Electricity and Magnetism

Lecture 07 - Physics 121
Current, Resistance, DC Circuits: Y\&F Chapter 25 Sect. 1-5
Kirchhoff's Laws: Y\&F Chapter 26 Sect. 1

- Circuits and Currents
- Electric Current i
- Current Density J
- Drift Speed
- Resistance, Resistivity, Conductivity
- Ohm's Law
- Power in Electric Circuits
- Examples
- Kirchhoff's Rules applied to Circuits
- EMF's - "Pumping" Charges
- Work, Energy, and EMF
- Simple Single Loop and Multi-Loop Circuits
- Summary

Electric Current: Net charge crossing a surface per unit time

$$
i \equiv \frac{\mathbf{d q}}{\mathbf{d t}} \quad \text { or } \quad \mathbf{d q} \equiv \mathrm{i} d \mathbf{t} \quad \therefore \quad \mathbf{q}(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{i}\left(\mathrm{t}^{\prime}\right) \mathrm{dt} \mathbf{t}^{\prime}=\mathrm{i} \times \mathrm{t} \text { (if } \mathrm{i} \text { is constant) }
$$

Units: 1 Ampere $=1$ Coulomb per second Convention: flow is from + to - as if free charges are +
Charge / current is conserved - charge does not pile up or vanish

kirchhoff's . Junction Rule: Σ currents in $=\Sigma$ currents out at any junction Rules: (summary)
Current is the same across each cross-section of a wire

Current density J may vary
[J] = current/area

Energy - EMFs provide energy (electro-motive force)
in a circuit:

- Resistances dissipate energy as heat
- Capacitances store energy in E field Copyright R. Janow - Fall 2013
- Inductances store energy in 브 field

CURRENT CONSERVATION EXAMPLE:

Find the unknown current i

Name the junctions
Name the links by the junctions they connect

$$
\sum i_{i n}=\sum i_{\text {out }}
$$

Using Junction 1:
$\mathrm{i}_{1,2}=2 \mathrm{~A}+1 \mathrm{~A}=3 \mathrm{~A}$ into junction 1, out of junction 2 Using Junction 5:
$i_{5,2}=2 A+3 A=5 A \quad$ out of junction 5, into junction 2
Using Junction 2:
$i_{2,3}+i_{1,2}=i_{5,2}=2 \mathrm{~A}$ out of junction 2, into junction 3

Using Junction 3:

$i_{3,4}=4 A+2 A=6 A$ out of junction 3, into junction 4
Using Junction 4:
$i=6 A+2 A=8 A$ out of junction 4, to the right

Try this one yourself

7-1: What is the current in the wire section marked i ?

A. 1 A.
B. 2 A.
C. 5 A.
D. 7 A.
E. Cannot determine from information given.

$$
\sum \mathrm{i}_{\mathrm{in}}=\sum \mathrm{i}_{\mathrm{out}}
$$

Current density L: Current / Unit Area (Vector)

Same current crosses larger or smaller Surfaces, current density J varies

High current density in this region

For uniform density $\quad \mathbf{i}=\mathbf{J} \mathbf{A}$ or $\mathbf{J}=\mathrm{i} / \mathrm{A}$

$$
\mathbf{d i} \equiv \overrightarrow{\mathbf{J}} \circ \hat{\mathbf{n} d} \mathbf{A} \quad \mathbf{i}=\int_{\text {area }} \overrightarrow{\mathbf{J}} \circ \mathbf{d} \overrightarrow{\mathbf{A}}
$$

What makes current flow?
E field in solid wire drives
current.

APPLIED FIELD NOT ZERO
Moving charges collide with fixed ions and flow with drift velocity

Do charges in a current keep accelerating as they flow?

