Physics 121 - Electricity and Magnetism
 Lecture 3 - Electric Field

Y\&F Chapter 21 Sec. 4-7

- Recap \& Definition of Electric Field
- Electric Field Lines
- Charges in External Electric Fields
- Field due to a Point Charge
- Field Lines for Superpositions of Charges
- Field of an Electric Dipole
- Electric Dipole in an External Field: Torque and Potential Energy
- Method for Finding Field due to Charge Distributions
- Infinite Line of Charge
- Arc of Charge
- Ring of Charge
- Disc of Charge and Infinite Sheet
- Motion of a charged paricle in an Electric Field
- CRT example

Recap: Electric charge

Basics:

- Positive and negative flavors. Like charges repel, opposites attract
- Charge is conserved and quantized. $e=1.6 \times 10^{-19}$ Coulombs
- Ordinary matter seeks electrical neutrality - screening
- In conductors, charges are free to move around
- screening and induction
- In insulators, charges are not free to move around
- but materials polarize

Coulombs Law: forces at a distance enabled by a field

Superposition of Forces or Fields

$$
\vec{F}_{\text {net on } 1}=\sum_{i=2}^{n} \vec{F}_{1, i}=\vec{F}_{1,2}+\vec{F}_{1,3}+\vec{F}_{1,4+\ldots . .}
$$

Fields

Fields "explain" forces at a distance - space altered by source

Gravitational Field versus Electrostatic Field force/unit mass

$$
\overrightarrow{\mathbf{g}}(\vec{r})=\operatorname{Lim}_{\mathbf{m}_{0} \rightarrow>0}\left(\frac{\overrightarrow{\mathbf{F}}_{\mathrm{g}}(\overrightarrow{\mathrm{r}})}{\mathrm{m}_{0}}\right)
$$

m_{0} is a "test mass"
force/unit charge
$\vec{E}(\vec{r})=\operatorname{Lim}_{q_{0}->0}\left(\frac{\vec{F}_{e}(\vec{r})}{q_{0}}\right)$
q_{0} is a positive "test charge"
"Test" masses or charges map the direction and magnitudes of fields

Field due to a charge distribution

$$
\vec{E}(\vec{r}) \equiv \operatorname{Lim}_{\mathbf{q}_{0}>0}\left(\frac{\vec{F}(\vec{r})}{\mathbf{q}_{0}}\right)
$$

most often...

$$
\vec{E}(\vec{r})=\frac{\vec{F}(\vec{r})}{q_{0}}
$$

Test charge q_{0} :

- small and positive

TEST CHARGE	z	CHARGE ISTRIBUTION (PRODUCES E)	small and positive does not affect the charge distribution that produces \underline{E}.
		y	A charge distribution creates a field: Map \underline{E} field by moving q_{0} around and measuring the force F at each point $E(r)$ is a vector parallel to $\underline{F}(r)$ E field exists whether or not the test charge is present E varies in direction and magnitude

$$
\vec{F}(\vec{r})=q_{0} \vec{E}(\vec{r})
$$

$\underline{F}=$ Force on test charge q_{0} at point \underline{r} due to the charge distribution
$\begin{aligned} \underline{E} & =\text { External electric field at point } \underline{r} \\ & =\text { Force/ unit charge }\end{aligned}$
SI Units: Newtons / Coulomb
later: V/ m

Electrostatic Field Examples

Field Location	Value
Inside copper wires in household circuits	$10^{-2} \mathrm{~N} / C$
Near a charged comb	$10^{3} \mathrm{~N} / \mathrm{C}$
Inside a TV picture tube (CRT)	$10^{5} \mathrm{~N} / \mathrm{C}$
Near the charged drum of a photocopier	$10^{5} \mathrm{~N} / \mathrm{C}$
Breakdown voltage across an air gap (arcing)	$3 \times 10^{6} \mathrm{~N} / \mathrm{C}$
E-field at the electron's orbit in a hydrogen atom	$5 \times 10^{11} \mathrm{~N} / \mathrm{C}$
E-field on the surface of a Uranium nucleus	$3 \times 10^{21} \mathrm{~N} / \mathrm{C}$

