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Summary 
 
Sequence alignment remains a fundamental task in bioinformatics. The literature contains 

programs that employ a host of exact and heuristic strategies available in computer science. 

Probcons was the first program to construct maximum expected accuracy sequence alignments 

with hidden Markov models and at the time of its publication achieved the highest accuracies on 

standard protein multiple alignment benchmarks. Probalign followed this strategy except that it 

used a partition function approach instead of hidden Markov models. Several programs 

employing both strategies have been published since then. In this chapter we describe Probcons 

and Probalign. 

 

Keywords sequence alignment, expected accuracy, hidden Markov models, partition 

function 

 

1. Introduction 
 
Multiple protein sequence alignment is one of the most commonly used task in bioinformatics 

[1]. It has widespread applications that include detecting functional regions in proteins [2] and 

reconstructing complex evolutionary histories [1,3]. Techniques for constructing accurate 

alignments are therefore of great interest to the bioinformatics community.  

 



ClustalW [4] is one of the earliest multiple sequence aligners and remains popular to date. Other 

programs include Dialign [5], T-Coffee [6], MUSCLE [7], and MAFFT [8]. Given the 

importance of multiple sequence alignment, several protein alignment benchmarks have been 

created for unbiased accuracy assessment of alignment quality. Of these, BAliBASE [9,10,11] is 

by far the most commonly used. The BAliBASE benchmark alignments are computed using 

superimposition of protein structures. 

 

Prior to Probcons [12] most programs optimized the sum-of-pairs score of a multiple alignment 

or computed the Viterbi alignment [3]. Probcons computes the maximal expected accuracy 

alignment instead. The expected accuracy of an alignment is based upon posterior probabilities 

of residues [3,12,13,14]. Probcons computes these probabilities using a Hidden Markov Model 

(HMM) for pairwise sequence alignment. The HMM parameters are learned using unsupervised 

learning on the BAliBASE 2.0 benchmark.  

 

Probalign [13] on the other hand estimates amino acid posterior probabilities from the partition 

function of alignments as described by Miyazawa [14]. It then proceeds to compute the maximal 

expected accuracy multiple sequence alignment by following the strategy of Probcons. We first 

describe both methods of computing posterior probabilities in detail below. We then describe the 

Probcons alignment algorithm that makes use of the probabilities to output a final alignment. 

Probalign follows the same approach. 

 

2. Methods 
 
2.1 Posterior probabilities for expected accuracy sequence alignment 



The expected accuracy of an alignment is based upon the posterior probabilities of aligning 

residues in two sequences. Consider sequences x and y and let a* be their true alignment. 

Following the description in Do [12] the posterior probability of residue xi aligned to yj in a* is 

defined as 

 

<Equation 1> (1) 

 

where A is the set of all alignments of x and y and 1(expr) is the indicator function which returns 

1 if the expression expr evaluates to true and 0 otherwise. P(a|x,y) represents the probability that 

alignment a is the true alignment a*. This can easily be calculated using a pairwise HMM if all 

the parameters are known (described below). From hereon we represent the posterior probability 

as P(xi ~ yj) with the understanding that it represents the probability of xi aligned to yj in the true 

alignment a*. 

 

According to equation (1) as long as we have an ensemble of alignments A with their 

probabilities P(a|x,y) we can compute the posterior probability P(xi ~ yj) by summing up the 

probabilities of alignments where xi is paired with yj . Probcons uses hidden Markov models 

while Probalign uses the partition function of sequence alignments to generate the ensemble. 

 

2.2 Posterior probabilities by hidden Markov models 

Probcons uses a basic sequence alignment hidden Markov model (HMM) shown in Figure 1 

below.  

<Figure 1> 



 

 

The emission probabilies for the hidden states M, Ix and Iy are given by p(xi,yj), q(xi), and q(yj) 

where xi is the ith residue of sequence x and yj defined correspondingly. The terms δ and  ε 

represent transition probabilities for gap open and gap extensions. The probability of a sequence 

alignment under this model is well-defined and the one with the highest probability can be found 

with the Viterbi algorithm [3]. The posterior probabilities can then be obtained by 

 

<Equation 2> 

 

In the above equation f(i,j) is the sum of all probabilities of all alignments of x1..i and y1..j where 

x1..i are the first i characters of sequence x and y1..j is defined the same way. The term b(i,j) is the 

sum of all probabilities of all alignments of xi+1..m and yj+1..n where m and n are the lengths of 

sequences x and y respectively. And finally P(x,y) is the sum of the probabilities of all 

alignments of x and y under the model. These can be obtained by modifying the Viterbi 

algorithm to add instead of taking the max as shown in Durbin [3]. 

 

2.3 Posterior probabilities by partition function 

Amino acid scoring matrices that are normally used for sequence alignment are represented as 

log-odds scoring matrices as defined by Dayhoff [15]. The commonly used sum-of-pairs score of 

an alignment [3] is defined as the sum of residue-residue pairs and residue-gap pairs under an 

affine penalty scheme. 

