Physics 121 - Electricity and Magnetism Lecture 08 - Multi-Loop and RC Circuits Y\&F Chapter 26 Sect. 2-5

- Kirchhoff's Rules
- Multi-Loop Circuit Examples
- RC Circuits
- Charging a Capacitor
- Discharging a Capacitor
- Discharging Solution of the RC Circuit Differential Equation
- The Time Constant
- Examples
- Charging Solution of the RC Circuit Differential Equation
- Features of the Solution
- Examples
- Summary

Kirchhoff's

Rules:

- Branch/Junction Rule (charge conservation): The current through all series elements in a branch is the same. At any junction:

- Loop Rule (energy conservation):

The net change in potential difference is zero for any closed path around a circuit:

$$
\sum \Delta V=0
$$

Generating Circuit Equations with the Kirchoff Loop Rule

- The algebraic sum of voltage changes = zero around all complete loops through a circuit (including multi-loop).
- OK to assume either current direction. Expect minus signs when choice is wrong.
- OK to traverse circuit with or against assumed current direction
- Across resistances, voltage drop DV =-iR if following assumed current direction. Otherwise, set $\Delta \mathrm{V}=+\mathrm{iR}$.
- When crossing EMFs from - to,$+ \mathrm{DV}=+\mathcal{E}$. Otherwise $\mathrm{DV}=-\mathcal{E}$
- Dot product i. $\underline{\varepsilon}$ determines whether power is actually supplied or dissipated in EMFs

Equivalent resistance for resistors in series

Junction Rule: The current through all of the resistances in series (a single branch) is identical:

$$
i=i_{1}=i_{2}=i_{3}
$$

Loop Rule: The sum of the potential differences around a closed loop equals zero:

$$
\varepsilon-i R_{1}-i R_{2}-i R_{3}=0 \quad \square \quad i=\frac{\varepsilon}{R_{1}+\mathbf{R}_{2}+\mathbf{R}_{3}}
$$

The equivalent circuit replaces the series resistors with a single equivalent resistance:
same \mathcal{E}, same i as above

$$
\varepsilon-\mathrm{iR}_{\mathrm{eq}}=0 \quad \square \quad i=\frac{\varepsilon}{\mathbf{R}_{\mathrm{eq}}}
$$

The equivalent resistance for a series combination is the sum of the individual resistances and is always greater than any one of them.

$$
\mathbf{R}_{\mathbf{e q}}=\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}
$$

$$
\mathbf{R}_{\mathrm{eq}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbf{R}_{\mathrm{i}}
$$

(b)
R. Janow Fall 2013

Equivalent resistance for resistors in parallel

Loop Rule: The potential differences across each of the
parallel branches are the same.

$$
\begin{array}{rcc}
\mathcal{E}-\mathbf{i}_{1} \mathbf{R}_{1}=\mathbf{0} & \mathcal{E}-\mathbf{i}_{2} \mathbf{R}_{2}=\mathbf{0} & \mathcal{E}-\mathbf{i}_{3} \mathbf{R}_{3}=\mathbf{0} \\
\mathbf{i}_{1}=\frac{\mathcal{E}}{\mathbf{R}_{1}}, \quad \mathbf{i}_{2}=\frac{\mathcal{E}}{\mathbf{R}_{2}}, \quad \mathbf{i}_{\mathbf{3}}=\frac{\mathcal{E}}{\mathbf{R}_{3}} & \begin{array}{c}
\text { inot in } \\
\text { equations }
\end{array}
\end{array}
$$

Junction Rule: The sum of the currents flowing in equals the sum of the currents flowing out. Combine equations for all the junctions at "a" \& "b".

$$
i=i_{1}+i_{2}+i_{3}=\mathcal{E}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
$$

(a)

(b)

The reciprocal of the equivalent resistance for a parallel combination is the sum of the individual reciprocal resistances and is always smaller than any one of them.

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

$$
\frac{1}{R_{\mathrm{eq}}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{1}{\mathbf{R}_{\mathrm{i}}}
$$

$$
\mathbf{R}_{\mathbf{e q}}=\frac{\mathbf{R}_{1} \mathbf{R}_{2}}{\mathbf{R}_{1}+\mathbf{R}_{2}}
$$