- Magnitude: $\mathbf{E = F} / \mathbf{q}_{\mathbf{o}}$
- Direction: same as the force that acts on the positive test charge
- SI unit: N/ C

Electric Field due to a point charge \mathbf{Q}

Coulombs Law test charge \mathbf{q}_{0}

$$
\overrightarrow{\mathbf{F}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Qq}_{0}}{\mathbf{r}^{2}} \hat{\mathbf{r}}
$$

Find the field E due to point charge \mathbf{Q} as a function over all of space
$\overrightarrow{\mathrm{F}}=\mathrm{q}_{0} \overrightarrow{\mathrm{E}} \Rightarrow$
$\vec{E} \equiv \frac{\overrightarrow{\mathbf{F}}}{\mathbf{q}_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathbf{Q}}{\mathbf{r}^{2}} \hat{\mathbf{r}} \quad \hat{\mathbf{r}} \equiv \frac{\overrightarrow{\mathbf{r}}}{\mathbf{r}}$

- Magnitude $\mathrm{E}=\mathrm{KQ} / \mathrm{r}^{2}$ is constant on any spherical shell (spherical symmetry)
- Visualize: E field lines are radially out for $+|\mathrm{Q}|$, in for $-|\mathrm{Q}|$
- Flux through any closed (spherical) shell enclosing Q is the same:

$$
\Phi=E A=Q .4 \pi r^{2} / 4 \pi \varepsilon_{0} r^{2}=Q / \varepsilon_{0} \quad \text { Radius cancels }
$$

The closed (Gaussian) surface intercepts all the field lines leaving \mathbf{Q}

Use superposition to calculate net electric field at each point due to a group of individual charges

Example: for point charges at $\underline{\mathrm{r}}_{1}, \underline{\mathrm{r}}_{2} \ldots$.

$$
\vec{F}_{\text {net }}=\vec{F}_{1}+\vec{F}_{2}+\ldots+\vec{F}_{n}
$$

$$
\vec{E}_{\text {net }}=\frac{\vec{F}_{\text {tot }}}{q_{0}}=\frac{\vec{F}_{1}}{q_{0}}+\frac{\vec{F}_{2}}{q_{0}}+\ldots+\frac{\vec{F}_{n}}{q_{0}}
$$

$$
=\overrightarrow{\mathbf{E}}_{1}+\overrightarrow{\mathrm{E}}_{2}+\ldots+\overrightarrow{\mathrm{E}}_{\mathrm{n}}
$$

$$
\overrightarrow{\mathrm{E}}_{\text {netati }}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{\mathrm{j}} \frac{\mathrm{q}_{\mathrm{i}} \hat{\mathrm{r}}_{\mathrm{ij}}^{2}}{\mathrm{r}_{\mathrm{ij}}}
$$

Do the sum above for every test point \mathbf{i}

Visualization: Electric field lines (Lines of force)

- Map direction of an electric field line by moving a positive test charge around.
- The tangent to a field line at a point shows the field direction there.
- The density of lines crossing a unit area perpendicular to the lines measures the strength of the field. Where lines are dense the field is strong.
- Lines begin on positive charges (or infinity and end on negative charges (or infinity).

- Field lines cannot cross other field lines

DETAIL NEAR A POINT CHARGE

NEAR A LARGE, UNIFORM SHEET OF + CHARGE

- No conductor - just an infinitely large charge sheet
- E approximately constant in the "near field" region (d <<L)

The field has uniform intensity \& direction everywhere except on sheet

TWO EQUAL + CHARGES (REPEL)
EQUAL + AND - CHARGES ATTRACT

Field lines for a spherical shell
or solid sphere of charge

Shell Theorem Conclusions
Electric field lines

(b)

Outside point:

Same field as point charge
Inside spherical distribution at distance r from center:

