Supplementary material

RNA-genome benchmark

Table 1 below lists some characteristics about the 22 RNA families in our benchmark. We first created subsets of each RFAM seed family alignment containing a maximum of 50 randomly selected sequences. For each subset we then follow the directions listed in the main paper to construct the benchmark.

Table 1: Statistics for all 22 RFAM RNA families used in our study 

	RFAM RNA family
	Average pairwise sequence identity
	Sequence length standard deviation
	Number of sequences in seed family alignment
	Number of pairwise alignments in benchmark

	5S_rRNA
	55
	2.58
	50
	49

	U1
	56
	6.67
	50
	141

	tRNA
	39
	4.9
	50
	342

	RNaseP_bact_a
	59
	37.78
	50
	143

	RNaseP_bact_b
	59
	37.84
	50
	23

	U3
	45
	55.94
	21
	20

	U4
	56
	11.04
	26
	69

	SRP_euk_arch
	45
	10.45
	50
	331

	tmRNA
	40
	31.51
	50
	342

	Intron_gpI
	43
	77.46
	30
	71

	SECIS
	41
	3.16
	50
	347

	IRE
	54
	1.43
	39
	231

	THI
	55
	17.99
	50
	347

	Hammerhead_1
	56
	31.95
	50
	49

	Purine
	50
	0.85
	12
	59

	Lysine
	45
	8.47
	19
	147

	SRP_bact
	50
	9.19
	42
	348

	SSU_rRNA_5
	48
	128.30
	50
	97

	T-box
	51
	2.49
	14
	62

	glmS
	50
	26.90
	6
	19

	RNaseP_arch
	51
	67.61
	34
	156

	IRES_Cripavirus
	49
	4.92
	7
	36


Program command line parameters

In the descriptions below <data> refers to unaligned query and genome sequence in FASTA format and <query> and <genome> refer to the separate sequences also in FASTA format.

Probalign:
probalign –nuc –T 7 –go 32 –ge 2 <data>

SSEARCH:
ssearch –H –q –d 1 –a -3 –f 10 –e 4  -O ssearch.out  <query> <genome>

BLAST:
bl2seq –p blastn –G 8 –E 6 –W 4 –S 1 –r 5 –q -4 –i <query> -j <genome>

ClustalW:
clustalw –infile=<data> -outorder=input –output=fasta –outfile=cw.out

HMMER:
(1) hmmbuild –nucleic –informat=PHYLIP –f –F model.hmm <query>



(2) hmmsearch model.hmm <genome>

Probalign

We first explain the maximal expected accuracy alignment methodology and how match or posterior probabilities are used. We then explain how to compute these probabilities using partition function matrices and finally tie it with expected accuracy alignment in the Probalign program.
Posterior probabilities and maximal expected accuracy alignment

Most alignment programs compute an optimal sum-of-pairs alignment or a maximum probability alignment using the Viterbi algorithm (Durbin et al., 1998). An alternative approach is to search for the maximum expected accuracy alignment (Durbin et al., 1998; Do et al., 2005). The expected accuracy of an alignment is based upon the posterior probabilities of aligning residues in two sequences. 

Consider sequences x and y and let a* be their true alignment. Following the description in (Do et al., 2005) the posterior probability of residue xi aligned to yj in a* is defined as
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(1) 



where A is the set of all alignments of x and y and 1(expr) is the indicator function which returns 1 if the expression expr evaluates to true and 0 otherwise. P(a|x,y) represents the probability (our belief) that alignment a is the true alignment a*. From hereon we represent the posterior probability as P(xi ~ yj) with the understanding that it represents the probability of xi aligned to yj in the true alignment a*.

     Given the posterior probability matrix P(xi ~ yj), we can compute the maximal expected accuracy alignment using the following recursion described in Durbin et al., 1998.
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(2)

According to equation (1) as long as we have an ensemble of alignments A with their probabilities P(a|,x,y) we can compute the posterior probability P(xi ~ yj) by summing up the probabilities of alignments where xi is paired with yj . One way to generate an ensemble of such alignments is to use the partition function methodology, which we now describe.

Posterior probabilities by partition function

Amino acid scoring matrices, normally used for sequence alignment, are represented as log-odds scoring matrices (as defined by Dayhoff et al., 1978). The commonly used sum-of-pairs score of an alignment a (Durbin et. al., 1998) is defined as the sum of residue-residue pairs and residue-gap pairs under an affine penalty scheme. 
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(3)

Here T is a constant (depending upon the scoring matrix), Mij is the mutation probability of residue i changing to j and fi and fj are background frequencies of residues i and j. In fact, it can be shown that any scoring matrix corresponds to a log odds matrix (Karlin and Alstchul 1990; Altschul 1993). 