Copyright R. Janow Fall 2013

EXAMPLE: MULTIPLE BATTERIES SINGLE LOOP

Final $i, P_{\varepsilon_{1}}, P_{\varepsilon_{2}}, P_{R_{i}} P_{R_{2}}$

$$
\begin{aligned}
& \operatorname{CODR} R \text { Rus: } \\
& \varepsilon_{1}-\dot{L} R_{1}-\varepsilon_{2}-i R_{2}=0 \\
& \varepsilon_{1}-\varepsilon_{2}=i\left(R_{1}+R_{2}\right) \\
& i=\frac{\varepsilon_{1}-\varepsilon_{2}}{\left(\frac{\left.R_{1}+R_{2}\right)}{}=\frac{P-3}{10+15}=.27\right.}
\end{aligned}
$$

A battery (EMF) absorbs power (charges up) when I is opposite to E

$$
\varepsilon \eta+\frac{1}{-\mathrm{T}} \downarrow i \quad \mathrm{P}_{\mathrm{emf}}= \pm \mathcal{E} \mathbf{i}=\overrightarrow{\mathcal{E}} \circ \overrightarrow{\mathbf{i}}
$$

$$
\begin{aligned}
& \left.P_{\varepsilon_{1}}=\varepsilon_{1} i=8 \times 02\right)=1.6 \mathrm{~W} \text { prounod To CIRCUIT. }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
P_{1}=-i^{2} R_{1}=-(2)^{2} 10=-40 \text { d.eipotod } \\
P_{2}=-i^{-2} R_{2}=-(2)^{2} \times 15=-6 \omega \quad \text { " }
\end{array}\right\} \\
& P_{\varepsilon_{1}}=P_{\varepsilon_{2}}+P_{R_{1}}+P_{R_{2}} .
\end{aligned}
$$

Example: Multi-loop circuit with 2 EMFs

Given all resistances and EMFs in circuit:

- Find currents $\left(i_{1}, i_{2}, i_{3}\right)$, then potential drops and power dissipated by resistors
- 3 unknowns (currents)
imply 3 independent equations needed

Apply Procedure:

- Identify branches \& junctions. Name all currents (3) and other variables.
- Same current flows through all elements in any series branch.
- Assume arbitrary current directions; negative result means opposite direction.
- Find junctions, write Junction Rule equations for all.
- Same equation at junctions A and B (not independent).
- Junction Rule yields only 1 of 3 equations needed
- Are points C, D, E, F junctions? (No)

$$
\begin{equation*}
i_{2}=i_{1}+i_{3} \tag{1}
\end{equation*}
$$

Procedure, continued:

- Apply Loop Rule as often as needed to find equations that include all the unknowns (3).
- Traversal direction is arbitrary.
- IR's are voltage drops when following the assumed current direction: use - iR
- IR's are steps up when going against assumed current
- EMF's are positive when traversed from - to + side
- EMF's are negative when traversed from + to - sides

$$
\sum \Delta V=0
$$

Loop equations for the example circuit:

$$
\begin{array}{cl}
\text { ADCBA }-C C W & \mathcal{E}_{1}-\mathbf{i}_{1} \mathbf{R}_{1}+\mathbf{i}_{\mathbf{3}} \mathbf{R}_{3}=\mathbf{0} \\
\text { ADCBFEA }-C C W & \mathcal{E}_{1}-\mathbf{i}_{1} \mathbf{R}_{\mathbf{1}}-\mathbf{i}_{2} \mathbf{R}_{\mathbf{2}}-\mathcal{E}_{2}=\mathbf{0} \\
\text { ABFEA }-C C W & -\mathbf{i}_{\mathbf{3}} \mathbf{R}_{\mathbf{3}}-\mathbf{i}_{\mathbf{2}} \mathbf{R}_{\mathbf{2}}-\mathcal{E}_{2}=\mathbf{0}
\end{array}
$$

Solution: (after a lot of algebra)

Define:

[]$=\mathbf{R}_{\mathbf{1}} \mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{2}} \mathbf{R}_{\mathbf{3}}+\mathbf{R}_{\mathbf{1}} \mathbf{R}_{\mathbf{3}}$

- Only 2 of these three are independent - Now have 3 equations in 3 unknowns

$$
\begin{aligned}
& \mathbf{i}_{1}=\frac{\mathcal{E}_{1} \mathbf{R}_{\mathbf{2}}+\mathcal{E}_{\mathbf{1}} \mathbf{R}_{\mathbf{3}}-\mathcal{E}_{2} \mathbf{R}_{\mathbf{3}}}{[]} \\
& \mathbf{i}_{2}=\frac{\mathcal{E}_{\mathbf{R}}^{\mathbf{3}}-\mathcal{E}^{\mathbf{R}} \mathbf{R}_{3}-\mathcal{E}_{2} \mathbf{R}_{\mathbf{1}}}{[]} \\
& \mathbf{i}_{3}=\frac{-\mathcal{E}_{2} \mathbf{R}_{\mathbf{1}}-\mathcal{E}_{1} \mathbf{R}_{\mathbf{2}}}{[] 2013}
\end{aligned}
$$

