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Abstract—Germline variants can be early useful predictors
of cancer risk. Here we present cross-study validation and
cross-validation of two brain cancers: Gliobastoma Multiforme
(GBM) and Lower Grade Glioma (LGG). We obtained whole
exome germline sequences of European ancestry individuals with
these cancers from The Cancer Genome Atlas and of European
ancestry control individuals from the 1000 Genomes Project. We
performed a rigorous quality controlled GATK procedure to
obtain variants with which we perform cross-study and cross-
validation experiments. We find our germline variants to be
highly predictive of both cancers in cross-study as well as in cross-
validation. Predicting LGG+controls from GBM+controls gives
an 89% accuracy and predicting vice versa is 88% accurate both
with the linear support vector machine classifier. We find that
the main bulk of accuracy comes from the SNP rs10792053 that
lies on gene OR9G1. We see that this SNP is in Hardy Weinberg
equilibrium and allele frequencies similar to previously published
in controls but not so in our cases. Our manual inspection of
alignments reveals nothing unusual in the cases. We find our
other top ranked SNPs to lie in genes known to be connected
to brain cancer and cancer in general. Our study here shows a
highly discriminative germline SNP for GBM and LGG cancer
but requires replication studies to further verify.

Index Terms—GBM, LGG, 1000 Genomes, Whole Exome
Sequencing, Prediction

I. INTRODUCTION

Estimating susceptibility to cancer from germline variants
is important for recommending regular screening that helps in
early cancer detection, and enhances patient chances of suc-
cessful treatment. Linkage analysis studies show that gliomas
may cluster within families [1]–[4]. Also, many genome-wide
association studies have identified germline genomic loci that
increase glioma risk [5]–[7].

In our work, we look into the collective germline SNPs
predictive ability for brain cancer predisposition. We pre-
form a Genome Analysis Toolkit (GATK) joint germline
SNPs discovery workflow for TCGA Gliobastoma Multiforme
(GBM) and Lower-Grade Glioma (LGG) white individual
cases and 1000 Genomes Project white individual controls .
We discarded SNPs that failed GATK Variant Quality Score

Recalibration soft filtering or hard filtering (genotype quality
≤20, depth ≤ 5, or missing genotype) quality control from
further machine learning analysis.

On the training set, we excluded SNPs with zero variance
and scaled each SNP so that it remains between zero and one.
Then, we selected the best K SNPs based on chi-squared test
value. For cross-validation, we combined 1K Genomes Project,
GBM, and LGG samples and their common SNPs. We split
the data into 10-fold (90% for training and 10% for testing)
and learned a predictive model with SVM and random forest
classifiers. In each training fold, we cross-validated SVM cost
hyperparameter and the number of trees to grow for RF with
3-fold for each top K selected SNPs. We then measured the
predictive ability with average balanced accuracy across all
folds. For cross-study, we ran linear SVM on best K selected
SNPs on 50% randomly selected samples from 1K Genomes
Project and GBM, and predict LGG and the remaining half of
1K Genomes Project samples.

To confirm that all samples came from the same population
and that the classification of cases and controls is not due
to ethnicity differences, we performed principles component
analysis on the entire dataset (before feature selection) and
projected the first two principal components. There we see
that the individuals are related. SNPs departure from Hardy-
Weinberg Equilibrium (HWE) can be a sign of genotyping
error or population stratification. Top SNPs in controls that
violate HWE are removed from further machine learning
analysis. We used Plink to perform HWE with exact test since
using chi-squared test is not suitable for multi-allelic sites.

We show that we can predict GBM and LGG white in-
dividual cases and 1000 Genomes Project white individual
controls with 90% mean balanced accuracy of 10-fold cross-
validation (CV) when learning in best 10 germline variants
selected by chi-squared value with support vector machine
(SVM) and random forest (RF). In cross-study, learning with
GBM+controls and predicting LGG achieved 89% balanced
accuracy, and 88% balanced accuracy the other way around.



The most contribution to the accuracy comes from SNP
rs10792053. When we removed this SNP cross-validation
mean balanced accuracy drops to 54% with top 10 SNPs, and
50% in cross-study. We looked into the original alignments of
SNP rs10792053 in cases and controls samples with the Inte-
grative Genomics Viewer (IGV). In both cases and controls,
reads coverage and mapping quality at this locus were high.