- $E=0$ for hollow shell;
- $E=k Q_{\text {inside }} / r^{2}$ for solid sphere

Example: Find $\mathrm{E}_{\text {net }}$ at a point on the axis of a dipole

- Use superposition
- Symmetry $\rightarrow \mathrm{E}_{\text {net }}$ parallel to z-axis

$$
\mathbf{r}^{+} \equiv \mathbf{z - d} / 2 \quad \text { and } \quad r^{-} \equiv \mathrm{z}+\mathrm{d} / 2
$$

$$
\mathrm{E}_{\mathrm{at} \mathrm{O}}=\mathrm{E}^{+}-\mathrm{E}^{-}=\frac{\mathbf{k q}}{\mathbf{r}_{+}^{2}}-\frac{\mathbf{k q}}{\mathbf{r}_{-}^{2}}
$$

- Limitation: $z>d / 2$ or $z<-d / 2$

$$
E_{a t o}=k q\left[\frac{1}{(z-d / 2)^{2}}-\frac{1}{(z+d / 2)^{2}}\right]
$$

$$
E_{a t} O=2 k q d\left[\frac{z}{\left(z^{2}-d^{2} / 4\right)^{2}}\right]
$$

Exact

For $z \gg d$: point " O " is "far" from center of dipole

$$
[] \approx \frac{1}{z^{3}} \text { since } \frac{d}{z} \ll 1
$$

$$
\therefore \mathrm{E}_{\text {at } O} \approx+\frac{\mathrm{qd}}{2 \pi \varepsilon_{0}} \frac{1}{\mathrm{z}^{3}}=+\frac{\mathrm{p}}{2 \pi \varepsilon_{0}} \frac{1}{\mathrm{z}^{3}}
$$

Exercise: Do these formulas describe E at the point midway between the charges Ans: $\quad E=-4 p / 2 \pi \varepsilon_{0} d^{3}$

- Fields cancel as $d \rightarrow 0$ so $E \rightarrow 0$
- E falls off as $1 / z^{3}$ not $1 / z^{2}$
- E is negative when z is negative
- Does "far field" E look like point charge?

Electric Field

3-2: Put the magnitudes of the electric field values at points A, B, and C shown in the figure in decreasing order.
A) $E_{C}>E_{B}>E_{A}$
B) $E_{B}>E_{C}>E_{A}$
C) $E_{A}>E_{C}>E_{B}$
D) $E_{B}>E_{A}>E_{C}$
E) $E_{A}>E_{B}>E_{C}$

Copyright R. Janow - Fall 2016

A Dipole in a Uniform EXTERNAL Electric Field

 Feels torque - Stores potential energy (See Sec 21.7)

Torque $=$ Force \times moment arm

$$
\begin{aligned}
& =-2 q E \times(d / 2) \sin (\theta) \\
& =-p E \sin (\theta)
\end{aligned}
$$

(CW, into paper as shown)

Potential Energy U = -W

ASSSUME RIGID DIPOLE

- |torquel $=0$ at $\theta=0$ or $\theta=\pi$
- \mid torquel $=\mathrm{pE}$ at $\theta=+/-\pi / 2$
- RESTORING TORQUE: $\tau(-\theta)=\tau(+\theta)$
$\mathrm{U}=-\int \tau \mathrm{d} \theta=+\mathrm{pE} \int \sin (\theta) \mathrm{d} \theta$
$=-\mathrm{pE} \cos (\theta)$

$$
\mathrm{U}_{\mathrm{E}}=-\overrightarrow{\mathbf{p}} \cdot \overrightarrow{\mathrm{E}}
$$

- $U=0$ for $\theta=+/-\pi / 2$
- $U=-p E$ for $\theta=0 \quad$ minimum
- $U=+p E$ for $\theta=\pi \quad$ maximum

3-3: In the sketch, a dipole is free to rotate in a uniform external electric field. Which configuration has the smallest potential energy?

3-4: Which configuration has the largest potential energy?