Miyazawa 1995 proposed that the probability of alignment a, P(a), of sequences x and y can be defined as
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(4)

where S(a) is the score of the alignment under the given scoring matrix. In this setting one can then treat the alignment score as negative energy and T as the thermodynamic temperature, similar to what is done in statistical mechanics. Analogous to the statistical mechanical framework, Miyazawa 1995 defined the partition function of alignments as
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(5)

where A is the set of all alignments of x and y. With the partition function in hand, the probability of an alignment a can now be defined as
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(6)

As T approaches infinity all alignments are equally probable, whereas at small values of T, only the nearly optimal alignments have the highest probabilities. Thus, the temperature parameter T can be interpreted as a measure of deviation from the optimal alignment. 

The alignment partition function can be computed using recursions similar to the Needleman-Wunsch dynamic algorithm. Let ZMij represent the partition function of all alignments of x1..i and y1..j ending in xi paired with yj, and Sij(a) represent the score of alignment a of x1..i and y1..j. According to equation (5) 
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where Aij is the set of all alignments of x1..i and y1..j, and s(xi,yj) is the score of aligning residue xi with yj. The summation in the bracket on the right hand side of equation (7) is precisely the partition function of all alignments of x1..i-1 and y1..j-1. We can thus compute the partition function matrices using standard dynamic programming.
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Here s(x,y) represents the score of aligning residue xi with yj, g is the gap open penalty, and ext is the gap extension penalty. The matrix ZMij represents the partition function of all alignments ending in xi paired with yj. Similarly, ZEij represents the partition function of all alignments in which yj is aligned to a gap and ZFij all alignments in which xi is aligned to a gap. Boundary conditions and further details can be obtained from Miyazawa 1995. 

Once the partition function is constructed, the posterior probability of xi aligned to yj can be computed as
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(9)

where Z’Mi,j is the partition function of alignments of subsequences xi..m and yj..n beginning with xi paired with yj  and m and n are lengths of x and y respectively. This can be computed using standard backward recursion formulas as described in Durbin et al., 1998. 

In equation (9) ZMi-1,j-1/Z and Z’Mi+1,j+1/Z represent the probabilities of all feasible suboptimal alignments (determined by the T parameter) of x1..i-1 and y1..j-1, and xi+1.m and yj+1..n respectively, where m and n are lengths of x and y respectively. Thus, equation (9) weighs alignments according to their partition function probabilities and estimates P(xi ~ yj ) as the sum of probabilities of all alignments where xi is paired with yj.   

Maximal expected accuracy alignment using partition function posterior probabilities

Recall the maximum expected accuracy alignment formulation described earlier. In order to compute such an alignment we need an estimate of the posterior probabilities. In this report, we utilize the partition function posterior probability estimates for constructing multiple alignments. For each sequence x, y in the input, we compute the posterior probability matrix P(xi ~ yj) using equation (9). These probabilities are subsequently used to compute a maximal expected multiple sequence alignment using the Probcons methodology. First, the probabilistic consistency transformation (described in detail in Do et al., 2005) is applied to improve the estimate of the probabilities. Briefly, the probabilistic consistency transformation is to re-estimate the posterior probabilities based upon three-sequence alignments instead of pairwise. Note that this does not mean alignments are recomputed; our estimation (as done in Probcons) is still fundamentally based upon pairwise alignments.

After the probabilistic consistency transformation, sequence profiles are next aligned in a post-order walk along a UPGMA guide-tree. As is commonly done, UPGMA guide trees are computed using pairwise expected accuracy alignment scores. Finally, iterative refinement is performed to improve the alignment. This standard alignment procedure is described in more detail in Do et al., 2005 and is implemented in the Probcons package (by the same authors).

We implement the Probalign approach by modifying the underlying Probcons program to read in arbitrary posterior probabilities for each pair of sequences in the input. All use of HMMs in the modified Probcons code is disabled. We modified the probA program of Muckstein et al., 2002 for computing partition function posterior probability estimates. The Probalign program is represented algorithmically in Figure 1. Our current implementation is a beta version and mainly for proof of concept; however, the open source code is fully functional and is available with full support from http://www.cs.njit.edu/usman/probalign.


Fig. 1. Probalign algorithmic description.
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Probalign algorithm:


For each pair of sequences (x,y) in the input set


Compute partition function matrices Z(T)


Estimate posterior probability matrix P(xi ~ yj) for (x,y) using equation (9) 


Perform the probabilistic consistency transformation and compute a maximal expected accuracy multiple alignment: align sequence profiles along a guide-tree and follow by iterative refinement (Do et. al.).
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