II. METHODS

A. Data

For case individuals, we obtained white normal samples
(germline) whole-exome sequencing (WES) data pre-aligned
to Genome Reference Consortium Human Build 38 (GRCh38)
in binary alignment map (BAM) format from The Cancer
Genome Atlas (TCGA) through National Cancer Institute’s
Genomic Data Commons (GDC) portal for two brain cancer
studies (males: 477, females: 331, mean age: 52.08). For
control individuals, we downloaded Europeans samples WES
pre-alined to GRCh38 in CRAM format from 1000 Genomes
Project phase 3 (males: 250, females: 297). In our analysis, we
considered only white individuals, to reduce race differences
effect on phenotype occurrence. We then performed a variant
calling workflow followed by a machine learning pipeline on
these samples. Table I summarizes cohort studies used in our
analysis. In Table II, we show the number of SNPs for 1K,
GBM, and LGG as well as common SNPs after applying
soft+hard filtering.

TABLE I
SAMPLES POPULATION

Population (sub-population) Count
1K Genomes Project (CEU) 102
1K Genomes Project (FIN) 105
1K Genomes Project (GBR) 102
1K Genomes Project (IBS) 108
1K Genomes Project (TSI) 112

1K Genomes europeans (all) 529
GBM white (not hispanic) 274

GBM white (hispanic) 5
GBM white (not reported) 58

GBM white (all) 337
LGG white (not hispanic) 421

LGG white (hispanic) 27
LGG white (not reported) 23

LGG white (all) 471

B. Joint genotyping

For germline variant discovery, we used the Genome Anal-
ysis Toolkit (GATK) version 4 [8]. GATK HaplotypeCaller
variant calling walker produces an intermediate Genomic Vari-
ant Call Format (GVCF) file for each sample. We pooled the
intermediate GVCF files of all samples together for genotyping
by passing it to GATK genotypeGVCFs to obtain a VCF file
for samples cohort. Passing samples GVCFs with the whole-
exome regions is computationally intensive, to speed up the
variants calling workflow we divide each chromosome into
roughly 10 equal intervals in a scatter and gather fashion
and run it simultaneously on a cluster. Figure 2 illustrates the

joint variant discovery workflow. After obtaining the final VCF
file, we applied quality control measures to reduce sequencing
artifacts and false-positive genotypes.

C. SNPs encoding

The output of the GATK GenotypeGVCFs tool is in a VCF
format. In the header, it has the reference base (REF), one of
A, C, G, T, N bases, and alternate non-reference alleles (ALT)
base(s). It is possible but not common to have a multiallelic
site (two or more ALT bases). We considered all permutations
of genotypes to use as input features to learn a predictive
model. A SNP encoding to a numerical value is an essential
pre-processing step to machine learning. We encoded each
SNP as follow:

4×A+B (1)

where A and B are the two alleles (copies) for a given sample
at a particular locus of the genome.

Fig. 1. A toy example for encoding a multiallelic site

TABLE II
SNPS COUNT AFTER APPLYING SOFT+HARD FILTERING

Number of SNPs
1000 Genomes Project 184690

GBM 297106
LGG 485115

Common SNPsa 118439
aIntersection of 1000 Genomes+GBM+LGG SNPs.

D. Missing genotypes

In GATK, a genotype with low supporting reads is encoded
as “./.” to denote no variant call was made at that site for a
given sample. Imputation is a method that is commonly used
in GWA studies to increase the number of genotypes in the as-
sociation analysis. Imputation algorithms predict ungenotyped
loci in individuals that were genotyped on a subset of loci of
SNPs chip to boost SNPs array coverage utilizing haplotype
information across samples and HapMap data as an imputation
reference panel [9]–[11]. In our study, we excluded column
features that have a missing genotype from any sample from
further analysis. Thus, we eliminated the need for imputation.



Fig. 2. Germline SNPs calling pipeline

E. Variants calling quality control

GATK HaplotypeCaller by default excludes sites with map-
ping quality (MAPQ) ≤ 20. In our analysis, we used two
layers of quality controls: SNPs soft filtering followed by
hard filtering to minimize false-positive SNPs. To confirm that
the samples came from the same population, we ran principal
components analysis (PCA) on the whole dataset before SNPs
selection. In Figure 3, the projection of the first two compo-
nents shows that the samples are related. We removed the two
outlier samples and replotted PCA projections of the first two
components in Figure 4, and case and control individuals don’t
form distinct clusters. We used Plink version (1.9) [12] to test
for departure from Hardy Weinberg equilibrium with an exact
test in control samples. We excluded SNPs that deviate from
HWE. Only top SNPs in HWE are included in the analysis,
Table III shows the exact test p-values of top 10 SNPs in
control individuals from 1000 Genomes Project dataset