Method for finding the electric field at point P -- given a known continuous charge distribution

This process is jus \dagger superposition

$$
\vec{E}_{\mathrm{P}}=\frac{1}{4 \pi \varepsilon_{0}} \lim _{\Delta q \rightarrow 0} \sum_{\mathrm{i}} \frac{\Delta \mathrm{q}_{\mathrm{i}}}{\hat{r}_{\mathrm{i}}^{2}} \hat{r}_{\mathrm{i}} \Rightarrow \frac{1}{4 \pi \varepsilon_{0}} \int \frac{\mathrm{dq}}{\mathrm{r}^{2}} \hat{\mathrm{r}}
$$

1. Find an expression for dq, the "point charge" within a differentially "small" chunk of the distribution

$$
\mathbf{d q}=\left\{\begin{array}{l}
\lambda d \mathrm{for} \text { a linear distribution } \\
\sigma \mathrm{dA} \text { for a surface distribution } \\
\rho \mathrm{dV} \text { for a volume distribution }
\end{array}\right\}
$$

2. Represent field contributions at P due to a point charge dq located anyhwere in the distribution. Use symmetry where possible.

$$
\Delta \overrightarrow{\mathrm{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\Delta \mathrm{q}}{\mathrm{r}^{2}} \hat{r} \Rightarrow \mathrm{~d} \overrightarrow{\mathrm{E}}=\frac{\mathrm{dq}}{4 \pi \varepsilon_{0} r^{2}} \hat{r}
$$

3. Add up (integrate) the contributions dE over the whole distribution, varying the displacement and direction as needed.
Use symmetry where possible.

$$
\overrightarrow{\mathrm{E}}_{\mathrm{P}}=\int_{\text {dist }} \mathrm{d} \overrightarrow{\mathrm{E}} \quad \text { (line, surface, or volume integral) }
$$

Example: Find electric field on the axis of a charged rod

- Rod has length L, uniform positive charge per unit length $\boldsymbol{\lambda}$, total charge \mathbf{Q}. $\lambda=\mathbf{Q} / \mathbf{L}$.
- Calculate electric field at point P on the axis of the rod a distance a from one end. Field points along x-axis.

$$
\begin{aligned}
& \mathrm{dq}=\lambda d x \\
& \mathrm{dE}=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{\mathrm{x}^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{\mathrm{x}^{2}}
\end{aligned}
$$

- Add up contributions to the field from all locations of dq along the $\operatorname{rod}(x \in[a, L+a])$.
$E=\int_{a}^{L+a} \frac{\lambda}{4 \pi \varepsilon_{0}} \frac{d x}{x^{2}}=\frac{\lambda}{4 \pi \varepsilon_{0}} \int_{a}^{L+a} \frac{d x}{x^{2}}=\frac{\lambda}{4 \pi \varepsilon_{0}}\left[-\frac{1}{x}\right]_{a}^{L+a}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{L}\left(\frac{1}{a}-\frac{1}{L+a}\right)$
- Interpret Limiting cases:

$$
\therefore E=\frac{Q}{4 \pi \varepsilon_{0} a(L+a)}
$$

- L => 0 rod becomes point charge
- $L \ll a$ same, $L / a \ll 1$
- $L \gg a \quad a / L \ll 1$.

Electric field at center of an ARC of charge

- Uniform linear charge density $\lambda=$ Q/L $d q=\lambda d s=\lambda R d \theta$
- P on symmetry axis at center of arc
\rightarrow Net E is along y axis \rightarrow need E_{y} only

$$
d \vec{E}_{P}=\frac{k d q}{R^{2}} \hat{r} \rightarrow d E_{P, y}=-\frac{k d q \cos (\theta)}{R^{2}} \hat{j}
$$

- Angle θ is between $-\theta_{0}$ and $+\theta_{0}$
- Integrate: $\quad \vec{E}_{P, y}=\frac{-1}{4 \pi \varepsilon_{0}} \hat{j} \frac{\lambda}{R^{2}} R \int_{-\theta_{0}}^{+\theta_{0}} \cos (\theta) d \theta=-\left.\frac{\lambda}{4 \pi \varepsilon_{0}} \hat{j} \frac{1}{R} \sin (\theta)\right|_{-\theta_{0}} ^{+\theta_{0}}$

$$
\text { note : } \int \cos (\theta) \mathrm{d} \theta=\sin (\theta) \text { and } \sin (-\theta)=-\sin (\theta)
$$

$$
\therefore \vec{E}_{P, y}=-2 k \frac{\lambda}{R} \sin \left(\theta_{0}\right) \hat{j}
$$

