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Abstract—Glioblastoma multiforme (GBM) is the most com-
mon and aggressive brain cancer with a median survival rate of
15 months. It is well-established that age is a strong independent
predictor of GBM survival outcome. There is accumulating
evidence that single nucleotide polymorphisms (SNPs) in the
IDH1 gene influences GBM survival time. We propose a new
multi-path convolutional neural network that combines SNPs,
age, age groups, and gender to predict survival groups with a
one-year threshold. We obtained GBM SNP and demographic
data from The Cancer Genome Atlas. We compare our multi-
path CNN with a support vector machine (SVM) and random
forest. We randomly held out 10% of the samples as a test
set, and employed 10-fold cross-validation for hyperparameter
tuning in the remaining 90%. We then fit a model with optimal
hyperparameters and predict the test set. In the combined
SNP and demographic features, our proposed multi-path model
achieved 67% accuracy in the test set compared to SVM accuracy
of 60% and random forest accuracy of 47%. In the 10-fold cross-
validation, our model predicted the two survival groups with
63% mean balanced accuracy while SVM and random forest
attained 56% and 49% mean balanced accuracy. We evaluated
the predictive ability in combined SNP and demographic data
versus each data source alone for our proposed CNN, SVM,
and random forest. The highest achieved accuracy for SNP data
only in the test data set is 60% with our single-path CNN. The
top accuracy in the test data set for demographic features alone
attained is 60% by SVM and our single-path neural network.

Index Terms—TCGA-GBM, survival prediction, convolutional
neural network, SNP

I. INTRODUCTION

Glioblastoma multiforme (GBM) is the most common and
aggressive type of brain cancer, with a median survival rate
of less than one and a half years [1]. Untreated patients with
GBM have a median survival time of 3 months [2]. It is well-
established that age is a strong independent predictor of sur-
vival time in gliomas [3]–[5]. Several studies have found that
gender is significantly correlated [6]–[8]. A study that analyzed
6586 GBM patients shows that age and gender, among other
seven features, are independent survival prognostic factors
[9]. Other studies investigated the role of Single Nucleotide
Polymorphisms (SNPs) on GBM overall survival outcomes
[10], [11]. One study found that GBM patients who carry

both TERT mutations and homozygous C-allele mutation for
SNP rs2853669 have shorter survival time versus patients with
wild-type allele [12]. There is accumulating evidence in the
literature that GBM patients with IDH1 somatic mutation have
significantly higher overall survival time compared to patients
who carry a wild-type allele [13]–[15].

We hypothesize that combining tumor sample’s SNP, age,
and gender data increase the predictive power of GBM sur-
vival outcome. We propose a multi-path neural network to
predict short (< one-year) and long (≥ one-year) survival
groups. We assessed the predictive ability of combined SNPs,
demographic features (age, age groups, and gender) versus
each data source alone, and compared our method to support
vector machine (SVM) with linear kernel, and random forest
classifiers.

We downloaded The Cancer Genome Atlas Glioblastoma
Multiforme (TCGA-GBM) of 272 white individuals demo-
graphics (age, gender), survival (days from diagnosis to death),
and tumor samples’ pre-aligned whole-exome sequencing data
from National Cancer Institute’s Genomic Data Commons
(GDC) portal. To obtain SNP data from sequence alignment
files, we performed variant calling with Genome Analysis
Toolkit (GATK, version 3.8) [16] followed by two-layers
quality controls: 1) variant quality score recalibration (VQSR),
and 2) hard filtering (depth < 5, genotype quality < 20).
We excluded SNPs that have any missing value from further
analysis.

We randomly held out 10% of the whole data set, 5%
from each class to create a balanced subset, and and kept
it as test set. We used the other 90% of data for training
and hyperparameters tuning, by employing 10-fold cross-
validation. We then fit a model with the 90% of data that
is kept for training with best-performing hyperparameters and
predict the test data set. We report the accuracy of SNPs alone,
age and gender alone, and combined SNPs, age, and gender.
We then compare the performance of our proposed method to
SVM and random forest.

