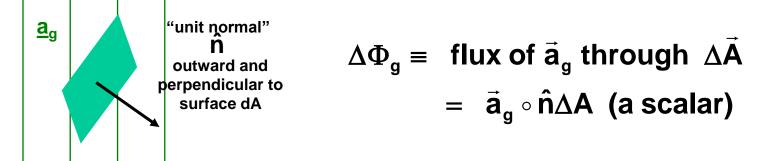
Physics 121 - Electricity and Magnetism Lecture 04 - Gauss' Law Y&F Chapter 22 Sec. 1 - 5

- Flux Definition (gravitational example)
- Gaussian Surfaces
- Flux Examples
- Flux of an Electric Field
- Gauss' Law
- Gauss' Law Near a Dipole
- A Charged, Isolated Conductor
- Spherical Symmetry: Conducting Shell with Charge Inside
- Cylindrical Symmetry: Infinite Line of Charge
- Field near an infinite Non-Conducting Sheet of Charge
- Field near an infinite Conducting Sheet of Charge
- Conducting and Non-conducting Plate Examples
- Proof of Shell Theorem using Gauss Law
- Examples
- Summary

1

Flux (symbol F) is basically a vector field magnitude x area Applies to flow of mass or fluid volume, gravitational, electric, magnetic field

Define: dF_g is differential flux of gravitational field <u>a_g</u> crossing vector area d<u>A</u>



Flux through a closed or open surface S:

calculate "surface integral" of field over S

$$\Phi_{\rm S} \equiv \int_{\rm S} d\Phi = \int_{\rm S} \vec{a}_{\rm g} \circ \hat{\rm n} d{\rm A}$$

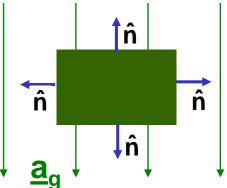
Evaluate integrand at all points on surface S

EXAMPLE : GRAVITATIONAL FLUX THROUGH A CLOSED IMAGINARY BOX (UNIFORM ACCELERATION FIELD)

- No mass inside the box
- ΔF from each side = 0 since <u>a.n</u> = 0, ΔF from ends cancels

Example could also apply to fluid flow

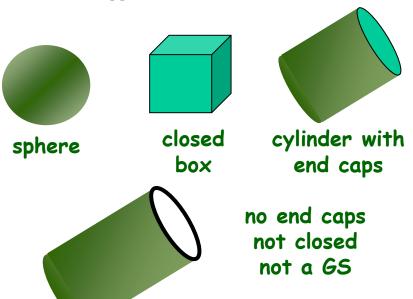
What if a mass (flux source) is in the box? Can field be uniform? Can net flux be zero.



Gauss' Law (Carl Friedrich Gauss (1777-1855)) USES

Gaussian Surfaces: Closed 3D surfaces

- Field lines cross a closed surface:
 - Once (or an odd number of times) for charges that are inside
 - Twice (or an even number of times) for charges that are outside
- Choose surface to match the field's symmetry where possible



The <u>flux</u> of electric field crossing a <u>closed surface</u> equals the <u>net</u> <u>charge</u> inside the surface (times a constant).

Simple example: charge at center of a spherical "Gaussian surface"

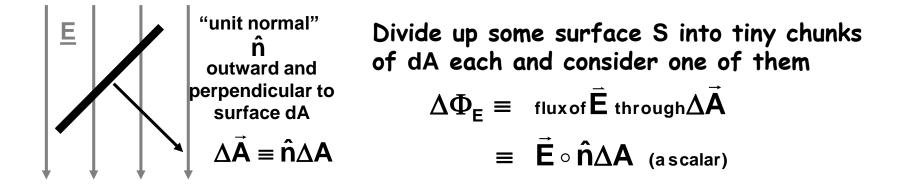
Flux =
$$\Phi$$
 = Field x Surface Area = E x S = $\frac{Q}{4\pi\epsilon_0 R^2}$ x $4\pi R^2$ = Q $/\epsilon_0$

Flux is a SCALAR, Units: Nm²/C.