In the plane of the arc

- For a semi-circle, $\theta_{0}=\pi / 2$

$$
\vec{E}_{P, y}=-2 k \frac{\lambda}{R} \hat{j}
$$

- For a full circle, $\theta_{0}=\pi$

$$
\vec{E}_{P, y}=0
$$

Electric field due to a straight LI NE of charge Point P on symmetry axis, a distance y off the line

SEE Y\&F Example 21.10

- uniform linear charge density: $\lambda=\mathrm{Q} / \mathrm{L}$
- point " P " is at y on symmetry axis
- by symmetry, total E is along y-axis x-components of dE pairs cancel
- solve for line segment, then let $y \ll L$

$$
d \vec{E}_{P}=\frac{k d q}{r^{2}} \hat{r} \rightarrow d E_{P, y}=-\frac{k d q \cos (\theta)}{r^{2}} \hat{j}
$$

- "1 + $\tan ^{2}(\theta)$ " cancels in numerator and denominator

$$
d \vec{E}_{y, P}=-\frac{k \lambda \cos (\theta) d \theta}{y} \hat{\mathbf{j}}
$$

- Integrate from $-\theta_{0}$ to $+\theta_{0}$
$x=y \tan (\theta)$
$r^{2}=x^{2}+y^{2}$
$r^{2}=y^{2}\left[1+\tan ^{2}(\theta)\right]$
Find $d x$ in terms of θ :
$\frac{d x}{d \theta}=y \frac{d[\tan (\theta)]}{d \theta}=y \frac{d}{d \theta} \frac{\sin (\theta)}{\cos (\theta)}$
$=y\left[1+\tan ^{2}(\theta)\right]$
$d x=y\left[1+\tan ^{2}(\theta)\right] d \theta$
$d q \equiv \lambda d x=\lambda y\left[1+\tan ^{2}(\theta)\right] d \theta$

$$
\vec{E}_{y, P}=-\frac{k \lambda}{y} \hat{j} \int_{-\theta_{0}}^{+\theta_{0}} \cos (\theta) d \theta=-\left.\frac{k \lambda}{y} \hat{j} \sin (\theta)\right|_{-\theta_{0}} ^{+\theta_{0}}
$$

$$
\stackrel{\rightharpoonup}{\mathrm{E}}_{\mathrm{P}}=-\frac{2 \mathrm{k} \lambda}{\mathrm{y}} \hat{\mathrm{j}} \sin \left(\theta_{0}\right)
$$

Finite length wire

- For $y \ll L$ (wire looks infinite) $\theta_{0} \rightarrow \pi / 2$

$$
\vec{E}_{\mathbf{P}}=-\frac{2 k \lambda}{y} \hat{\mathbf{j}} \quad \begin{aligned}
& \text { Falls off as } 1 / y
\end{aligned}
$$

Electric field due to a RI NG of charge at point P on the symmetry (z) axis

SEE Y\&F Example

 21.9- Uniform linear charge density along circumference: $\lambda=Q / 2 \pi R$
- $\mathbf{d q}=\lambda \mathbf{d s}=$ charge on arc segment of length $\mathbf{d s}=\mathrm{Rd} \phi$
- P on symmetry axis \rightarrow xy components of E cancel
- Net E field is along z only, normal to plane of ring

$$
\begin{aligned}
d \vec{E}_{P} & =\frac{k d q}{r^{2}} \hat{r} \rightarrow d E_{z, P}=\frac{k d q \cos (\theta)}{r^{2}} \hat{k} \\
d q \equiv \lambda d s & =\lambda R d \phi \quad \cos (\theta)=z / r \quad r^{2}=R^{2}+z^{2}
\end{aligned}
$$

$$
\mathrm{d} \overrightarrow{\mathrm{E}}_{\mathrm{P}, \mathrm{z}}=\frac{\mathrm{k} \lambda \operatorname{Rzd} \phi}{\mathrm{r}^{3}} \hat{\mathbf{k}}
$$