TABLE III
HARDY WEINBERG EQUILIBRIUM EXACT TEST PVALUES ON TOP

SELECTED 10 SNPS IN CONTROL INDIVIDUALS FROM 1000 GENOMES
PROJECT

SNP Observed het Expected het P-value
rs80356578 0.06049 0.05866 1

rs150707706 0.03592 0.03527 1
rs143139551 0.03214 0.03162 1
rs145172249 0.04159 0.04072 1
rs148782546 0.02268 0.02243 1
rs10792053 0.2042 0.2069 0.6774

rs144518683 0.02268 0.02243 1
rs140561687 0.03025 0.02979 1
rs138772802 0.03403 0.03345 1
rs147042091 0.02836 0.02795 1

Fig. 3. Projection of principal component analysis first two components

Fig. 4. Projection of principal component analysis first two components after
excluding the two outliers

F. Soft filtering

We used the GATK variant quality recalibration score
(VQSR) that uses machine learning by training on external
databases with known variant sites, and then it assigns a
probability score to each variant in the cohort. We set the
truth sensitivity filter for VQSR to a 99.0% threshold. We
used the following VCF annotations with VQSR to build a
recalibration model: InbreedingCoeff, QD, MQ, MQRankSum,
ReadPosRankSum, FS, SOR. variants that failed soft filtering
are removed from further analysis.



G. Hard filtering
At the sample level, variant sites that have genotype quality

(GQ) > 20 and depth (DP) > 5 for all samples are considered.
DP is the number of reads to support the genotyping, and
GQ is a confidence score between 0 and 99, the higher the
more confident the program in its assigned genotype. We used
BCFtools (version 1.3) [13] for hard filtering and to extract
VCF fields into table format.

H. Soft+hard filtering
We included only SNPs that passed both soft filtering and

hard filtering for further machine learning analysis.

I. Feature scaling
Features with zero variance in training split were removed.

The remaining features were linearly transformed based on the
training subset using Min-Max normalization to keep the data
between 0,1 while preserving distance. We used scikit-learn
[14] minMaxScaler and the implementation is as follow:

X ′ =
X −Xj(min)

Xj(max) −Xj(min)
× (Xmin−Xmax+Xj(min)) (2)

Where X ′ is the transformed training data, Xj(min) and
Xj(max) is the minimum and maximum values at the j-th
SNP in the original data, Xmin − Xmax is the SNP range.
We applied the exact same transformation to validation data
where we determined SNPs min and max from training data
only.

J. Chi-squared features selection
Top SNPs are selected based on the chi-squared statistic

between each SNP and the label. In the chi-squared test, a
higher value is an indicator of dependence between the SNP
and the label. We ranked SNPs based on their chi-squared
value using the scikit-learn chi2 function.

χ2 =

n∑
i

(Oi − Ei)
2

Ei
(3)

where n is the number of classes. Oi is the sum of SNP alleles
encoding for the ith class. f =

∑n
i Oi, and Ei = 1/n×f

Table IV shows top chi2-ranked 1K+GBM+LGG common
SNPs .

K. Classifiers
We used support vector machines (SVM) with linear kernel

[15] and random forest (RF) [16] classifiers using scikit-learn
package [14].

1) Support vector machine: SVM finds a hyperplane that
maximizes the distance between classes:

min
w,w0

||w||2

2
+ C max(0, 1− yi(wTxi + w0) (4)

were xi is a genotype vector of the ith individual, yi is the
label, w is a weight vector, C is a regularization parameter.
max(0, 1 − yi(wTxi + w0) is the hinge loss and the sign of
(wTxi+w0) assigns the input x into class −1 or +1. We cross-
validated the C hyperparameter with 3-fold cross-validation
from the list (0.1, 1).