Does this apply for non-point charges away from the center of the sphere? Copyright R. Janow – Fall 2013

Electric Flux: Integrate electric field over a surface

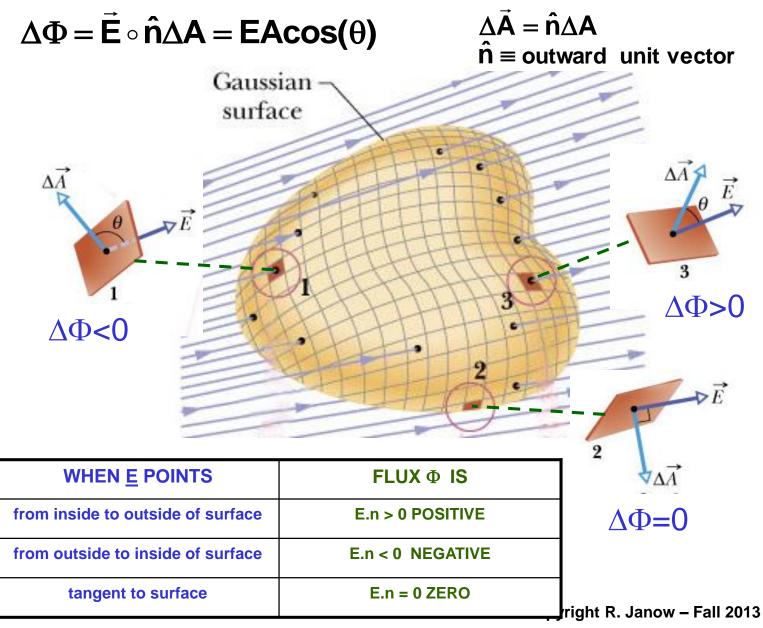
Definition: differential flux of <u>E</u> crossing d<u>A</u> (area vector)



Flux through a closed or open surface S: Integrate on S $\Phi_{\mathsf{E}} \equiv \oint_{\mathsf{S}} \mathsf{d}\Phi_{\mathsf{E}} = \oint_{\mathsf{S}} \vec{\mathsf{E}} \circ \hat{\mathsf{n}} \mathsf{d}\mathsf{A}$ To do this: evaluate integrand at all points on surface S

Gauss' Law: The flux through a closed surface S depends only on the net enclosed charge, not on the details of S or anything else.

$\Delta \Phi$ depends on the angle between the field and chunks of area

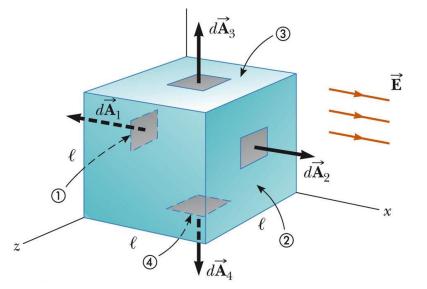


Evaluating flux through closed or open surfaces Special case: field is constant across pieces of the surface

 $\Delta \Phi_{\rm E} \equiv \vec{\rm E} \circ \hat{\rm n} \Delta A \text{ (a scalar)}$

SUM ΔF FROM SMALL CHUNKS OF SURFACE ΔA Units of Φ are : Nm^2/C $\Phi_E \equiv \sum_{\text{small areas}} \Delta \Phi_E = \sum_{\text{small areas}} \vec{E} \circ \hat{n} \Delta A$

EXAMPLE: Flux through a cube Assume:



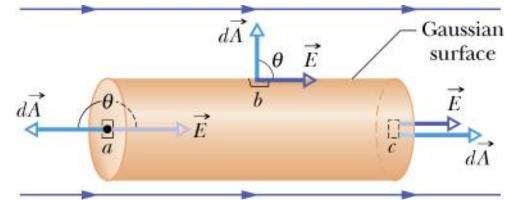
- Uniform E field everywhere
- Directed along x-axis
- Cube faces normal to axes
- Each side has area I²
- Field lines cut through two surface areas and are tangent to the other four surface areas
- For side 1, $\Phi = -E\ell^2$
- For side 2, $\Phi = +E\ell^2$
- For the other four sides, $\Phi = \mathbf{0}$
- Therefore, $\Phi_{total} = 0$

$$\therefore \Phi_{\mathsf{E}} = \sum_{i=1,6} \Delta \Phi_{\mathbf{j}} = 0$$

- What if the cube is oriented obliquely??
- How would flux differ if net charge is inside??