- Integrate on azimuthal angle ϕ from 0 to 2π

$$
\begin{aligned}
& \overrightarrow{\mathrm{E}}_{\mathrm{P}, \mathrm{z}}=\frac{\mathrm{k} \lambda \mathrm{Rz}}{\left[\mathrm{R}^{2}+\mathrm{z}^{2}\right]^{3 / 2}} \overrightarrow{\mathbf{k}} \int_{0}^{2 \pi} \mathrm{~d} \phi \leftarrow \text { integral }=2 \pi \\
& 2 \pi R \lambda \equiv \mathrm{Q} \text { total charge on disk } \\
& \overrightarrow{\mathrm{E}}_{\mathrm{P}, \mathrm{z}}=\frac{\mathrm{kQz}}{\left[\mathrm{R}^{2}+\mathrm{z}^{2}\right]^{3 / 2}} \hat{\mathbf{k}} \quad \begin{array}{l}
\mathrm{E}_{\mathrm{z}} \rightarrow 0 \text { as } z \rightarrow 0 \\
\text { (see result for arc) }
\end{array}
\end{aligned}
$$

- Limit: For P "far away" use z >> R

$$
E_{P, z} \rightarrow \frac{k Q}{z^{2}} \quad \begin{aligned}
& \text { Ring looks like a point charge } \\
& \text { if point } P \text { is very far away! }
\end{aligned}
$$

Exercise: Where is E_{z} a maximum? Set $d E_{z} / d z=0$

$$
\text { Ans: } z=R / \operatorname{sqrt}(2)
$$

Electric field due to a DI SK of charge for point P on z (symmetry) axis

- Uniform surface charge density on disc in $x-y$ plane

$$
\sigma=\mathrm{Q} / \pi \mathrm{R}^{2}
$$

- Disc is a set of rings, each of them dr wide in radius
- P on symmetry axis \rightarrow net E field only along z
- dq = charge on arc segment rd ϕ with radial extent dr

$$
\begin{gathered}
d A=r d r d \phi \quad d q \equiv \sigma d A=\sigma r d r d \phi \\
\cos (\theta)=z / s \quad s^{2}=r^{2}+z^{2}
\end{gathered}
$$

$$
d \vec{E}_{z}=\frac{k d q}{s^{2}} \cos (\theta) \hat{k}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\sigma z r d r d \phi}{\left[r^{2}+z^{2}\right]^{3 / 2}} \hat{k}
$$

- Integrate twice: first on azimuthal angle ϕ from 0 to 2π which yields a factor of 2π then on ring radius r from 0 to R

$$
\begin{array}{ll}
\overrightarrow{\mathrm{E}}_{\mathrm{z}}=\frac{2 \pi \sigma}{4 \pi \varepsilon_{0}} \mathrm{z} \int_{0}^{\mathrm{R}} \frac{\mathrm{rdr}}{\left[\mathrm{r}^{2}+\mathrm{z}^{2}\right]^{3 / 2}} \overrightarrow{\mathrm{k}} \\
\begin{array}{l}
\text { Note Anti- } \\
\text { derivative }
\end{array} \frac{\mathrm{r}}{\left[\mathrm{r}^{2}+\mathrm{z}^{2}\right]^{3 / 2}}=\frac{\mathrm{d}}{\mathrm{dr}}\left\{\frac{-1}{\left[\mathrm{r}^{2}+\mathrm{z}^{2}\right]^{1 / 2}}\right\}
\end{array} \quad \begin{array}{|l}
\mathrm{E} \\
\text { disk }=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{\mathrm{z}}{\left.\left[\mathrm{z}^{2}+\mathrm{R}^{2}\right]^{1 / 2}\right]} \hat{\mathrm{k}}\right.
\end{array}
$$

Electric field due to a DISK of charge, continued

Exact Solution:

$$
\overrightarrow{\mathrm{E}}_{\text {disk }}=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{\mathrm{Z}}{\left[\mathrm{z}^{2}+\mathrm{R}^{2}\right]^{1 / 2}}\right] \hat{\mathrm{k}}
$$