Example: find currents, voltages, power

 6 BRANCHES $\rightarrow 6$ CURRENTS.-JUNCTION RULE:
Branches C,E,G are the same point, as are D, F. H. 4 currents left.

Remaining 2 junction equations are dependent 1 junction equation

$$
i=i_{1}+i_{2}+i_{3}
$$

LOOP RULE:

$A B C D A-C W \quad \mathcal{E}-i_{1} \mathbf{R}_{\mathbf{1}}=\mathbf{0} \Rightarrow \mathcal{E}=\mathbf{i}_{\mathbf{1}} \mathbf{R}_{\mathbf{1}} \Rightarrow \mathbf{i}_{\mathbf{1}}=\mathcal{E} / \mathbf{R}_{\mathbf{1}}=\mathbf{1 2} / 3=\mathbf{4 . 0} \mathrm{A}$.
CEFDC - CW $\quad-i_{2} R_{2}+i_{1} R_{1}=0 \Rightarrow i_{2}=i_{1} R_{1} / R_{2}=4 \times 3 / 8=1.5 \mathrm{~A}$.
EGHFE - CW $-i_{3} R_{3}+i_{2} R_{2}=0 \Rightarrow i_{3}=i_{2} R_{2} / R_{3}=1.5 \times 8 / 6=2.0 \mathrm{~A}$.
CHECK: $\quad i=i_{1}+i_{2}+i_{3}=4.0+1.5+2.0=7.5 \mathrm{~A}$.

$$
R_{\mathrm{eq}}=1.6 \Omega
$$

$$
\mathcal{E} \text { should }=V_{R 1}=i_{1} R_{1}=4.0 \times 3.0=12.0 \text { Volts }
$$

POWER: $\quad P_{R 1}=i_{1}^{2} R_{1}=48.0$ Watts

$$
\begin{aligned}
& P_{R 2}=i_{2}^{2} R_{2}=18.0 \text { Watts } \\
& P_{R 3}=i_{3}^{2} R_{3}=24.0 \text { Watts }
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{P}_{\mathcal{E}} & =\overrightarrow{\mathcal{E}} \circ \overline{\mathbf{I}}=\mathbf{9 0 . 0} \text { Watts } \\
& =\mathbf{P}_{\mathbf{R} 1}+\mathbf{P}_{\mathbf{R} 2}+\mathbf{P}_{\mathbf{R} 3}
\end{aligned}
$$

Multiple EMF Example: find currents, voltages, power

JUNCTION RULE at $A \& B: \quad \mathbf{i}_{\mathbf{3}}=\mathbf{i}_{\mathbf{1}}+\mathbf{i}_{\mathbf{2}}$ LOOP ACDBA:
$-i_{1} R_{1}-\mathcal{E}_{1}-i_{1} R_{1}+\mathcal{E}_{2}+i_{2} R_{2}=0 \quad \square i_{2}=i_{1}-3 / 4$
LOOP BFEAB:
$-\mathrm{i}_{3} \mathbf{R}_{1}+\mathcal{E}_{2}-\mathrm{i}_{3} \mathbf{R}_{1}-\mathrm{i}_{2} \mathbf{R}_{2}-\mathcal{E}_{2}=\mathbf{0}$

USE JUNCTION EQUATION:

$$
i_{3}=-i_{2}=i_{1}+i_{2} \quad \square i_{1}=-2 i_{2}
$$

For power use:

$$
V=i_{i} \mathbf{R}_{\mathbf{i}} \quad \mathbf{P}_{\mathrm{i}}=\mathrm{i}_{\mathbf{i}}^{2} \mathbf{R}_{\mathbf{i}}
$$

EVALUATE
NUMERICALLY: $i_{1}=1 / 2, \quad i_{2}=-1 / 4, \quad i_{3}=+1 / 4$

RC Circuits: Time dependance

Can constant current flow through a capacitor indefinitely?