Flux of a uniform electric field through a cylinder

- Closed Gaussian surface
- Uniform <u>E</u> means zero enclosed charge
- Calculate flux directly
- Symmetry axis along $\underline{\underline{E}}$
- Break into areas a, b, c



$$\Phi_{tot} = \int_{a,b,c} \vec{E} \circ d\vec{A} = \Phi_a + \Phi_b + \Phi_c$$
Cap a: $\vec{E} \circ \hat{n} = -E$, $\cos(\theta) = -1$ $\therefore \Phi_a = -E \int_{capa} dA = -EA_{cap}$
Cap c: $\vec{E} \circ \hat{n} = +E$, $\cos(\theta) = +1$ $\therefore \Phi_c = +E \int_{capc} dA = +EA_{cap}$

Area b: $\vec{E} \circ \hat{n} = 0$, $\vec{E} \perp \vec{A}$ everywhere on \vec{b} $\therefore \Phi_{b} = 0$

 $\therefore \Phi_{tot} = \mathbf{0}$

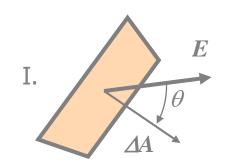
What if E is not parallel to cylinder axis:
Geometry is more complicated...but...
Q_{inside} = 0 so Φ = 0 still !!

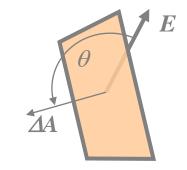
Flux of an Electric Field

4-1: Which of the following figures correctly shows a positive electric flux out of a surface element?

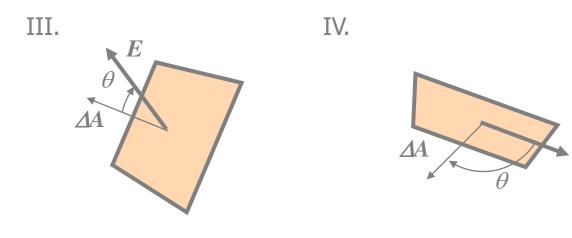
A.I. B.II. C.III. D.IV.

E.I and III.





E



II.

Statement of Gauss' Law

Let Q_{enc} be the NET charge enclosed by a (closed) Gaussian surface S. The net flux Φ through the surface is Q_{enc}/ϵ_0

$$\Phi = \oint_{\text{Surface}} \vec{E} \circ d\vec{A} = \frac{Q_{enc}}{\epsilon_0} \qquad Q_{enc} = \epsilon_0 \Phi$$

- Does not depend on the shape of the surface.
- Charge outside the surface S can be ignored.
- Surface integral yields 0 if $\underline{E} = 0$ everywhere on surface

Example: Derive Coulomb's Law from Gauss' Law Assume a point charge at center of a spherical Gaussian surface

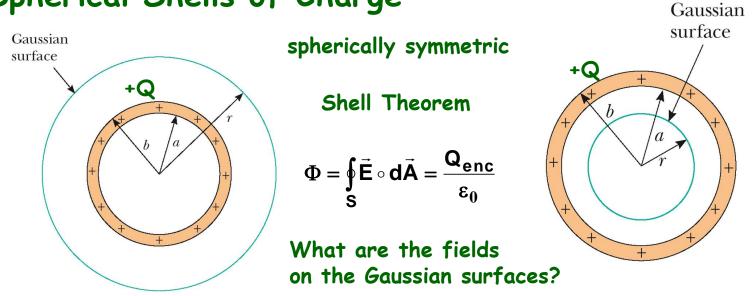
$$\vec{E} \cdot d\vec{A} = E \, dA \qquad \vec{E} \circ d\vec{A} \text{ is alw aysjust } EdA \text{ because } \vec{E} \text{ and } \hat{n} \text{ are alw ays radial}$$

$$\Phi = E \oint_{S} dA = E \times 4\pi r^{2} = \frac{Q_{enc}}{\varepsilon_{0}}$$

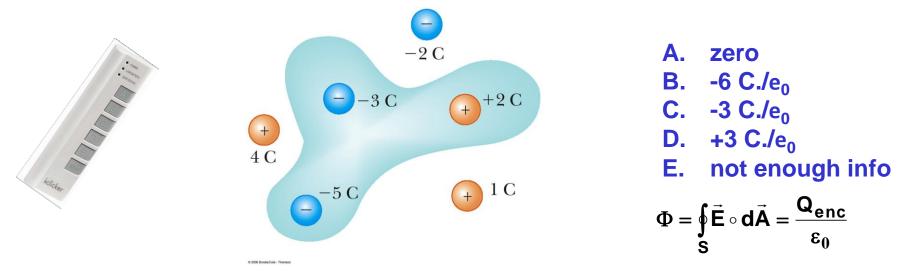
$$(\therefore E(r)) = \frac{Q_{enc}}{4\pi\varepsilon_{0}r^{2}} \text{ Coulomb's Law}$$

$$(\Rightarrow E(r)) = \frac{Q_{enc}}{4\pi\varepsilon_{0}r^{2}} \text{ Coulomb's Law}$$