On the test dataset, the best classification performance
is reached by feeding SNP and demographic features into



our proposed multi-path convolutional neural network. There
we achieved an accuracy of 67%, where linear SVM and
random forest attained an accuracy of 60% and 46%. When
considering demographic features alone, the linear SVM has
60% accuracy, our method has an accuracy of 60%, and
random forest reaches 53% prediction accuracy.

II. METHODS

A. Patients cohort

We obtained TCGA-GBM data for all white individuals
that have tumor sample’s binary alignment map (BAM) files,
survival information (days from cancer index to death), and de-
mographic features (age and gender) from NIH’s GDC portal.
A total of 272 patients met the inclusion criteria. We converted
age, and gender into numerical values, and we also created an
age group binary feature with 70 years threshold since GBM
patients with age ≥ 70 have significantly lower survival time
[17]. Table I shows GBM patients characteristics.

TABLE I
COHORT CHARACTERISTICS

n=272
Short-/long-term survival 128/144

Average age 61.14 (±12.83)
Age ≥ 70 71

Male/female 177/95

B. SNPs calling and quality control

We performed variants calling from tumor samples only,
and we used GATK HaplotypeCaller (version 3.8) [16]. GATK
scans samples’ genomes to identify regions with variability
that exceed a defined threshold. From these regions, it builds
an assembly directed graph with a reference genome as a
template. It uses the most likely graph paths, the ones that have
higher read data, to list candidate haplotypes. The candidate
haplotype sequences are aligned against the reference genome
with the Smith-Waterman algorithm to produce a CIGAR
string. GATK determines the likelihood of haplotype by align-
ing every read against each haplotype with the PairHMM
algorithm, which gives a likelihood for each haplotype given
read data. From read data likelihoods, the program assigns
allele likelihoods (possible genotypes). Finally, GATK uses
Bayes’ Theorem to assign genotypes for each sample from
the list of possible genotypes.

We pooled all the samples together for variant discovery.
To speed up the variants calling pipeline, we cut each chro-
mosome into roughly 10 equal chunks and ran it at the same
time on a cluster in a scatter-gather approach. In the final
variant call set, we applied the GATK variant quality score
recalibration (VQSR) algorithm, which uses machine learning
to filter out low-quality variants. After applying VQSR filter-
ing (soft filtering). We set the truth sensitivity filter for VQSR
to a ”99.0%” threshold. We used the following annotations
with VQSR to build a recalibration model: InbreedingCoeff,
QD, MQ, MQRankSum, ReadPosRankSum, FS, SOR. We also
filtered out variants that have a depth (number of supporting

reads) ≤ 5 or genotyping quality ≤ 20. We also removed
non-SNPs variants and sites that have any missing value. The
final output contains a matrix of SNPs and samples. Each
SNP column is in the form A/B where A and B are the two
alleles copies. We show the number of SNPs after applying
each filtering method in table II.

TABLE II
TCGA-GBM SNPS COUNT AFTER APPLYING THREE FILTERING METHODS

Filtering method Number of SNPs
Soft filtering (VQSR) 304302

Hard filtering 155673
Soft+hard filtering 107777

C. SNPs encoding

To encode an SNP into a numerical format to perform
machine learning tasks, we used the formula: 4 × A + B,
where A and B are the two alleles copies for a given individual
sample. We multiply A by 4 to consider all permutations in a
multiallelic site (the maximum alternate alleles for an SNP is
3). For example, if an individual is homozygous at alternate
allele 3 for a particular SNP, then this specific SNP encoding
is 15. We sorted SNPs in increasing order according to their
genomic position.

D. Training and test sets

To ensure the validity of results, we created separate training
and test data sets. In the original TCGA-GBM dataset of
272 samples, we shuffled the data and randomly selected 5%
from each class, to get a balanced subset, and kept this 10%
balanced dataset for model testing. We used the remaining
90% for hyperparameters tuning, by employing 10-fold cross-
validation, and to fit a model to predict the unseen test dataset
with the best performing hyperparameters. Table III displays
patients’ characteristics in training and test data sets.