TABLE IV
TOP SNPS FOR 1K GENOMES, GBM AND LGG

1000 Genomes, GBM and LGG
Alt allele frequency

1K Genomes GBM+LGG SNP rs ID Chi2 score
0.0302 0.0068 rs80356578 21.84
0.0180 0.0019 rs150707706 20.15
0.0161 0.0006 rs143139551 22.67
0.0208 0.0006 rs145172249 30.26
0.0113 0 rs148782546 18.33
0.1096 0.4963 rs10792053 50.63
0.0113 0 rs144518683 18.33
0.0151 0 rs140561687 24.44
0.0170 0 rs138772802 27.49
0.0142 0.0006 rs147042091 19.65

TABLE V
TOP SNPS FOR 1K GENOMES AND GBM

1K Genomes and GBM
Alt allele frequency

1K Genomes GBM SNP rs ID Chi2 score
0.0047 0.0237 rs140717526 12.28
0.0038 0.0341 rs782010133 12.78
0.0076 0.0312 rs779492064 13.69

0 0.0134 rs202040378 14.13
0.0009 0.0148 rs146032550 12.51
0.0019 0.0386 rs759512484 34.27
0.0009 0.0163 rs76672487 14.05
0.0009 0.0148 rs148088117 12.51
0.1096 0.4926 rs10792053 42.67
0.0019 0.0341 rs768904765 24.25

TABLE VI
TOP SNPS FOR 1K GENOMES AND LGG

1K Genomes and LGG
Alt allele frequency

1K Genomes LGG SNP rs ID Chi2 score
0.0302 0.0074 rs80356578 13.30
0.0076 0.0308 rs12721607 14.53
0.0009 0.0159 rs35723440 13.97
0.0208 0 rs145172249 19.59
0.0076 0.0297 rs2232449 13.60
0.0236 0.0032 rs61734485 14.88
0.0085 0.0329 rs2069548 14.84
0.1096 0.4989 rs10792053 45.18
0.0151 0 rs140561687 14.25
0.0170 0 rs138772802 16.03

2) Random forest: RF is an ensemble method that builds
decision trees by selecting random samples with replacement
to construct each tree and randomly generating a subset of
features to choose from for each candidate split, the one with
the highest Gini impurity or entropy, then it takes the majority
vote of trees predictions to output a class prediction. We used
the default parameters for the quality measure of the split,
and 3-fold cross-validation from the list (100, 1000) for the
number of trees to construct.

L. Performance metrics

Since classes are imbalanced in the studies included in our
analysis, it is inappropriate to used accuracy as a measure



of classifiers performance. We used balanced accuracy for
performance evaluation. Balanced accuracy is the average of
true positive rate and true negative rate.

Balanced accuracy =
( true positive

postiive + true negative
negative )

2
(5)

III. RESULTS

A. Cross-validation

With chi-squared statistic best 10 SNPs, linear SVM
and RF achieved 90% mean balanced accuracy of 10-fold
cross-validation when predicting 1K Genomes controls and
GBM+LGG cases. The predictive ability deteriorates when
we consider all SNPs to 65% and 54% for SVM and RF,
respectively. Figure 6 shows results for predicting three-classes
of 1K Genomes, GBM, and LGG with linear SVM, one-
vs-one, mean balanced accuracy attained is 68% on top 10
SNPs, however, the accuracy drops to 46% with all SNPs.
The accuracy declines as we add more SNPs in both binary
and three class classification of glioma subtypes individuals
and control individuals.

Fig. 5. 10-fold cross-validation learning and classifying binary labels

Fig. 6. 10-fold cross-validation of learning and classifying 3-class labels

B. Cross-study validation

To test the generalization of the model, we trained the
data on GBM and randomly selected 50% of 1K Genomes

samples, and predict the labels of the unseen LGG dataset and
the remaining 50% of 1K Genomes samples. Top 10 ranked
SNPs obtained the highest balanced accuracy of 89%, again
we see the advantage of ranking the SNPs with chi-squared as
we included more SNPs to learn the model, where the worst
accuracy attained by considering all SNPs with 63%. We also
tested the accuracy the other way around, where we learned in
LGG and 50% randomly selected samples from 1K Genomes
and predict the labels of GBM and the remaining 50% samples
of 1K Genomes. We observed the same thing where ranking
the SNPs with chi-squared boost the balanced accuracy from
60% with all SNPs to 88% with only 10 SNPs. As expected,
ranking SNPs by their dependence on labels improved the
balanced accuracy greatly on all cross-validation and cross-
study validation experiments.