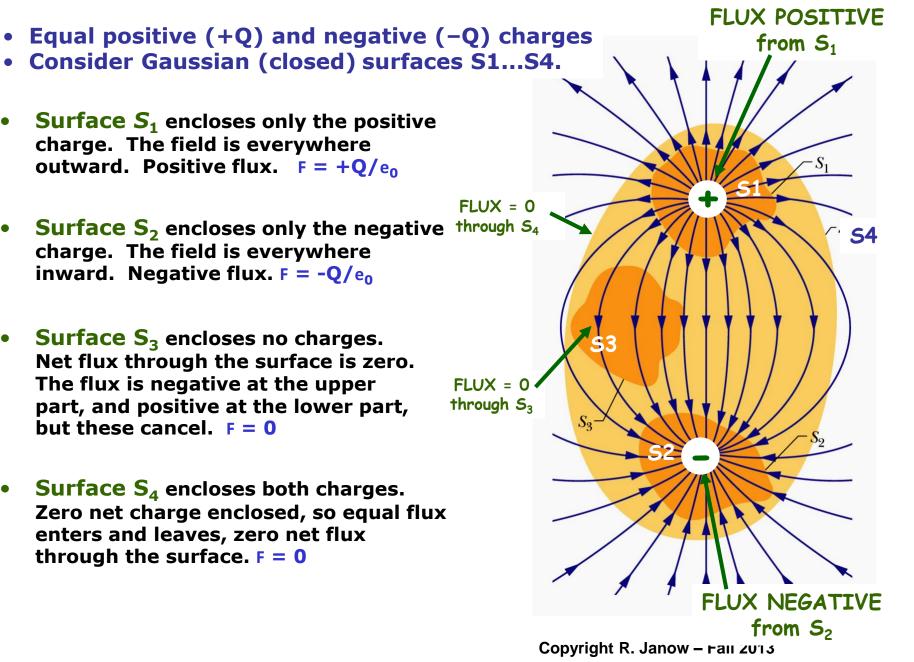
Spherical Shells of Charge



4-2: What is the flux through the Gaussian surface below?

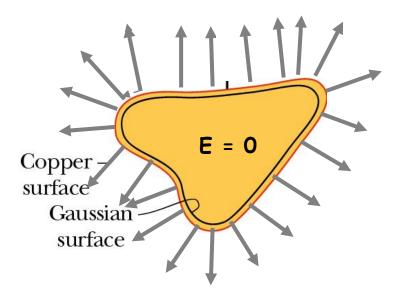


Flux through surfaces near a dipole



Where does net charge reside on an isolated conductor?

- Place net charge Q initially in the interior of a conductor
- Charges are free to move, but can not leak off $\vec{F} = Q\vec{E}$
- At equilibrium E = 0 everywhere inside a conductor
- Charge flows until E = 0 at every interior point



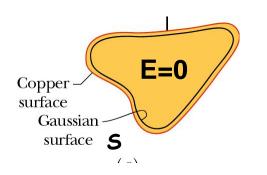
- Choose Gaussian surface as shown: E = 0 everywhere on it
- Use Gauss' Law!

$$\Phi = \oint_{\text{Surface}} \vec{E} \circ d\vec{A} = 0 = \frac{Q_{\text{enc}}}{\varepsilon_0} \implies Q_{\text{enc}} = 0$$

- The only place where un-screened charge can end up is on the outside surface of the conductor
- <u>E</u> at the surface is everywhere normal to it; if <u>E</u> had a component parallel to the surface, charges would move to screen it out.

Gauss's Law: net charge on an isolated conductor... $\Phi = \oint \vec{E} \circ d\vec{A} = \frac{Q_{enc}}{\varepsilon_0}$...moves to the outside surface

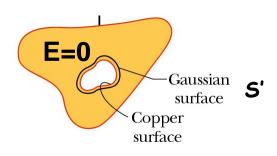
1: SOLID CONDUCTOR WITH EXCESS NET CHARGE ON IT



- Choose Gaussian surface S just inside the surface
- E=0 at every point in the metal, including on S
- $\Phi_{\rm S} = 0 = \frac{{\sf Q}_{\rm enc}}{\varepsilon_0} \quad \therefore \, {\sf Q}_{\rm enc}$ • Gauss' Law says:

All net charge on a conductor moves to the outer surface

2. HOLLOW CONDUCTOR WITH A NET CHARGE, NO CHARGE IN CAVITY



• Choose Gaussian surface S' just outside the cavity • E=0 everywhere within the metal, including S' • Gauss' Law says: $\Phi_{\mathbf{S}'} = 0 = \frac{\mathbf{enc}}{2} \therefore \mathbf{Q}_{enc}$ There is zero net charge on the inner surface: all net charge is on outer surface

