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Abstract. Brain tumor classification plays an important role in brain
cancer diagnosis and treatment. Pathologists typically have to work through
numerous pathology images that can be in the order of hundreds or thou-
sands which takes time and is prone to manual error. Here we investigate
automating this task given pathology images as well as 3D MRI volumes
without lesion maps. We use data provided by the CPM-RadPath 2019
MICCALI challenge. We first evaluate accuracy on the validation dataset
with MRI and pathology images separately. We predict the 3D tumor
mask with our custom developed tumor segmentation model that we
used for the BraTS 2019 challenge. We show that the predicted tumor
segmentations give a higher validation accuracy of 77.1% vs. 69.8% with
MRI images when trained by a 3D residual convolutional neural net-
work. For pathology images we train a 2D residual network and obtain
a 66.2% validation accuracy. In both cases we find high training accu-
racies above 95% which suggests overfitting. We propose a dual path
residual convolutional neural network model that trains simultaneously
from both MRI and pathology images and we use a simple method to
prevent overfitting. One path of our network is fully 3D and considers
3D tumor segmentations as input while the other path considers pathol-
ogy images. To prevent overfitting we stop training after 90% training
accuracy at the epoch number where our network loss increases in the
following one. With this approach we achieve a validation accuracy of
84.9% showing that indeed combining the two image sources yields a
better overall accuracy.
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1 Introduction

Brain cancer tumors fall into different categories as given by the World Health
Organization [1-3]. The correct prediction of tumor type plays a key role in
diagnosis and treatment. However, pathologists typically have to browse numer-
ous images to determine the tumor type which requires considerable training, is
time intensive, and is prone to manual errors. The automated classification of
tumor type can greatly speed up physician diagnosis and lead to better care and
treatment.

The CPM-RadPath 2019 MICCALI challenge is to automatically predict three
tumor types given below.

— Lower grade astrocytoma, IDH-mutant (Grade IT or IIT)

— Oligodendroglioma, IDH-mutant, 1p/19q codeleted (Grade II or III)

— Glioblastoma and Diffuse astrocytic glioma with molecular features of glioblas-
toma, IDH-wildtype (Grade IV).

The contest provides MRI and pathology images from 221 patients as training
data and 35 as validation. For each patient we have 3D MRI images in four
modalities: native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2),
and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR). All brain scans were
obtained with different clinical protocols and from various scanners from different
institutions. The images were all co-registered to the same anatomical template,
interpolated to the same resolution (1 mm?) and skull-stripped.

We are also given varying number of pathology images for each patient.
These are digitized whole slide tissue images captured from Hematoxylin and
Eosin (H&E) stained tissue specimens. The tissue specimens were scanned at
20x or 40x magnifications. In Figure 1 we see a cropped pathology image with
a Grade IV tumor (class G) from this dataset.

Inspired by the success of convolutional neural networks in image recognition
tasks, we present a dual-path residual convolutional neural network solution to
this problem. We find that using predicted tumor segmentations of each MRI
image leads to higher overall validation accuracy than if we used the original
MRI images. We also see that our model achieves above 95% training accuracy
which suggests overfitting. With careful training we achieve a validation accuracy
of 84.9% with both datasets which is higher than the accuracy with predicted
tumor segmentations or pathology images alone.

2 Methods

2.1 Custom designed U-Network for predicting tumor
segmentations

In Figure 2 we show our custom designed U-Network to predict tumor segmen-
tations from MRI images [4]. We trained our network on data from the Brain
Tumor Segmentation (BraTS) 2019 MICCATI challenge [5, 6]. We see our network
takes images in four modalities and predicts segmentations of three regions of
the tumor.
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Fig. 1. A typical cropped pathology image taken from the CPM-RadPath dataset with
a Grade IV tumor (class G)
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Fig. 2. Our custom designed multi-modal tumor segmentation network

2.2 Dual-path residual convolutional neural network

The ResNet18 architecture [7] uses residual connections between layers to pre-
vent gradient vanishing problems and is a highly successful approach. In Fig-
ure 3(a) and 3(b) we show the ResNetl8 convolutional neural network archi-
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tectures that we use separately on MRI and pathology images respectively. We
combine them in a dual-path model as shown in Figure 4.
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(a) ResNet18 for 3D brain MRI|(b) ResNet18 for pathology images
and for tumor segmentations

Fig. 3. Our ResNet18 networks for 3D tumor and pathology images. In each block is
shown the size and number of convolutional kernels all with stride 1 except for the first
convolutional block that has stride 2.
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Fig. 4. Our combined network model for both tumor segmentations and pathology
images. In each block is shown the size and number of convolutional kernels all with
stride 1 except for the first convolutional block that has stride 2.