- Given Capacitance + Resistance + EMF
- Loop Rule + Junction Rule
- Find Q, i, V, U for capacitor as functions of time

First charge C (switch to "a") then discharge (switch to "b")

Charging: Switch to "a". Loop equation:
$\mathcal{E}-\mathrm{i} \mathrm{R}-\mathrm{V}_{\mathrm{c}}=\mathbf{0}$

- Assume current i through R is clockwise
- Expect largest current at $t=0$,
- Expect zero current as $t \rightarrow$ infinity
- $\mathrm{V}_{\text {cap }} \rightarrow \mathcal{E}=\mathrm{V}_{\text {inf }}$ as $\mathrm{t} \rightarrow$ infinity
- Energy stored in C, plus some dissipated in R

Discharging: Switch to "b". •Energy stored in C now dissipated in R no $\mathcal{E M F}$, Loop equation:
$-\mathrm{iR}-\mathrm{V}_{\mathrm{c}}=\mathbf{0}$

- Arbitrarily assume current is still CW
- $\mathrm{V}_{\text {cap }}=\mathcal{E}$ at $\mathrm{t}=0$, but it must die away
- $Q_{0}=$ full charge $=C V_{\text {inf }}=C \mathcal{E}$
- Result: i through R is actually CCW

Copyright R. Janow Fall 2013

RC Circuit: solution for discharging

Loop Equation is: $\quad i R+V_{c}=0$
Substitute : $\quad i(t)=\frac{d Q}{d t} \quad V_{c}(t)=\frac{Q(t)}{C}$
Circuit Equation: $\frac{d Q}{d t}=-\frac{Q(t)}{R C}$

First order differential equation, form is $\mathbf{Q}^{\prime}=-k Q \rightarrow$ Exponential solution Charge decays exponentially:

- t/RC is
dimensionless

RC $=\tau=$ the TIME CONSTANT
 Q falls to $1 / \mathrm{e}$ of original value

Voltage across C also decays exponentially:

$$
\mathbf{Q}_{0}=\mathbf{C} \mathcal{E}
$$

$$
Q(t)=C V_{c}(t)
$$

$V_{c}(t)=\mathcal{E} e^{-t / R C}$
Current also decays exponentially:

$$
i(t) \equiv \frac{d Q}{d t}=i_{0} e^{-t / R C}
$$

$$
\square \quad i_{0} \equiv \frac{\mathcal{E}}{R}=\frac{Q_{0}}{R C}
$$

Solving for discharging phase by direct integration
$\left.\frac{\mathbf{d Q}}{\mathbf{d t}}=-\frac{\mathbf{Q}(\mathbf{t})}{\mathbf{R C}} \quad \begin{array}{c}\mathrm{RC} \text { is } \\ \text { constant }\end{array}\right]$
Initial conditions ("boundary conditions") $Q(t)=Q_{0}$ at $t=0$ where $Q_{0}=C \mathcal{E}$
$\frac{\mathbf{d Q}}{\mathbf{Q}}=-\frac{\mathbf{d t}}{\mathbf{R C}} \square \int_{\mathbf{Q}_{0}}^{\mathrm{Q}} \frac{\mathbf{d Q} \mathbf{Q}^{\prime}}{\mathbf{Q}^{\prime}}=-\frac{1}{\mathbf{R C}} \int_{0}^{\mathrm{t}} \mathrm{dt}^{\prime} \quad \square \quad \ln \left(\frac{\mathbf{Q}}{\mathbf{Q}_{\mathbf{0}}}\right)=-\frac{\mathbf{t}}{\mathbf{R C}}$ exponentiate both sides of above right $e^{\ln (x)}=x$

$$
e^{\ln \left(\frac{Q}{Q_{0}}\right)}=\frac{Q}{Q_{0}}=e^{-\frac{t}{R C}} \quad \square \quad Q(t)=Q_{0} e^{-t / R C} \quad \begin{gathered}
\text { exponential } \\
\text { decay }
\end{gathered}
$$

$R C=$ time constant $=$ time for Q to fall to $1 / e$ of its initial value

$$
\begin{gathered}
\mathrm{RC} \equiv \tau \\
\mathrm{e}^{-1}=\frac{1}{\mathrm{e}}=\frac{1}{2.71828} \approx .37
\end{gathered}
$$

Value $\begin{array}{lllll}e^{-1} & e^{-2} & e^{-3} & e^{-4} & e^{-5}\end{array}$
$\begin{array}{llllll}\text { \% left } & 36.8 & 13.5 & 5.0 & 1.8 & 0.67\end{array}$
After 3-5 time constants the action is over

Units for RC

8-1: We defined $\tau=$ RC, which of the choices best conveys the physical units for the decay constant τ ?

$$
[\tau]=[\mathrm{RC}]=[(\mathrm{V} / \mathrm{i})(\mathrm{Q} / \mathrm{V})]=[\mathrm{Q} / \mathrm{Q} / \mathrm{t}]=[\mathrm{t}]
$$

A. $\Omega \cdot \mathrm{F}$ (ohm.farad)
B. C/A (coulomb per ampere)
C. $\Omega \cdot C / V$ (ohm.coulomb per volt)
D. V.F/A (volt•farad per ampere)
E. s (second)