Does the charge density have to be zero at each point on the inner surface? Copyright R. Janow – Fall 2013

Charge inside a conducting spherical shell

- Electrically neutral shell
- Arbitrary charge distribution +Q in cavity
- Choose Gaussian surface S <u>completely within</u> the conductor

$$\Phi_{\rm S} = \oint_{\rm S} \vec{\rm E} \circ {\rm d}\vec{\rm A} = \frac{{\rm q}_{\rm enc}}{{\rm \epsilon}_{\rm 0}}$$

- <u>E</u> = 0 everywhere on S, so $F_S = 0$ and $q_{enc} = 0$
- Negative charge Q_{inner} is induced on inner surface, distributed so that E = 0 in the metal, hence...

$$\mathbf{q}_{enc} = \mathbf{0} = +\mathbf{Q} + \mathbf{Q}_{inner}$$

• The shell is neutral, so +Q must appear on the outer surface

OUTSIDE:

- Choose another spherical Gaussian surface S' outside the shell
- Gauss Law:

Whatever the inside distribution may be, outside the shell it is shielded and the field looks like that of a point charge at the center For a spherical shell, +Q outside is uniform, o/w E inside could not = 0

-0

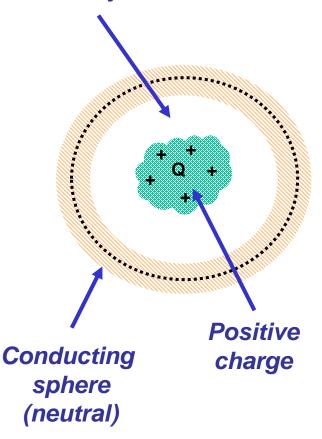
Gaussian

Surface

S

Conducting spherical shell with charge inside

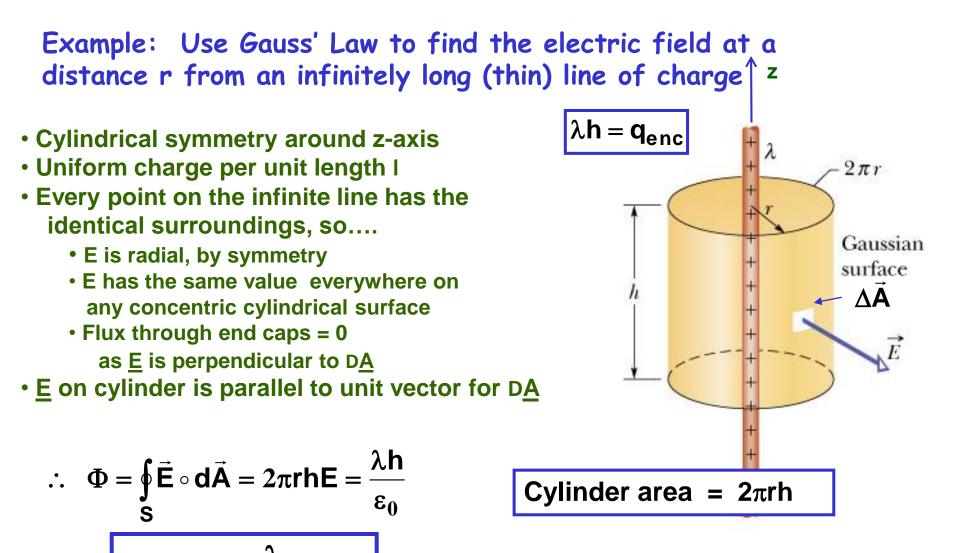
Spherical cavity



4-3: Place a charge inside a cavity in an isolated conductor. Which statement is true?

- A. E field is still zero in the cavity.
- B. E field is not zero in the cavity, but it is zero in the conductor.
- C. E field is zero outside the conducting sphere.
- D. E field is the same as if the conductor were not there (i.e. radial outward everywhere).
- E. E field is zero in the conductor, and negative (radially inward) outside the conducting sphere.

 $\Phi = \oint \vec{\mathsf{E}} \circ \mathsf{d}\vec{\mathsf{A}} = \frac{\mathsf{Q}_{enc}}{\varepsilon_0}$



E(r)

radiallyoutward

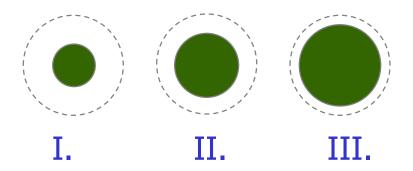
- No integration needed now due to Gauss Law
 - Good approximation for finite line of charge when r << L, far from the ends.