2.3 Model training and parameters

We use the standard cross-entropy loss function [8] to predict the three tumor
classes. We implement our network using the Pytorch library [9].



6 Xue et al.

3D ResNetl8 training We train our network for 60 epochs, learning rate of
0.01, stochastic gradient descent with Nesterov, a batch size of 8, and no weight
decay.

2D ResNetl8 training We train our network for 100 epochs, learning rate
of 0.01, stochastic gradient descent with Nesterov, a batch size of 128, and no
weight decay.

Combined model training Our combined model takes in both tumor seg-
mentations and pathology images as input for each patient. For each tumor
segmentation we randomly pick 8 pathology images of the patient that go into
the same batch during training. If a patient has less than 8 pathology images
(which occur in some cases) we simply select randomly with replacement. At the
end of the 2D part of our combined model is an average operation that averages
the features of the 8 images into one layer that is then concatenated into the 3D
part (see Figure 4),

We train our network for 50 epochs, learning rate of 0.01, stochastic gradient
descent with Nesterov, a batch size of 8, and no weight decay.

Early stopping to prevent overfitting To prevent overfitting we train our
model until it reaches a 90% training accuracy. After that we will stop at the
epoch if loss increases in the following one.

2.4 Data preprocessing and augmentation

3D ResNet18 data preprocessing We normalize the data by subtracting the
mean and dividing by standard deviation to give 0 mean and unit variance. We
crop and pad original images from dimensions 240 x 240 x 155 to 160 x 192 x 160.

2D ResNet18 preprocessing We randomly crop each image from dimensions
512 x 512 to 224 x 224. We also study a center crop variant. We perform random
horizontal flip on images during both the training and inference processes.

Combined model preprocessing Here we preprocess the MRI images and
pathology ones using the same methods described above in the individual net-
works.

3 Results

We use our custom designed 3D network [4] for the Brain Tumor Segmentation
(BraTS) 2019 MICCALI challenge [5, 6] to predict tumor segmentations for each
MRI image. In Figure 5 we show tumor segmentations by our BraTS model for
each of the three different axial planes of a given slice of an MRI image. We
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see that the predicted tumor is highly accurate when compared with the true
tumor segmentation across all four image modalities. We conjecture that the
tumor position and size play a bigger role in determining the tumor type than
the entire MRI image. Thus we consider these as inputs to our models vs. the
original MRI images.

Tlce Flair Axial

Tlce Flair Coronal

Tlce

Sagittal

Fig. 5. Tumor segmentations given by our BraTS model in all three axial planes for
a given slice across four image modalities. We use the predicted tumor segmentations
(that we see are highly accurate in this example) as input to our model to classify the
tumor type.

We first examine our model training lose and accuracy. In Figure 6 we see the
training loss and accuracy of our models on the predicted tumor segmentations,
pathology images, and combined images model. In all three cases we see a high
training accuracy suggesting that we may be overfitting. In order to avoid this
we perform early stopping as described above.

We now proceed to the validation accuracies with different training datasets
in Table 1. First we see that indeed the tumor segmentations give a higher
validation accuracy of 77.1% than using MRI images alone which give 69.8%.
We also see that validation accuracy on pathology images alone is lower than
that of MRI and tumor images. In the case of random crops on pathology images
it varies between 66.2% and 69.2%.

Combining the MRI images with pathology images under random crops gives
us 78.7% validation accuracy whereas combining with tumor segmentations gives
us 81.6%. Finally combing MRI images with pathology under center crop also
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Fig. 6. Our individual and combined model training loss and accuracy.

gives 78.7% while combining tumor segmentations with pathology images under
center crop gives us the best validation accuracy of 84.9%.

Brain MRI images 69.8

Predicted tumor segmentations 77.1

Pathology (center crop) 66.2
Pathology (random crop) 66.2-69.2

Combined MRI + pathology (random crop)  78.7

Combined MRI + pathology (center crop) 78.7
Combined tumor + pathology (random crop) 81.6
Combined tumor + pathology (center crop)  84.9

Table 1. Validation accuracy from different training datasets

4 Conclusion

We show that with predicted tumor segmentations we can achieve a higher ac-
curacy for predicting tumor category than if we used the original MRI images.
We present a dual path residual convolutional neural network trained on both
tumor segmentations and pathology images simultaneously. We show that the
combined model achieves a higher accuracy of 84.9% than if we used the tumor
or pathology images alone which achieve 77.1% and 66.2% respectively.
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