Electrons collide with ions, impurities, etc. causing resistance Move at constant drift speed \mathbf{v}_{D} :

- Thermal motions (random motions) have speed $\mathbf{v}_{\text {th }} \approx \mathbf{1 0}^{6} \mathbf{m} / \mathrm{s} \quad\left(\frac{3}{2} \mathrm{k}_{\text {Boltz }} \mathrm{T}\right)$
- Drift speed is tiny compared with thermal motions.
- Drift speed in copper is $10^{-8}-10^{-4} \mathrm{~m} / \mathrm{s}$.

$$
\mathbf{J} \propto E \quad \mathbf{J}=\sigma E
$$

For $\mathrm{E}=0$: no current, $\mathbf{v}_{\mathrm{D}}=0, \mathrm{~J}=0, \mathrm{i}=0$
For E not = 0
(battery voltage not 0):

$\mathbf{n} \equiv$ density of charge carriers Units : \# /volume
$\mathbf{n} \mathbf{V}_{\mathrm{D}}=$ \# of charge carriers crossing unit area per unit time
$\mathbf{J}=\mathbf{q} \mathbf{V}_{\mathbf{D}}=$ net charge crossing area A per unit time

Note: for electrons, q \& v_{D} are both reversed $\rightarrow J$ still to left

$$
|q|=e=1.6 \times 10^{-19} \mathrm{C} .
$$

EXAMPLE: Calculate the current density $\mathbf{J}_{\text {ions }}$ for ions in a gas

Assume:

- Doubly charged positive ions
- Density $\mathrm{n}=2 \times 10^{8}$ ions $/ \mathrm{cm}^{3}$
- Ion drift speed $v_{d}=10^{5} \mathrm{~m} / \mathrm{s}$

Find $J_{i o n s}$ - the current density for the ions only (forget $J_{\text {electrons }}$)

$$
\begin{gathered}
\mathrm{J}=q n v_{\mathbf{D}}=\underset{\text { coul/ion }}{2 \times 1.6 \times 10^{-19} \times 2 \times 10^{8} \times 10^{5}} \times \underset{\text { ions } / \mathrm{cm}^{3}}{2} \mathrm{~m} / \mathrm{s}
\end{gathered} \mathrm{~cm}^{10^{6} / \mathrm{m}^{3}}
$$

$$
\therefore \quad J=6.4 \quad \mathrm{~A} . / \mathrm{m}^{2}
$$

I ncreasing the Current

7-2: When you increase the current in a wire, what changes and what is constant?
A. The density of charge carriers stays the same, and the drift speed increases.
B. The drift speed stays the same, and the number of charge carriers increases.
C. The charge carried by each charge carrier increases.
D. The current density decreases.
$J \propto E \quad J=\sigma E$

$$
\mathbf{J}=\mathbf{q n v} \mathbf{v}_{\mathbf{D}}
$$

Resistance: Determines how much current flows through a device in response to a given potential difference.
i

$$
R \equiv \frac{\Delta V}{i}
$$

units : $1 \mathrm{Ohm} \equiv 1 \Omega=1$ volt/ampere
R depends on the material \& geometry
Note: $C=Q / \Delta V$ - inverse to R
Apply voltage to a conducting wire.

- Very large current so R is small.

Apply voltage to a poor conductor material like carbon Tiny current so R is very large.

Resistivity " ρ ": Property of a material itself

(as is dielectric constant). Does not depend on dimensions

- The resistance of a device depends on resistivity ρ and also depends on shape
- For a given shape, different materials produce different currents for same ΔV
- Assume cylindrical resistors

$$
R \equiv \text { resistance }=\frac{\rho L}{A}
$$

For insulators: $\rho \rightarrow$ infinity

$$
\rho \equiv \text { resistivity }=\frac{R A}{L} \text { for a resistor }
$$

resistivity units: Ohm-meters \equiv : $\mathbf{\Omega} . \mathrm{m}$

Calculating resistance, given the resistivity

EXAMPLE:

Find R for a 10 m long iron wire, 1 mm in diameter

$$
R=\frac{\rho L}{A}=\frac{9.7 \times 10^{-8} \Omega . \mathrm{m} \times 10 \mathrm{~m}}{\pi \times\left(10^{-3} / 2\right)^{2} \mathrm{~m}^{2}}=1.2 \Omega
$$

Find the potential difference across R if $i=10 \mathrm{~A}$. (Amperes)

$$
\Delta V=i R=12 V
$$

EXAMPLE:
Find resistivity of a wire with $R=50 \mathrm{~m} \Omega$, diameter $d=1 \mathrm{~mm}$, length $L=2 \mathrm{~m}$

$$
\rho=\frac{\mathrm{RA}}{\mathrm{~L}}=\frac{50 \times 10^{-3} \Omega \times 10 \mathrm{~m}}{2 \mathrm{~m}} \times \pi\left(10^{-3} / 2\right)^{2}=1.96 \times 10^{-8} \Omega . \mathrm{m}
$$

Use a table to identify material. Not Cu or AI, possibly an alloy Copyright R. Janow - Fall 2013

Resistivity depends on temperature:

- Resistivity depends on temperature: Higher temperature \rightarrow greater thermal motion \rightarrow more collisions \rightarrow higher resistance.