Field Lines and Conductors

4-4: The drawing shows three cylinders in cross-section, each with the same total charge. Each has the same size cylindrical gaussian surface (again shown in cross-section). Rank the three according to the electric field at the gaussian surface, greatest first.

A.I, II, III B.III, II, I C.All tie.

$$\Phi = \oint_{S} \vec{E} \circ d\vec{A} = \frac{Q_{enc}}{\varepsilon_0}$$



Use symmetry arguments where applicable

4-5: Outside a sphere of charge the electric field is just like that of a point charge of the same total charge, located at its center.

Outside of an infinitely long, uniformly charged conducting cylinder, which statement describes the electric field?

- A. Like that of a point charge at the center of the cylinder.
- B. Like a circular ring of charge at its center.
- C. Like an infinite line of charge along the cylinder axis.
- D. Cannot tell from the information given.
- E. The field equals zero

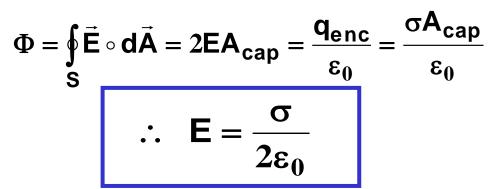
$$\Phi = \oint_{S} \vec{E} \circ d\vec{A} = \frac{Q_{enc}}{\varepsilon_0}$$

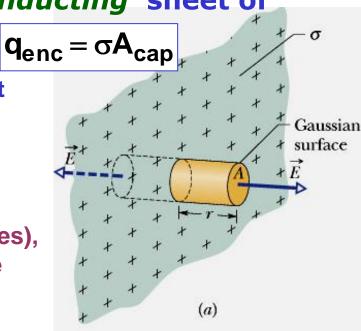
S

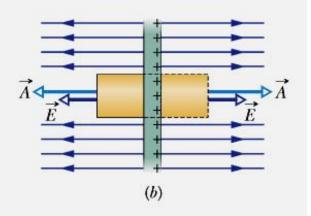
Electric field near an infinite *non-conducting* sheet of charge – using Gauss Law $\alpha = \alpha \Delta$

- Uniform positive charge per unit area s
- E has same value when chosen point moves parallel to the surface
- <u>E</u> points radially away from the sheet (both sides),
- <u>E</u> is perpendicular to cylindrical part of surface Flux through it = 0
- On <u>both</u> end caps <u>E</u> is parallel to <u>A</u>

so $F = + EA_{cap}$ on each







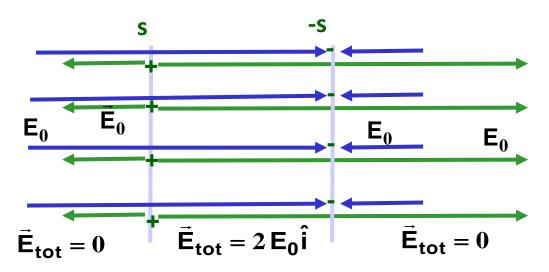
- Uniform field independent of distance from sheet
- $\boldsymbol{\cdot}$ Same as earlier result but no integration needed now
- Good approximation for finite sheet when r << L, far from edges.

Example: Fields near parallel nonconducting sheets - 1

- Bring two "large" nonconducting sheets of charge close to each other,
- Approximate as infinite sheets
- The charge cannot move, use superposition.
- There is no screening, as there would be in a conductor.
- Each sheet produces a uniform field of magnitude: $E_0 = -$

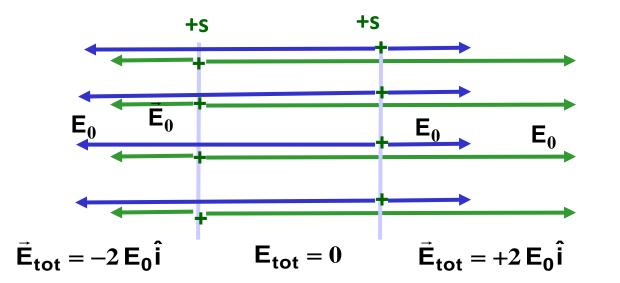
2

Oppositely Charged Plates, same |s|



- Left region: Field due to the positively charged sheet is canceled by the field due to the negatively charged sheet. E_{tot} is zero.
- Right region: Same argument. E_{tot} is zero.
- Between plates: Fields reinforce. E_{tot} and is twice E₀ and to the right.