 



<Equation 3> 

 

Here T is a constant and set according to the scoring matrix, Mij is the mutation probability of 

residue i changing to j and fi and fj are background frequencies of residues i and j. In fact, it can 

be shown that any scoring matrix corresponds to a log odds matrix [16,17]. Miyazawa [14] 

proposed that the probability of alignment P(a) of sequences x and y can be defined as 

 

<Equation 4>           

 

where S(a) is the score of the alignment under the given scoring matrix. In this setting one can 

then treat the alignment score as negative energy and T as the thermodynamic temperature, 

similar to what is done in statistical mechanics. Analogous to the statistical mechanical 

framework Miyazawa [14] defined the partition function of alignments as 

 

<Equation 5>       

 

where A is the set of all alignments of x and y. With the partition function in hand the probability 

of an alignment a can now be defined as 

 

<Equation 6>           

 



As T approaches infinity all alignments are equally probable, whereas at small values of T only 

the nearly optimal alignments have the highest probabilities. Thus, the temperature parameter T 

can be interpreted as a measure of deviation from the optimal alignment.  

 

The alignment partition function can be computed using recursions similar to the Needleman-

Wunsch dynamic algorithm. Let ZM
ij represent the partition function of all alignments of x1..i and 

y1..j ending in xi paired with yj, and Sij(a) represent the score of alignment a of x1..i and y1..j. 

According to equation (2)  

 

<Equation 7> 

 

where Aij is the set of all alignments of x1..i and y1..j, and s(xi,yj) is the score of aligning residue xi 

with yj. The summation in the bracket on the right hand side of the above equation is precisely 

the partition function of all alignments of x1..i-1 and y1..j-1. We can thus compute the partition 

function matrices using standard dynamic programming. 

 

<Equation 8>    

 

Here s(xi,yj) represents the score of aligning residue xi with yj, g is the gap open penalty, and ext 

is the gap extension penalty. The matrix ZM
ij represents the partition function of all alignments 

ending in xi paired with yj. Similarly ZE
ij represents the partition function of all alignments in 

which yj is aligned to a gap and ZF
ij all alignments in which xi is aligned to a gap. Boundary 

conditions and further details can be obtained from Miyazawa [14].  



 

Once the partition function is constructed, the posterior probability of xi aligned to yj can be 

computed as 

 

<Equation 9>     

 

where Z’M
i,j is the partition function of alignments of subsequences xi..m and yj..n beginning with xi 

paired with yj  and m and n are lengths of x and y respectively. This can be computed using 

standard backward recursion formulas [3]. In the above equation ZM
i-1,j-1/Z and Z’M

i+1,j+1/Z 

represent the probabilities of feasible suboptimal alignments (as determined by the T parameter) 

of x1..i-1 and y1..j-1, and xi+1.m and yj+1..n respectively, where m and n are lengths of x and y 

respectively. Thus, the equation weighs alignments according to their partition function 

probabilities and estimates P(xi ~ yj) as the sum of probabilities of all alignments where xi is 

paired with yj.    

 

2.4 Maximal expected accuracy alignment 

Given the posterior probability matrix P(xi ~ yj), we define the expected accuracy of the 

alignment of x and y as  

 

<Equation 10> 

 

The maximum expected accuracy alignment score is computed by dynamic programming using 

the following recurrence described in Durbin [3]. 



 

<Equation 11>      

 

The first row and column of A are set to zero. The alignment score is given by A(|x|,|y|) where |x| 

and |y| denote the lengths of sequences x and y. The actual alignment of x and y can be recovered 

by keeping track of which cell the maximum value is obtained from for each entry of A [3]. 

  

Both Probcons and Probalign first estimate posterior probabilities for amino acid residues for all 

pairs of protein sequences in the input. Probcons introduced a number of new approaches for 

constructing a multiple alignment with posterior probabilities for all pairs of sequences. It first 

performs a probabilistic consistency transformation to improve posterior probabilities with the 

aid of a third sequence [12]. It then adapts three standard approaches in multiple sequence 

alignment, namely construction of a guide-tree, progressive alignment, and iterative refinement 

to the expected accuracy alignment approach. The guide-tree construction is similar to UPGMA 

[18] except that expected accuracies are used to measure distance between clusters [12]. Profile-

profile alignment [3], another standard technique in multiple sequence alignment, is extended to 

incorporate expected accuracies which facilitates the progressive and iterative alignment 

strategies. Probalign follows all of these procedures for constructing its multiple alignment. 

 

3. Practical Issues 
 

Probalign is freely available at http://probalign.njit.edu [19] with gap penalties optimized for 

standard protein and RNA alignment benchmarks and Probcons is available from its authors. In 



terms of running time both Probcons and Probalign are slower than several previous approaches 

and so the alignment of thousands of sequences remains a challenge. Some runtime 

improvements have been made to Probalign and the most recent version 1.4 (at the time of 

writing this chapter) is considerably faster than earlier ones. 

 

The Probalign webserver, also called eProbalign, provides a useful tool for eliminating poorly 

aligned columns. The problem of determining reliably aligned columns frequently comes up in 

practice. eProbalign provides one solution by averaging pairwise posterior probabilities in each 

column and displaying them in different shades of red. The server also allows the alignment to 

be saved in text and pdf formats. 

 

In practice Probalign outperforms existing programs by large margins when the data contains 

sequences of varying lengths [13]. Thus it is particularly suitable for protein and RNA datasets 

where the sequence length variation is high. 

 

The alignment of genomic length DNA sequences pose a runtime challenge to Probalign and 

Probcons. Both work best for protein and RNA sequences. However, the program Pecan [20] and 

webserver plastrna.njit.edu [21] adapt the expected accuracy approach for genome analysis. The 

former is for genome alignment while the latter searches for evolutionary related RNAs in 

genomes. 
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5. Figure captions 

Figure 1: Hidden Markov model for pairwise sequence alignment 

 

 