Simple model of resistivity: $\alpha=$ temperature coefficient

Change the temperature from reference T_{0} to T
Coefficient α depends on the material

$$
\rho=\rho_{0}\left(1+\alpha\left(T-T_{0}\right)\right)
$$

$$
\alpha \equiv \text { temperature coefficient }
$$

Conductivity is the reciprocal of resistivity

Definition:

$$
\sigma \equiv \frac{1}{\rho} \quad \therefore \quad \mathrm{~J}=\sigma \mathrm{E} \quad \text { units : "mho" } \equiv(\Omega . \mathrm{m})^{-1}
$$

$$
\Delta V=E L=i R=J A R=J \rho L \quad \therefore E / J=\rho
$$

Current Through a Resistor

7-3: What is the current through the resistor in the following circuit, if $V=20 \mathrm{~V}$ and $\mathrm{R}=$ 100Ω ?
A. $\quad 20 \mathrm{~mA}$.
B. $\quad 5 \mathrm{~mA}$.
C. 0.2 A .
D. 200 A.
E. 5 A.

$$
\Delta V=i R
$$

Current Through a Resistor

7-4: If the current is doubled, which of the following might also have changed?

A. The voltage across the resistor doubles.
B. The resistance of the resistor doubles.
C. The voltage in the wire between the battery and the resistor doubles.
D. The voltage across the resistor drops by a factor of 2.
E. The resistance of the resistor drops by a factor of 2 .

$$
\Delta \mathbf{V}=\mathbf{i} \mathbf{R}
$$

Resistivity of a Resistor $\quad R=\frac{\rho L}{A}$

7-5: Three resistors are made of the same material, with sizes in $\mathbf{m m}$ shown below. Rank them in order of total resistance, greatest first.
A. I, II, III.
B. I, III,II.
C. II, III, I.
D. II,I,III.
E. III,II,I.

II.

Each has square cross-section

Ohm's Law and Ohmic materials (a special case)

Definitions of $\quad \mathrm{R} \equiv \mathrm{V} / \mathrm{i} \quad$ but R could depend on applied V resistance:
$\sigma \equiv \mathbf{1 / \rho}=\mathrm{J} / \mathrm{E}$ but ρ could depend on E
Definition of OHMIC conductors and devices:

- Ratio of voltage drop to current is constant - it does not depend on applied voltage i.e., current is proportional to applied V
- Resistivity does not depend on magnitude or direction of applied voltage

Ohmic Materials
e.g., metals, carbon,...

constant slope $=1 / R$

Non-Ohmic Materials
e.g., semiconductor devices

Power is dissipated in resistive circuits

- Apply voltage drop V across load
- Current flows through load which dissipates energy
- An EMF (e.g., a battery) does work, holding
V and current i constant by expending potential energy
As charge dq flows from a to b it loses P.E. = dU
- potential is PE / unit charge
$\Rightarrow \quad d U=V d q=V i d t$
- charge $=$ current x time

$$
\begin{aligned}
& \text { Power dissipation }=P \equiv \frac{d U}{d t}=V i \quad \text { [Watts] for any load } \\
& V=i R \Rightarrow P=i^{2} R=V^{2} / R \quad \text { resistors only }
\end{aligned}
$$

EXAMPLE: Space heater: Find rate of converting electrical energy to heat

$$
\begin{aligned}
& R \quad K W \equiv \text { Kilowatt }=1000 \omega \text { Wits } \\
& \text { Now, HOW MUUH DOEST COST POR DNY } \\
& \text { TO RON, IF / KWH }=12 \not \subset
\end{aligned}
$$

EXAMPLE: A 47Ω vesietor is ratee for up to 10 walts C. cuhots twe max voetape.