Example: Fields near parallel nonconducting sheets - 2

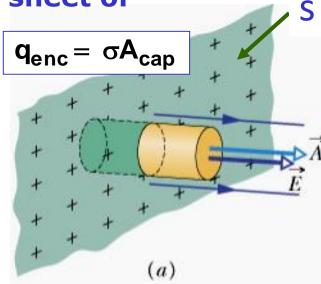


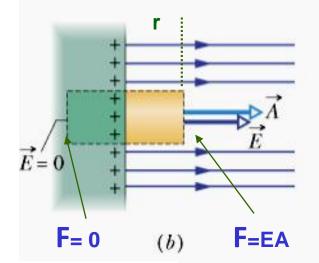
- Now, the fields reinforce to the left and to the right of both plates.
- Between plates, the fields cancel.
- Signs are reversed for a pair or negatively charged plates

Electric field near an *infinite conducting* sheet of charge – using Gauss' Law

- Uniform charge per unit area s on one face
- Use cylindrical or rectangular Gaussian surface
- End caps just outside and just inside (E = 0)
- E points radially away from sheet outside otherwise current flows (!!)
- Flux through the cylindrical tube = 0 <u>E</u> normal to surface
- On left cap (inside conductor) E = 0 so F = 0
- On right cap <u>E</u> is parallel to D<u>A</u> so $F = EA_{cap}$

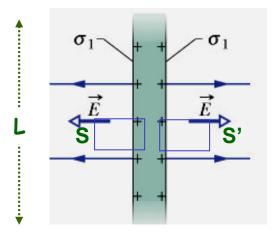
$$\Phi = \mathsf{EA}_{\mathsf{cap}} = \frac{\mathsf{q}_{\mathsf{enc}}}{\varepsilon_0} = \frac{\sigma \mathsf{A}_{\mathsf{cap}}}{\varepsilon_0}$$
$$\therefore \ \mathsf{E} = \frac{\sigma}{\varepsilon_0}$$



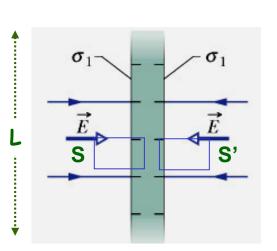


- Field is twice that for a non-conducting sheet with same s
- Same enclosed charge, same total flux now "squeezed" out the right hand cap, not both
- Otherwise like previous result: uniform, no r dependence, etc. 3

Charge on a finite sized conducting plate in isolation



- E = 0 inside the conductor
- Charge density s₁ is the same on both faces, o/w charges will move to make E = 0 inside
- Cylindrical Gaussian surfaces S, S'
- S \rightarrow charges distribute on surfaces



or

$$\mathsf{E} = \pm \frac{\sigma_1}{\varepsilon_0}$$

- Same field magnitude on opposite sides, opposite directions
- Same field by replacing each conductor by 2 charged non-conducting sheets alone:
 - cancellation inside conductor
 - reinforcement outside

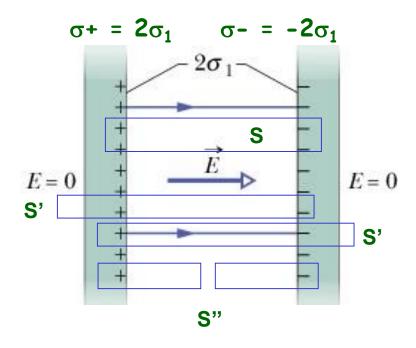
Electric field near oppositely charged *conducting* **plates (large, but not infinite)**

Initially: charge density $+/- S_1$ on both faces of each plate (neutral) Then bring plates close to each other.

Free charge moves to make E = 0 within the metal.

All surface charge density ends up on inner faces, zero on outer.

(valid for infinite sheet)