Examples: discharging capacitor C through resistor R
a) When has the charge fallen to half of it's initial value Q_{0} ?
set: $Q(t)=\frac{1}{2} Q_{0}=Q_{0} e^{-t / \tau} \square \frac{1}{2}=e^{-t / \tau}$ (solvefort - dependsonly on τ)
take $\log : \ln \left(\frac{1}{2}\right)=-t / \tau \quad \ln (1)=0 \quad \ln (a / b)=\ln (a)-\ln (b)$

$$
-\ln (2)=-t / \tau \quad \ln (2)=0.69 \quad \square \quad \therefore \mathbf{t}=0.69 \tau
$$

b) When has the stored energy fallen to half of its original value?
recall: $\mathbf{U}(\mathrm{t})=\frac{\mathbf{Q}^{2}}{2 \mathbf{C}}$ and $\mathbf{Q}(\mathrm{t})=\mathbf{Q}_{\mathbf{0}} \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}$
at any time $t: \mathbf{U}(\mathrm{t})=\mathbf{U}_{\mathbf{0}} \mathrm{e}^{-2 t / R C}$ at $t=0: \quad \mathbf{U}(\mathbf{t}=0) \equiv \mathbf{U}_{\mathbf{0}}=\frac{\mathbf{Q}_{0}^{2}}{2 \mathbf{C}}$
set: $\mathbf{U}(\mathrm{t})=\frac{\mathbf{U}_{0}}{2}=\mathbf{U}_{0} \mathrm{e}^{-2 t / \tau}$
take log: $\ln \left(\frac{1}{2}\right)=-2 t / \tau \Rightarrow \quad \therefore t=0.69 \tau / 2=0.35 \tau$
c) How does the power delivered to C vary with time?
power: $\quad P \equiv \frac{d U}{d t}=U_{0} \frac{d}{d t}\left[e^{-2 t / \tau}\right]=U_{0}\left[\frac{-2}{\tau}\right] e^{-2 t / \tau}=\frac{-2}{2} \frac{\mathbf{Q}_{0}}{C} \frac{\mathbf{Q}_{0}}{R C} e^{-2 t / \tau}$
recall: $\quad \frac{\mathbf{Q}_{\mathbf{0}}}{\mathbf{R C}} \equiv \mathbf{i}_{\mathbf{0}} \quad \frac{\mathbf{Q}_{\mathbf{0}}}{\mathbf{C}} \equiv \mathcal{E} \quad \begin{aligned} & \text { C supplies rather than absorbs power } \\ & \text { Drop minus sign }\end{aligned}$
power supplied $\quad P=i_{0} e^{-t / \tau} \times \mathcal{E} e^{-t / \tau}=i(t) \times V(t)$

$$
\text { by } C: \quad \equiv P_{0} e^{-2 t / \tau}
$$

RC Circuit: solution for charging

Loop Equation is : $\mathcal{E}-i \mathbf{R}-\mathbf{V}_{\mathbf{c}}=\mathbf{0}$
Substitute : $\quad i(t)=\frac{d Q}{d t} \quad V_{c}(t)=\frac{Q(t)}{C}$

Circuit Equation:

$$
\frac{d Q}{d t}=-\frac{Q(t)}{R C}+\frac{\mathcal{E}}{R}
$$

- First order differential equation again: form is $\mathbf{Q}^{\prime}=-\mathrm{kQ}+$ constant
- Same as discharge equation, but $i_{0}=\mathcal{E} / R$ is on right side
- At $t=0: Q=0 \& i=i_{0}$. Large current flows (C acts like a wire)
- As $t \rightarrow$ infinity: Current $\rightarrow 0$ (C acts like an open circuit)

$$
Q \rightarrow Q_{i n f}=C \mathcal{E}=\text { same as } Q_{0} \text { for discharge }
$$

Solution: Charge starts from zero, grows as a saturating exponential.

$$
Q(t)=Q_{i n f}\left(1-e^{-t / R c}\right)
$$

- $\mathrm{RC}=\tau=$ TIME CONSTANT describes time dependance again $Q(t) \rightarrow 0$ as $t \rightarrow 0$
- $\mathrm{Q}(\dagger) \rightarrow \mathrm{Q}_{\mathrm{inf}}$ as $\dagger \rightarrow$ infinity

RC Circuit: solution for charging, continued

Voltage across C while charging:

$$
Q=C V_{c} \text { and } Q_{i n f}=C \mathcal{E} \quad \square \quad \mathrm{~V}_{\mathrm{c}}(\mathrm{t})=\mathcal{E}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right)
$$

