceleration is the same everywhere in uniform field

Example: Early CRT tube with electron gun and electrostatic deflector

Motion of a Charged Particle in a Uniform Electric Field

Kinematics: ballistic trajectory

 Δy is the DEFLECTION of the electron as it crosses the field Acceleration has only a constant y component. v_x is constant, $a_x=0$

Copyright R. Janow – Fall 2016