$$
P_{\text {max }}=V_{\text {max }}^{2} / R \quad V_{\text {max }}=\sqrt{P_{\text {max }} R}=21.6 \text { Uolts }
$$

EXAMPLE: A 100 watt Light Gulb irvated for 120 V . five i ivtre light

$$
P=B V \quad C=P / V=\frac{100 W}{120 \mathrm{~V}}=0.83 \mathrm{~A}
$$

EXAMPLE: 10 Aup- floces in an ivon wive. I mlogy avel $/ \mathrm{mm}$ in diaweter.
a) How much power is dissifoled

$$
\begin{aligned}
& P=c^{-2} R \quad R=\frac{\rho_{1} L}{A} \\
&=9.7 \times 10^{-8} \times 1 \mathrm{~m} \\
& \pi=.123 \Omega \times 10^{-6} \mathrm{~m}^{2} \\
& R=12.3^{4} \text { Walts. } \\
& P=100 \times .123 \Omega=12 \pi \text { wie. }
\end{aligned}
$$

(4) What voltope is cocrass the wive.

$$
\begin{aligned}
& \text { hat voltope is cocrass } \mathrm{V}=\mathrm{P} / \mathrm{i}=1.23 \mathrm{Vots} . \\
& P=i \mathrm{~V} V \mathrm{~V} \text {. } \mathrm{V} \text { be to dise ipto } 100
\end{aligned}
$$

c) What ghand V be to diseipate 100 Watt?

$$
P=\frac{V^{2}}{R} \quad V=\sqrt{P R}=\sqrt{100 \times a 123 \Omega}=3.5 \mathrm{Valts}
$$

Ohmic and non-ohmic conductors

SUPERCONDUCTORS: At very low temperatures ($\sim 4 \mathrm{~K}$) some conductors lose all resistance. Once you start current flowing, it will continue to flow "forever,"

- The current becomes enormous once the applied voltage exceeds a small value.

7-6: The three plots show voltage vs. current (so the slope is R) for three kinds of devices. Identify the devices in order appearing in charts I, II, III?
A. Resistor, superconductor, diode
B. Diode, superconductor, resistor
C. Resistor, diode, superconductor
D. Diode, resistor, superconductor
E. Superconductor, resistor, diode

$$
\mathrm{R} \equiv \frac{\Delta \mathrm{~V}}{\Delta \mathrm{i}}
$$

I.

Circuit analysis with resistances and EMFs

GENERAL ANALYSIS METHOD: kirchhoff'S LAWS or RULES

Junction Rule $\quad \sum i_{i n}=\sum i_{\text {out }} \quad$ Charge conservation Loop Rule $\sum \Delta V=0$ (closed loop) Energy conservation

CIRCUIT ELEMENTS:

- PASSIVE: RESISTANCE, CAPACITANCE, INDUCTANCE
- ACTIVE: EMF's (SOURCES OF POTENTIAL DIFFERENCE AND ENERGY)

JUNCTIONS and
BRANCHES

RESISTANCE:

$$
R \equiv \frac{\Delta V}{i} \quad R=\rho \frac{L}{A} \quad \rho=\text { resistivity }
$$

POWER:

$$
P=\frac{d W}{d t}=-\frac{d U}{d t}=i V \quad P=i^{2} R \text { (resistor) }
$$

OHM's LAW:

R is independent of ΔV or i

EMFs "pump" charges to higher energy

- EMFs move charges from low to high potential (potential energy).
- EMF's (electromotive force) such as batteries supply energy:
- maintain constant potential at terminals
- do work $\mathbf{d W}=\boldsymbol{E} \mathbf{d q}$ on charges (source of the energy is usually chemical)
- EMFs are "charge pumps"
- Unit: volts (V). Symbol: script \mathcal{E}.
- Types of EMFs: batteries, electric generators, solar cells, fuel cells, etc.
- DC versus AC

$$
\mathcal{E}=\frac{\text { work done }}{\text { unit charge }}=\frac{\mathrm{dW}}{\mathrm{dq}}
$$

Power supplied by EMF:

$$
\begin{gathered}
P=\text { power }=\frac{d W}{d t} \\
d W=\mathcal{E} d q=\mathcal{E} i d t=P d t \\
P_{e m f}= \pm \mathcal{E} \mathbf{i}=\overrightarrow{\mathcal{E}} \circ \overrightarrow{\mathbf{i}}
\end{gathered}
$$