Voltage across C also starts from zero and saturates exponentially Current in the charging circuit:

$$
\begin{aligned}
i(t) \equiv \frac{d Q(t)}{d t} & =Q_{i n f} \frac{d}{d t}\left(1-e^{-t / R C}\right) \\
& =Q_{i n f} \frac{1}{R C} e^{-t / R C}
\end{aligned}
$$

$$
\begin{aligned}
i(t) & =i_{0} e^{-t / R C} \\
i_{0} & \equiv \frac{\mathcal{E}}{R}=\frac{Q_{\text {inf }}}{R C}
\end{aligned}
$$

Current decays exponentially just as in discharging case
Growing potential V_{c} on C blocks current completely at $\dagger=$ infinity At $t=0 C$ acts like a wire. At $t=$ infinity C acts like a broken wire
Voltage drop V_{R} across the resistor:

$$
V_{R}(t)=i(t) R=i_{0} R e^{-t / R C}
$$

$$
V_{R}(t)=\mathcal{E} e^{-t / R C}
$$

Voltage across R decays exponentially, reaches 0 as $t \rightarrow$ infinity
Form factor: $1-\exp (-t / \tau)$

Factor	.63	.865	.95	.982	.993	.998
Time	τ	2τ	3τ	4τ	5τ	6τ
R.After 3-5 time constants the action is over						

RC circuit - multiple resistors

8-2: Consider the circuit shown, The battery has no internal resistance. The capacitor has zero charge. Just after the switch is closed, what is the current through the battery?
A. 0.
B. $\varepsilon / 2 R$.
C. $2 \varepsilon / R$.
D. ε / R.
E. impossible to determine

RC circuit - multiple resistors

8-3: Consider the circuit shown. The battery has no internal resistance. After the switch has been closed for a very long time, what is the current through the battery?
A. 0 .
B. $\varepsilon / 2 R$.
C. $2 \varepsilon / R$.
D. ε / R.
E. impossible to determine

Discharging Example: A 2 mF capacitor is charged and then connected in series with a resistance R. The original potential across it drops to $\frac{1}{4}$ of it's starting value in 2 seconds. What is the value of the resistance?

$$
\text { Use: } \quad V_{c}(t)=V_{0} e^{-t / R C} \quad \text { Set: } \quad \frac{V_{c}(t)}{V_{0}}=\frac{1}{4}=e^{-t / R C}
$$

Take natural log of both sides:

$$
\begin{aligned}
& \ln (1)-\ln (4)=\ln \left[e^{-2 / R C}\right]=\frac{-2}{R C} \\
& \ln (4)=1.39 \quad \ln (1)=0 \quad \ln \left[e^{x}\right]=x \\
& 1.39 R C=2 \quad \Rightarrow \quad R=\frac{2}{1.39} \frac{1}{2 \times 10^{-6}}
\end{aligned}
$$

$$
R=0.72 \mathrm{M} \Omega
$$

Define: $1 \mathrm{M} \Omega=10^{6} \Omega$
Copyright R. Janow Fall 2013

Example: Discharging

$\mathrm{C}=500 \mathrm{mF} \quad \mathrm{R}=10 \mathrm{KW} \quad \mathrm{V}_{0}=\mathcal{E}=12 \mathrm{~V}$
Capacitor C is charged for a long time, then discharged.
a) Find current at $t=0$

$$
i(t) \equiv \frac{d Q}{d t}=i_{0} e^{-t / R C} \quad i_{0} \equiv \frac{\mathcal{E}}{R}=\frac{Q_{0}}{R C} \quad \square \quad i(t=0)=\frac{\mathcal{E}}{R} e^{0}=\frac{12}{10^{4}}=1.2 \mathrm{~mA}
$$

b) When does $\mathrm{V}_{\text {Cap }}$ (voltage on C) reach 1 Volt?

$$
\begin{array}{ll}
V_{\text {cap }}(t)=\mathcal{E} e^{-t / R C} & R C=10^{4} \times 5 \times 10^{2} \times 10^{-6}=5 \mathrm{sec} \quad V_{0}=\mathcal{E}=12 \text { volts } \\
\frac{V_{\text {cap }}}{V_{0}}=\frac{1}{12}=e^{-t / 5} & -\ln (12)=-t / 5 \quad \square
\end{array}
$$

c) Find the current in the resistor at that time

$$
i(t) \equiv \frac{d Q}{d t}=i_{0} e^{-t / R C} \quad \square \quad i(t=12.4 \mathrm{sec})=1.2 \mathrm{~mA} \mathrm{x} \mathrm{e}^{-12.4 / 5}
$$

Charging Example: How many time constants does it take for an initially uncharged capacitor in an RC circuit to become 99\% charged?