Fig. 7. Cross-study validation

C. Cancer significance of top ranked SNPs

A point mutation could be nonsynonymous (missense, or
nonsense) or synonymous (silent). Missense mutations, which
is a change in a single nucleotide that substitutes amino
acid encoding and influences protein function [17] [18], are
heavily investigated in cancer research because it can alter
protein function. Synonymous mutations are often called silent
mutations due to their inability to change the amino acid
sequence, therefore, these mutations usually are disregarded
in cancer research [18]. However, synonymous variants can
affect protein folding, and thus it plays a role in cancer [19].
In this work, we investigated both synonymous and nonsyn-
onymous variants. SNPs rs76672487 (in gene ABCC2) and
rs2069548 (in gene TG) are cancer-related genes according to
The Human Atlas Protein. SNP rs76672487 ranked fifth on
the selected SNPs by chi-squared from the GBM+1K dataset,
while SNP rs2069548 ranked fourth on 1K+GBM top SNPs. In
the 1K+GBM+LGG dataset’s top 10 ranked SNPs, six genes
are reported by The Human Atlas Protein to be prognostic
markers for survival in glioma, liver, renal, cervical, urothelial,
pancreatic, and endometrial cancers based on gene expression



FPKM values. Tables VII through IX show top-ranked genes
in the 1K+GBM+LGG, 1K+GBM, and 1K+LGG datasets that
are prognostic for survival time in cancer. five genes in top-
ranked in the 1K+GBM+LGG dataset are expressed in all
cancers according to the The Human Atlas Protein. KCNC2
gene is expressed in breast and prostate cancers. P4HA3 gene
is expressed in pancreatic, breast, renal, glioma, and lung
cancers. Genes OR9G1 and OTOF are not expressed in cancer.
Tables X through XII show the genes that are expressed in
cancer in top-ranked SNPs in the 1K+GBM+LGG, 1K+GBM,
and 1K+LGG datasets.

TABLE VII
1K, LGG, AND GBM TOP RANKED SNPS GENES EXPRESSION WITH

SIGNIFICANT (p < 0.001) ASSOCIATION WITH PATIENT SURVIVAL

Gene Survival prognostic marker in cancer
OTOF No
EAF2 Prognostic marker.

ALPK1 Prognostic marker.
LOC108783645, HFE No

PTPRJ Prognostic marker.
OR9G1 No
P4HA3 Prognostic marker.
ATF7IP Prognostic marker.
PLBD1 Prognostic marker.
KCNC2 No

TABLE VIII
1K AND GBM TOP RANKED SNPS GENES EXPRESSION WITH

SIGNIFICANT (p < 0.001) ASSOCIATION WITH PATIENT SURVIVAL

Gene Survival prognostic marker in cancer
SARS Prognostic marker
CA14 No
LHX9 No
DGKG No
OSMR Prognostic marker.

DMXL1 Prognostic marker.
ABCC2 Prognostic marker.
OR56B4 No
OR9G1 No
ZNF641 Prognostic marker.

TABLE IX
1K AND LGG TOP RANKED SNPS GENES EXPRESSION WITH SIGNIFICANT

(p < 0.001) ASSOCIATION WITH PATIENT SURVIVAL

Gene Survival prognostic marker in cancer
OTOF No
NR1I2 No
IGSF10 No

LOC108783645, HFE No
MICAL1, ZBTB24 Prognostic marker.

CA1 No
TG No

OR9G1 No
ATF7IP Prognostic marker.
PLBD1 Prognostic marker.

D. SNP rs10792053 mapping quality
To confirm that there is no issue with reads mapping quality

or coverage, we inspected eight individuals from both cases

TABLE X
TOP SNPS FOR 1K GENOMES, GBM AND LGG GENES AND FUNCTIONAL

CONSEQUENCES

1K Genomes, GBM, and LGG

rs ID Gene Functional consequence
Cancer

mRNA expression
rs80356578 OTOF synonymous Not detected

rs150707706 EAF2 missense Expressed in all
rs143139551 ALPK1 missense Expressed in all
rs145172249 HFE intron variant Expressed in all
rs148782546 PTPRJ synonymous Expressed in all
rs10792053 OR9G1 synonymous Not detected

rs144518683 P4HA3 synonymous Mixed
rs140561687 ATF7IP missense Expressed in all
rs138772802 PLBD1 intron Expressed in all
rs147042091 KCNC2 missense Group enriched