Power dissipated by resistor:

$$
P_{R}=i V=i^{2} R=V^{2} / R
$$

Ideal EMF • Zero internal battery resistance device

- Open switch: EMF $=\mathcal{E}$
no current, zero power
- Closed switch: EMF \mathcal{E} is also
applied across load circuit

- Current \& power not zero

Real EMF device

Multiple

EMFs
Assume $\mathcal{E}_{\mathrm{B}}>\mathcal{E}_{\mathrm{A}}$ (ideal EMF's) Which way does current iflow?

- Apply kirchhoff Laws to find out
- Answer: From \mathcal{E}_{B} to \mathcal{E}_{A}
- \mathcal{E}_{B} does work, loses energy
- \mathcal{E}_{A} is charged up
- R converts PE to heat
- Load (motor, other) produces motion and/or heat

Generating Circuit Equations with the kirchhoff Loop Rule

- The algebraic sum of voltage changes = zero around all closed loops through a circuit (including multi-loop)
- Assume either current direction. Expect minus signs when choice is wrong.
- Traverse circuit with or against assumed current direction
- Across resistances, voltage drop $\Delta \mathrm{V}=-\mathrm{iR}$ if following assumed current direction. Otherwise, voltage change is +i R .
- When crossing EMFs from - to,$+ \Delta \mathrm{V}=+\mathcal{E}$. Otherwise $\Delta \mathrm{V}=-\mathcal{E}$
- Dot product i. $\underline{\varepsilon}$ determines whether power is actually supplied or dissipated

EXAMPLE: Single loop circuit with battery (internal resistance r)
\xrightarrow{i}

Power in External Ckt
$\mathrm{P}=\mathrm{iV}=\mathrm{i}(\mathcal{E}-\mathrm{ir})$

Follow circuit from a to b to a, same direction as i

$$
\mathcal{E}-i r-i R=0 \quad i=\frac{\mathcal{E}}{r+R}
$$

Potential around the circuit

Example: CW or CCW around a single-loop circuit

Assume current direction as shown

- Traverse clockwise from a:
$\Delta V_{b a}=V_{b}-V_{a}=+\varepsilon$
$\Delta V_{\text {cb }}=0$
$\Delta V_{c b}=0$
$\Delta \mathrm{V}_{\mathrm{dc}}=\mathrm{V}_{\mathrm{d}}-\mathrm{V}_{\mathrm{c}}=-\mathrm{i} \mathrm{R}$
$\Delta V_{\text {ad }}=0$
$\sum \Delta V=0=\varepsilon+0-i R+0$
closed loop

$$
\begin{gathered}
\varepsilon-\mathrm{iR}=0 \\
\mathrm{i}=\frac{\varepsilon}{\mathrm{R}}
\end{gathered}
$$

SAME RESULT

- Traverse counterclockwise from a:
$\Delta V_{\text {da }}=0$
$\Delta \mathrm{V}_{\mathrm{cd}}=\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{d}}=+\mathrm{i} \mathrm{R}$
$\Delta V_{b c}=0$
$\Delta V_{a b}=V_{a}-V_{b}=-\varepsilon$
$\sum_{\text {closedloop }} \Delta V=0=0+i R+0-\varepsilon$

$$
\begin{gathered}
\mathrm{iR}-\varepsilon=0 \\
\mathrm{i}=\frac{\varepsilon}{\mathrm{R}} \\
\hline
\end{gathered}
$$

Equivalent resistance for resistors in series

Junction Rule: The current through all of the resistances in series (a single branch) is identical:

$$
i=i_{1}=i_{2}=i_{3}
$$

Loop Rule: The sum of the potential differences around a closed loop equals zero:

$$
\varepsilon-i R_{1}-i R_{2}-i R_{3}=0 \quad \square \quad i=\frac{\varepsilon}{R_{1}+R_{2}+R_{3}}
$$

The equivalent circuit replaces the series resistors with a
 single equivalent resistance:
same \mathcal{E}, same i as above

$$
\varepsilon-\mathrm{i} \mathrm{R}_{\mathrm{eq}}=0 \quad \square \quad \mathrm{i}=\frac{\varepsilon}{\mathrm{R}_{\mathrm{eq}}}
$$