Use: $\quad \mathbf{Q}(\mathrm{t})=\mathbf{Q}_{\infty}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right) \quad \tau \equiv \mathrm{RC}=$ time constant Require:

$$
\frac{Q(t)}{Q_{\infty}}=0.99=1-e^{-t / \tau} \quad \square \quad 0.01=e^{-t / \tau}
$$

Take natural \log of both sides:

$$
\ln (0.01)=-4.61=-\mathrm{t} / \tau \quad \therefore \mathrm{t} / \tau=4.61=\# \text { of time constants }
$$

Did not need specific values of $R C$

Example: Charging a $100 \mu \mathrm{~F}$ capacitor in series with a $10,000 \Omega$ resistor, using EMF $\mathcal{E}=5 \mathrm{~V}$.

a) How long after voltage is applied does $\mathrm{V}_{\text {cap }}(\mathrm{t})$ reach 4 volts?

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}(\mathrm{t})=\mathcal{E}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right) \quad \mathrm{RC}=10^{4} \times 100 \times 10^{-6}=1.0 \mathrm{sec} \\
& \frac{\mathrm{~V}_{\mathrm{c}}(\mathrm{t})}{\mathcal{E}}=\frac{4}{5}=0.8=1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}} \quad \therefore \mathrm{e}^{-\mathrm{t} / \mathrm{RC}}=0.2
\end{aligned}
$$

Take natural log of both sides:

$$
\ln (0.2)=-1.61=\ln \left[e^{-t / R C}\right]=\frac{-t}{R C}=-t \quad \square \quad t=1.61 \mathrm{sec}
$$

b) What's the current through R at $\mathrm{t}=2 \mathrm{sec}$?

$$
i(t)=i_{0} e^{-t / R C} \quad i_{0} \equiv \frac{\mathcal{E}}{R}
$$

$$
i(t=2)=i_{0} e^{-2.0 / 1.0}=\frac{\varepsilon}{R} e^{-2.0 / 1.0}=\frac{5}{10^{4}}(0.37)^{2}=6.77 \times 10^{-5}
$$

Example: Multiple loops and EMFs

- Switch S is initially open for a long time.
- Capacitor C charges to potential of battery 2
- S is then closed for a long time

What is the CHANGE in charge on C?

First: \mathcal{E}_{2} charges C to have:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=\mathcal{E}_{2}=3 \text { volts with current } \mathrm{i}_{1}=0 \\
& \mathrm{Q}_{0}=\text { final charge for first phase }=\mathrm{C} \mathcal{E}_{2}=3.0 \times 10^{-5}
\end{aligned}
$$

$$
Q_{0}=\text { initial charge for secondphase }=30 \mu C
$$

Second: Close switch for a long time
At equilibrium, current i_{3} though capacitor \rightarrow zero Find outer loop current $i=i_{1}=1_{2}$ using loop rule

$$
\begin{aligned}
& \mathcal{E}_{2}-i R_{2}-i R_{1}-\mathcal{E}_{1}=0 \\
& 3-i(0.4+0.2)-1=0
\end{aligned} \quad \square i=2.0 / 0.6=3.33 \mathrm{~A} .
$$

Now find Voltage across C , same as voltage across right hand branch

$$
\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}=\mathcal{E}_{2}-i R_{2}=3-3.33 \times 0.4=1.67 \mathrm{v}
$$

Final charge on C :

$$
Q_{\text {final }}=C\left(V_{b}-V_{a}\right)=10 \times 10^{-6} \times 1.67
$$

$$
Q_{\text {final }}=16.7 \mu C
$$

$$
\Rightarrow Q_{\text {final }}-\mathbf{Q}_{\mathbf{0}}=-\mathbf{1 3 . 3 \mu \mathrm { C }} \text { tr R.Janow Fall } 2013
$$

Lecture 8A Chapter 27 - Circuits, Part 1
EMF: QLECTROMOTIUE FORCE. SOURCE OF POWAR + POTBNTAL

$$
\begin{aligned}
\varepsilon=\frac{d w}{d q} \quad p & =\text { Powkr SinsvEu } \\
& =i \varepsilon
\end{aligned}
$$