Parallel plate capacitor $s^{+/-} = +/- 2s_1$

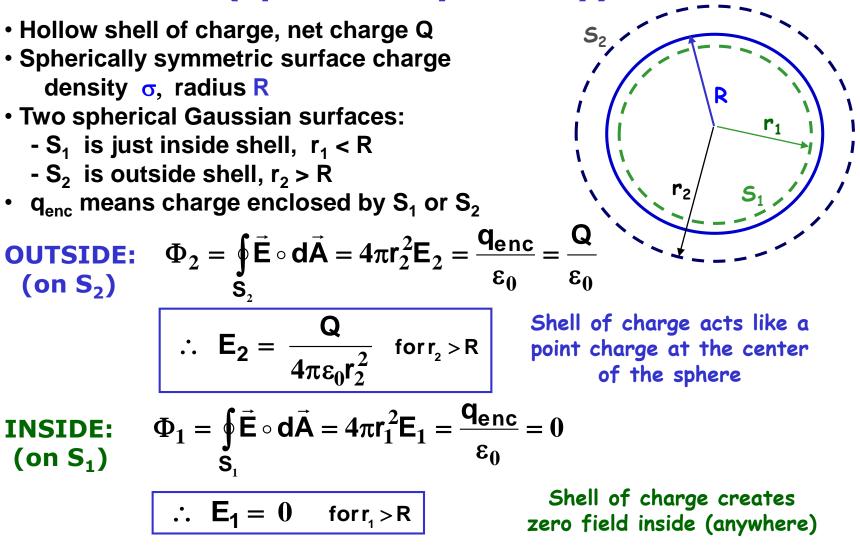
- Charge moves by induction to keep
 E = 0 inside each conductor
- Field between plates remains uniform
- Flux through Gaussian surface S = 0, so $\sigma^- = -\sigma^+$
- Using either S', $q_{enc} = 0$ so E = 0 outside
- So the charge density = 0 on the outer faces,
- All the net charge density must move to the inner surfaces

• Using either surface S":

$$\mathsf{E}_{\mathsf{inside}} = \frac{\sigma^{+/-}}{\varepsilon_0} = \pm \frac{2\sigma_1}{\varepsilon_0}$$

- This already counts effects of both plates
- Fields everywhere would be the same if charge distributions were there w/o the conductors.

Proof of the Shell Theorem using Gauss' Law (spherical symmetry)



At point r inside a spherically symmetric volume (radius R) of charge,

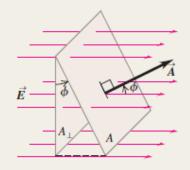
• only the shells of charge with radii <u>smaller</u> than r contribute as point charges

• shells with radius between r and R produce zero field inside.

CHAPTER 22 SUMMARY

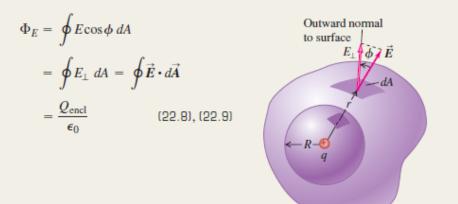
Electric flux: Electric flux is a measure of the "flow" of electric field through a surface. It is equal to the product of an area element and the perpendicular component of \vec{E} , integrated over a surface. (See Examples 22.1–22.3.)

$$\Phi_E = \int E \cos \phi \, dA$$
$$= \int E_{\perp} \, dA = \int \vec{E} \cdot d\vec{A} \quad (22.5)$$



Gauss's law: Gauss's law states that the total electric flux through a closed surface, which can be written as the surface integral of the component of \vec{E} normal to the surface, equals a constant times the total charge Q_{encl} enclosed by the surface. Gauss's law is logically equivalent to Coulomb's law, but its use greatly simplifies problems with a high degree of symmetry. (See Examples 22.4–22.10.)

When excess charge is placed on a conductor and is at rest, it resides entirely on the surface, and $\vec{E} = 0$ everywhere in the material of the conductor. (See Examples 22.11–22.13.)



Electric field of various symmetric charge distributions: The following table lists electric fields caused by several symmetric charge distributions. In the table, q, Q, λ , and σ refer to the *magnitudes* of the quantities.

Charge Distribution	Point in Electric Field	Electric Field Magnitude
Single point charge q	Distance <i>r</i> from <i>q</i>	$E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$
Charge q on surface of conducting sphere with radius R	Outside sphere, $r > R$	$E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$
	Inside sphere, $r < R$	E = 0
Infinite wire, charge per unit length λ	Distance r from wire	$E = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{r}$
Infinite conducting cylinder with radius <i>R</i> , charge per unit length λ	Outside cylinder, $r > R$	$E = \frac{1}{2\pi\epsilon_0} \frac{\lambda}{r}$
	Inside cylinder, $r < R$	E = 0
Solid insulating sphere with radius R , charge Q distributed uniformly throughout volume	Outside sphere, $r > R$	$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$
	Inside sphere, $r < R$	$E = \frac{1}{4\pi\epsilon_0} \frac{Qr}{R^3}$
Infinite sheet of charge with uniform charge per unit area σ	Any point	$E = \frac{\sigma}{2\epsilon_0}$
Two oppositely charged conducting plates with surface charge densities $+\sigma$ and $-\sigma$	Any point between plates	$E = \frac{\sigma}{\epsilon_0}$
Charged conductor	Just outside the conductor	$E = \frac{\sigma}{\epsilon_0}$