The equivalent resistance for a series combination is the sum of the individual resistances and is always greater than any one of them.
$\mathbf{R}_{\mathbf{e q}}=\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}$

$$
R_{e q}=\sum_{i=1}^{n} R_{i}
$$

(b)
. Janow - Fall 2013

Equivalent resistance for resistors in parallel

Loop Rule: The potential differences across each of the parallel branches are the same.

$$
\begin{array}{rcc}
\mathcal{E}-i_{1} \mathbf{R}_{1}=0 & \mathcal{E}-\mathbf{i}_{2} \mathbf{R}_{2}=0 & \mathcal{E}-\mathbf{i}_{3} \mathbf{R}_{3}=\mathbf{0} \\
\mathbf{i}_{1}=\frac{\mathcal{E}}{\mathbf{R}_{1}}, & i_{2}=\frac{\mathcal{E}}{\mathbf{R}_{2}}, \quad \mathbf{i}_{3}=\frac{\mathcal{E}}{\mathbf{R}_{3}} & \begin{array}{c}
\text { inot in } \\
\text { equations }
\end{array}
\end{array}
$$

Junction Rule: The sum of the currents flowing in equals the sum of the currents flowing out. Combine equations for all the junctions at "a" \& "b".

$$
i=i_{1}+i_{2}+i_{3}=\mathcal{E}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
$$

(a)

(b)

The reciprocal of the equivalent resistance for a parallel combination is the sum of the individual reciprocal resistances and is always smaller than any one of them.

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

$$
\frac{1}{R_{\mathrm{eq}}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{1}{\mathrm{R}_{\mathrm{i}}}
$$

$$
\mathbf{R}_{\mathrm{eq}}=\frac{\mathbf{R}_{1} \mathbf{R}_{\mathbf{2}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}
$$

Resistors in series and parallel

7-7: Four identical resistors are connected as shown in the figure. Find the equivalent resistance between points a and c.
A. 4 R.
B. 3 R.
C. 2.5 R .
D. 0.4 R.
E.Cannot determine
from information given.

$$
\frac{1}{R_{\mathrm{eq}}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{1}{\mathbf{R}_{\mathrm{i}}} \quad \mathbf{R}_{\mathrm{eq}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{R}_{\mathrm{i}}
$$

Capacitors in series and parallel

7-8: Four identical capacitors are connected as shown in figure. Find the equivalent capacitance between points a and c.
A. 4 C .
B. 3 C.
C. 2.5 C .
D. 0.4 C .
E. Cannot determine from information given.

$$
\frac{1}{c_{e q}}=\sum_{i=1}^{n} \frac{1}{c_{i}} \quad c_{e q}=\sum_{i=1}^{n} c_{i}
$$

EXAMPLE:
Find $i, V_{1}, V_{2}, V_{3}, P_{1}, P_{2}, P_{3}$

$$
\begin{aligned}
& \left.\left.P_{1}=i^{2} R_{1}=(628)^{2}\right)=.78 \mathrm{~W}=i \mathrm{~V}=c .28\right) \times 28 \\
& P_{2}=i^{-2} R_{2}=(.28)^{2} \times 7=.55 \mathrm{~W} \\
& P_{3}=i^{2} R_{3}=(28)^{2 \times 8}=.627 \mathrm{~W} \\
& P=1.96 \mathrm{~W}=i \mathrm{~V}=1.96 \mathrm{~W} \in 9 u \mu .
\end{aligned}
$$

EXAMPLE: $R_{1}=4 \pi, R_{2}=1 / \Omega$. Find currents and voltage drops

LoopiRule. $\varepsilon-i, R_{1}=0 \quad \varepsilon-i_{2} R_{2}=0^{\circ}$

$$
\Rightarrow \dot{c}_{1} R_{1}=\dot{u}_{2} R_{2}=\text { queers. }
$$

$$
c_{1}=g_{1}=2.25 A . \quad i_{2}=.888 \mathrm{~A}
$$

on: FualRog $=\frac{x_{x}}{4+1}=2.93 \Omega$.