TABLE XI
TOP SNPS FOR 1K GENOMES, GBM GENES AND FUNCTIONAL

CONSEQUENCES

1K Genomes and GBM

rs ID Gene Functional consequence
Cancer

mRNA expression
rs140717526 SARS missense Expressed in all
rs782010133 CA14 missense Group enriched
rs779492064 LHX9 intron Mixed
rs202040378 DGKG intron Tissue enhanced
rs146032550 OSMR synonymous Expressed in all
rs759512484 DMXL1 missense Expressed in all
rs76672487 ABCC2 intron Tissue enhanced

rs148088117 OR56B4 missense Not detected
rs10792053 OR9G1 synonymous Not detected

rs768904765 ZNF641 intron Expressed in all

TABLE XII
TOP SNPS FOR 1K GENOMES, LGG GENES AND FUNCTIONAL

CONSEQUENCES

1K Genomes and LGG

rs ID Gene Functional consequence
Cancer

mRNA expression
rs80356578 OTOF synonymous Not detected
rs12721607 NR1I2 missense Group enriched
rs35723440 IGSF10 synonymous Mixed

rs145172249 HFE intron Expressed in all
rs2232449 ZBTB24 synonymous Expressed in all
rs61734485 CA1 missense Group enriched
rs2069548 TG missense Tissue enriched
rs10792053 OR9G1 synonymous Not detected

rs140561687 ATF7IP missense Expressed in all
rs138772802 PLBD1 intron Expressed in all

and controls alignments with Integrative Genomics Viewer
(IGV) with the original reads mapping at locus 11:56701017
and its adjacent loci.

Figure 8 shows alignments with IGV of four samples from
cases vs four from controls against the GRCh38 reference
genome. The red arrow in Figure 8 points SNP rs10792053
position. The tangerine color in the tracks at the position refers
to allele C and the green refers to reference allele A.

In IGV, if both allele copies in the sample is homozy-



gous reference, then it is shown in gray. Three of the four
cases viewed are heterozygous and the remaining one is
homozygous alternate allele. All controls in the figure are
homozygous reference. In IGV we set the mapping quality
threshold to 1 since GATK HaplotypeCaller discards reads
with a mapping quality of 0. The original alignments of
both cases and controls have high coverage at this location.
Although GATK HaplotypeCaller reassembles alignments at
active regions and discards original alignments, the final VCF
is consistent with what we observed in original alignments. For
SNP rs10792053, the average depth across all cases is 407.15
and across all controls is 63.58. These average depths are after
running the GATK germline variant discovery workflow. We
tested for Hardy Weinberg equilibrium exact test in controls
individual and the p-value is 0.677, which confirms that this
SNP is in HWE, however, it is out of HWE in cases.

Fig. 8. Alignments of four cases vs four controls at SNP rs10792053 the
upper four tracks for cases (LGG, GBM) viewed with IGV

E. Alternate allele frequency of top SNPs

Table XIII shows the alternate allele frequency of dbSNP
1K Europeans samples, GBM, LGG and 1K samples that
are considered for our study, which is slightly larger than
1K Genomes sample size in dbSNPs since we downloaded
samples from 1000 Genomes Project phase 3. For example,
SNP rs80356578 sample size in dbSNP is 503 and the sample
size for our 1K Genomes is 526. Our alternate allele frequency
is close to what is reported by dbSNP for 1000 Genomes
Project Europeans samples.

IV. CONCLUSION

We show that we can predict glioma cases with few
germline SNPs selected based on the chi-squared statistics
with 90% mean balanced accuracy in cross-validated TCGA
GBM and LGG white individual cases and 1000 Genomes
Project Europeans controls whole-exome sequences with linear
SVM and random forest. We also show that in cross-study lin-
ear SVM achieves 89% predictive accuracy when learning with
GBM+controls and predicting LGG and 88% contrariwise on

TABLE XIII
1K, GBM, AND LGG TOP RANKED SNPS ALTERNATE ALLELE

FREQUENCIES

rs ID dbSNP (EUR) Controls Cases
rs80356578 A=0.029 0.0302 0.0068
rs150707706 C=0.019 0.0179 0.0018
rs143139551 A=0.017 0.0160 0.0006
rs145172249 C=0.019 0.0207 0.0006
rs148782546 T=0.012 0.0113 0
rs10792053 G=0.116 0.1096 0.4962
rs144518683 C=0.012 0.0113 0
rs140561687 T=0.016 0.0151 0
rs138772802 C=0.017 0.0170 0
rs147042091 C=0.013 0.0141 0.0006

the top-ranked germline SNPs. Most of the accuracy comes
from SNP rs10792053, a replication study is needed to verify
its discriminative power in glioma.
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