Near-Field: $\mathbf{z \ll} \mathbf{R}: \mathbf{P}$ is close to the disk. Disk looks like infinite sheet.
for $z / R \ll 1: \quad \vec{E}_{\text {disk }}=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{z}{R\left[1+(z / R)^{2}\right]^{1 / 2}}\right] \hat{k} \approx \frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{z}{R}\right] \hat{k} \approx \frac{\sigma}{2 \varepsilon_{0}}$

$$
\vec{E}_{\text {disk }} \approx \frac{\sigma}{2 \varepsilon_{0}} \hat{k}
$$

"near field" is constant - disk approximates an infinite sheet of charge

Far-Field: $\mathbf{R} \ll \mathbf{z}: \mathbf{P}$ is far from to the disk. Disk looks like a point charge.
for $R / z \ll 1: \quad \vec{E}_{\text {disk }}=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{z}{z\left[1+(R / z)^{2}\right]^{1 / 2}}\right] \hat{k} \quad$ Recall $\sigma=Q / \pi R^{2}$
Series Expansion
$\begin{aligned} & (1+s)^{n}=1+n s / 1!+n(n-1) s^{2} I 2!+\ldots \quad \text { approximate }: \frac{1}{\left[1+(R / z)^{2}\right]^{1 / 2}} \\ & \text { converges quickly for } s \ll 1\end{aligned} \quad \square-\frac{1}{2}\left(\frac{R}{z}\right)^{2}+\ldots$.
$\therefore \overrightarrow{\mathbf{E}}_{\text {disk }} \approx \frac{\sigma}{2 \varepsilon_{0}}\left[1-1+\frac{1}{2} \frac{\mathbf{R}^{2}}{\mathrm{z}^{2}}\right] \hat{\mathbf{k}}=\frac{\sigma}{4 \varepsilon_{0}} \frac{\mathbf{R}^{2}}{\mathrm{z}^{2}} \hat{\mathbf{k}}$

$$
\vec{E}_{\text {disk }} \approx \frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{z^{2}} \hat{k}
$$

Point charge formula

Infinite (i.e."large") uniformly charged sheet

Non-conductor, fixed surface charge density σ
Infinite sheet \rightarrow d<<L \rightarrow "near field" \rightarrow uniform field
$E=\frac{\sigma}{2 \varepsilon_{0}}$ for infinite, non - conducting charged sheet

(b)

(c)

Method: solve non-conducting disc of charge for point on z-axis then approximate $z \ll R$ R.Janow - Fall 2016

Motion of a Charged Particle in a Uniform Electric Field

$\vec{F}=\mathbf{q} \vec{E}$

$$
\overrightarrow{\boldsymbol{F}}_{\text {net }}=\mathbf{m} \overrightarrow{\mathbf{a}}
$$

- Stationary charges produce E field at location of charge q
-Acceleration a is parallel or anti-parallel to E.
- Acceleration is \mathbf{F} / \mathbf{m} not $\mathbf{F} / \mathbf{q}=\underline{E}$
-Acceleration is the same everywhere in uniform field

Example: Early CRT tube with electron gun and electrostatic deflector

ELECTROSTATIC
ACCELERATOR
PLATES
(electron gun controls
heated cathode (- pole)
boils off" electrons from
the metal (thermionic
emission)

Motion of a Charged Particle in a Uniform Electric Field

$$
\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathrm{E}}
$$

$$
\overrightarrow{\boldsymbol{F}}_{\text {net }}=\mathbf{m a}
$$

Kinematics: ballistic trajectory
Δy is the DEFLECTION of the electron as it crosses the field Acceleration has only a constant y component. v_{x} is constant, $a_{x}=0$

$$
a_{y}=-\frac{e E}{m}
$$

v_{x} yields time of flight Δt
onmennele eltrons are negative so acceleration \underline{a} and electric force F are in the direction opposite the electric field \underline{E}.

Use to find e / m

$$
v_{x}=\frac{L}{\Delta t}
$$

Measure deflection, find Δt via kinematics. Evaluate $v_{y} \& v_{x}$

$$
\begin{aligned}
& \Delta y=\frac{1}{2} a_{y} \Delta t^{2}=-\frac{1}{2} \frac{e E}{m} \Delta t^{2} \\
& v_{y}=a_{y} \Delta t \quad v=\left(v_{x}^{2}+v_{y}^{2}\right)^{1 / 2}
\end{aligned}
$$