$$
\bar{c}=\frac{\varepsilon}{R+}=3.07 A
$$

EXAMPLE: MULTIPLE BATTERIES SINGLE LOOP

Final $i, P_{E_{1}, ~} P_{\varepsilon_{2}}, P_{R_{i}} P_{R_{2}}$

$$
\begin{aligned}
& \operatorname{Losp} R \text { un: } \\
& \varepsilon_{1}-i R_{1}-\varepsilon_{2}-i R_{2}=0 \\
& \varepsilon_{1}-\varepsilon_{2}=i\left(R_{1}+R_{2}\right) \\
& \bar{i}=\frac{\varepsilon_{1}-\varepsilon_{2}}{\left(R_{1}+R_{2}\right)}=\frac{8-3}{10+15}=.279
\end{aligned}
$$

A battery (EMF) absorbs power (charges up) when I is opposite to E

$$
\varepsilon \eta+\frac{1}{-\mathrm{T}} \downarrow i \quad \mathrm{P}_{\mathrm{emf}}= \pm \mathcal{E} \mathbf{i}=\overrightarrow{\mathcal{E}} \circ \overrightarrow{\mathbf{i}}
$$

$$
\begin{aligned}
& \left.P_{\varepsilon_{1}}=\varepsilon_{1} \ddot{C}=8 \times 02\right)=1.6 \mathrm{~W} \text { Proviosi To CIRCuIT. } \\
& \left.\begin{array}{l}
P_{\varepsilon 2} \equiv \varepsilon_{2 i}=-3_{1} \cdot 6=-0 \sigma_{W} \text { absarbol } \\
P_{1}=-i^{2} R_{1}=(-2)^{2} 10=-40 \text { dswipotal }
\end{array}\right\}-1.6 w_{\text {alts. }} \\
& P_{2}=-i^{2} R_{2}=-(2)^{2} \times 15=-6 \omega \\
& P_{\varepsilon_{1}}=P_{\varepsilon_{2}}+P_{R_{1}}+P_{R_{2}} .
\end{aligned}
$$

EXAMPLE: Find the average current density J in a copper wire whose diameter is 1 mm carrying current of $i=1 \mathrm{ma}$.

$$
\mathrm{J}=\frac{\mathrm{i}}{\mathrm{~A}}=\frac{10^{-3} \mathrm{amps}}{\pi \times\left(.5 \times 10^{-3} \mathrm{~m}\right)^{2}}=1273 \mathrm{amps} / \mathrm{m}^{2}
$$

Suppose diameter is 2 mm instead. Find J^{\prime} :

$$
J^{\prime}=\frac{i}{A^{\prime}}=\frac{J}{4}=318 \mathrm{amps} / \mathrm{m}^{2}
$$

Current i is unchanged

Calculate the drift velocity for the 1 mm wire as above?
$\mathrm{J}=\mathrm{en}_{\mathrm{Cu}} \mathrm{v}_{\mathrm{d}} \quad$ where $\quad \mathrm{n}_{\mathrm{Cu}}=\#$ conduction electrons $/ \mathrm{m}^{3} \approx 8.49 \times 10^{28}$

$$
\mathrm{v}_{\mathrm{d}}=\frac{\mathrm{J}}{\mathrm{en}_{\mathrm{Cu}}}=\frac{1273}{1.6 \times 10^{-19} \times 8.49 \times 10^{28}}=9.37 \times 10^{-8} \mathrm{~m} / \mathrm{s} \text { About } 3 \mathrm{~m} / \text { year }
$$

So why do electrical signals on wires seem
to travel at the speed of light ($300,000 \mathrm{~km} / \mathrm{s}$)?
Calculating n for copper: One conduction electron per atom

$$
\begin{aligned}
\mathrm{n}_{\mathrm{Cu}} & =1 \text { electron } / \text { atom } \times \frac{8.96 \mathrm{gm} / \mathrm{cm}^{3}}{63.5 \mathrm{gm} / \mathrm{mole}} \times 6.02 \times 10^{23} \text { atoms } / \text { mole } \times 10^{6} \mathrm{~cm}^{3} / \mathrm{m}^{3} \\
& =8.49 \times 10^{28} \text { electrons } / \mathrm{m}^{3}
\end{aligned}
$$