PwerDssinatod
Beanch Rele: Same curregnt in alz Sevics

- Rear ErF: $v=\dot{\varepsilon}$-ir

$$
\begin{aligned}
& \text { Power- Dissinate } \\
& =\text { iE-V } \\
& \text { Sevies }
\end{aligned}
$$

$$
\text { ZZGMZNTS. I BRANCHES } \Rightarrow N \text { GUARENTS }
$$

LDOP RULE'. $\sum \Delta V^{\prime}=0$ irround qucry closen loop

- Pitential diffabence Between a pair of Powts is The SAME FOREVORY PNH.
USE RULES TO GET L EQUATIONS N N UNKNOWNS
- NAME NDZNTIFY CUARENTS. ASSUME DIAGCTIDAS

- USG LDOP RULE-TRNEESE Eruh ONE
- FOR R's: $V=-i R$ when FOZZOWING ASSOMOD CUERGNT
$\Delta V=+\bar{i} R " Q \quad \sigma 01 N G$ OPAOSNTE TO
- For guF's: $\Delta V=+\varepsilon$ when Travenelng fledm θ To (\rightarrow

$$
\Delta V=T C
$$

- SOZVE RGSUZTNV SHST\&M OF EQUNTIONS FDEALL CuARENTS
- calcurnte powler omber qunmmitis needeld.

снарте 26 summary

Resistors in series and parallel: When several resistors $R_{1}, R_{2}, R_{3}, \ldots$ are connected in series, the equivalent resistance R_{eq} is the sum of the individual resistances. The same current flows through all the resistors in a series connection. When several resistors are connected in parallel, the reciprocal of the equivalent resistance $R_{\text {eq }}$ is the sum of the reciprocals of the individual resistances. All resistors in a parallel connection have the same potential difference between their terminals. (See Examples 26.1 and 26.2.)
$R_{\mathrm{eq}}=R_{1}+R_{2}+R_{3}+\cdots$
(resistors in series)
$\frac{1}{R_{\text {eq }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots$
(resistors in parallel)

Resistors in series

Kirchhoff's rules: Kirchhoff's junction rule is based on conservation of charge. It states that the algebraic sum of the currents into any junction must be zero. Kirchhoff's loop rule is based on conservation of energy and the conservative nature of electrostatic fields. It states that the algebraic sum of potential differences around any loop must be zero. Careful use of consistent sign rules is essential in applying Kirchhoff's rules. (See Examples 26.3-26.7.)

$$
\begin{array}{ll}
\sum I=0 & \text { (junction rule) } \\
\sum V=0 & \text { (loop rule) } \tag{26.6}
\end{array}
$$

(26.5)

Electrical measuring instruments: In a d'Arsonval galvanometer, the deflection is proportional to the current in the coil. For a larger current range, a shunt resistor is added, so some of the current bypasses the meter coil. Such an instrument is called an ammeter. If the coil and any additional series resistance included obey Ohm's law, the meter can also be calibrated to read potential difference or voltage. The instrument is then called a voltmeter. A good ammeter has very low resistance; a good voltmeter has very high resistance. (See Examples 26.8-26.11.)

Copyright R. Janow Fall 2013
$R-C$ circuits: When a capacitor is charged by a battery in series with a resistor, the current and capacitor charge are not constant. The charge approaches its final value asymptotically and the current approaches zero asymptotically. The charge and current in the circuit are given by Eqs. (26.12) and (26.13). After a time $\tau=R C$, the charge has approached within $1 / e$ of its final value. This time is called the time constant or relaxation time of the circuit. When the capacitor discharges, the charge and current are given as functions of time by Eqs. (26.16) and (26.17). The time constant is the same for charging and discharging. (See Examples 26.12 and 26.13.)

$$
\begin{aligned}
& \text { Capacitor charging: } \\
& \begin{aligned}
q & =C \mathcal{E}\left(1-e^{-t / R C}\right) \\
& =Q_{\mathrm{f}}\left(1-e^{-t / R C}\right) \\
i & =\frac{d q}{d t}=\frac{\mathcal{E}}{R} e^{-t / R C} \\
& =I_{0} e^{-t / R C}
\end{aligned}
\end{aligned}
$$

Capacitor discharging:

$$
q=Q_{0} e^{-t / R C}
$$

$$
\begin{aligned}
i & =\frac{d q}{d t}=-\frac{Q_{0}}{R C} e^{-t / R C} \\
& =I_{0} e^{-t / R C}
\end{aligned}
$$

Household wiring: In household wiring systems, the various electrical devices are connected in parallel across the power line, which consists of a pair of conductors, one "hot" and the other "neutral." An additional "ground" wire is included for safety. The maximum permissible current in a circuit is determined by the size of the wires and the maximum temperature they can tolerate. Protection against excessive current and the resulting fire hazard is provided by fuses or circuit breakers. (See Example 26.14.)