TABLE III
TRAINING AND TEST SETS CHARACTERISTICS

Training set n=244 Test set n=28
Survival < 1 year 114 14
Survival ≥ 1 year 130 14

Average age 61.1 (±12.5) 61.4 (±14.6)
Age ≥ 70 62 9

Male/female 157/87 20/8

E. Hyperparameter selection

Classifiers hyperparameters, such as the SVM C regulariza-
tion value, need to be set before model training begins, and
thus are not optimized during the learning stage. To choose the
best learning rate and the number of epochs hyperparameters
for our neural network, we evaluated all possible pairs in the
Cartesian product of the two sets: learning rate = {0.001, 0.01,
1} and the number of epochs = {1,2,3, . . . , 20} using 10-fold
cross-validation in the 90% of the original dataset (number of
samples= 244) that we kept for training. We also employed
the same method, with the same data in each fold, to select the



best regularization C hyperparameter from the set C= {0.01,
0.1, 1} for linear SVM, as well as the number of trees to grow
for random forest from the set {10, 100, 1000}. We then fit a
model on the whole training dataset with the best performing
hyperparameters and used the model built to predict the unseen
10% of the original data that we reserved as a test dataset.

F. Classifiers

1) Convolutional neural network: Convolutional neural
networks (CNN) typically are stacked layers of convolution
operations with pooling (downsampling of original data for
training efficiency) and batch normalization layers in between
convolutional layers. The convolution runs on sliding windows
of a specified size and fixed step size, to control the moving
dot product over training data. A non-linear and differentiable
activation function, such as a rectified linear unit (relu), is then
applied to the flattened output.

2) Multi-path model: Here we propose a new neural net-
work system, where we feed the network two inputs: 1) SNPs
data, 2) demographic data (age, age groups, and gender).
Since we sorted SNP data in an increasing order based on
its genomic position, we pass the SNPs through a series of
1D convolution, with different kernel sizes and a step size of
1, relu activation function, 1D average pooling, batch normal-
ization layers. Simultaneously, we fed the three demographic
features into two hidden-layers and merge the two paths and
train the weights together through 3 fully connected layers.
Then the network passes the weights into a sigmoid function
that outputs a value between 0 and 1. If the output is ≥ 0.5,
we assign it to class 1, and class 0 otherwise. We trained
our model with stochastic gradient descent with a momentum
that we set to 0.9. We used 10-fold cross-validation to select
the number of epochs and learning rate (lr) value. We set
the batch size to 128. Fig. 1 shows our multi-path model’s
architecture, all input and output shapes, and convolutions
kernel and average pooling sizes. We implemented our model
in Keras library [18]

3) Single-path model: We compare fitting a combined SNP
and demographic features with our multi-path model to fitting
a single-path 1D convolutional neural net with SNPs only and
with three demographic features alone neural network.

4) Support vector machine: We used SVM with a linear
kernel. Briefly, SVM finds a hyperplane that maximizes the
distance between the two classes’ data points that are closest to
the margin (support vectors). In its soft-margin version, SVM
allows misclassification of noisy data points and introduces
a trade-off hyperparameter C that needs to be tuned. As
C approaches infinity, the classifier gets closer to the hard-
margin solution. We used 10-fold cross-validation to select
the best performing C in the training dataset. We compared
combining SNP and demographic features to fitting an SVM
model with each data source alone. For SVM and random
forest experiments, we used scikit-learn library [19]

5) Random forest: Random forest is an ensemble method
that constructs many decision trees by choosing random
samples with replacement to build each tree and randomly

Fig. 1. Our proposed multi-path model architecture with SNP and demo-
graphic features inputs

generates a subset of features to select from for each candidate
split, usually the one with the highest Gini impurity or entropy,
then it takes the majority vote of all trees predictions to
output a class prediction. We used the default parameters for
the quality measure of the split, and 10-fold cross-validation
for the number of trees to construct. We fit a model with
combined SNP and demographic features, SNP alone, and
age+age group+gender alone.

G. Evaluation metrics

We used accuracy, which is the number of correctly clas-
sified samples over the number of all predicted samples, to
measure classifiers’ prediction power in the test data set. How-
ever, in training and validation data sets, we used the balanced
accuracy, which is the average of true positive rate and true
negative rate, since it has imbalanced class distribution.

III. RESULTS

A. Cross-validation

To tune classifiers hyperparameters, in training set we
performed 10-fold cross-validation to select the best number



of epochs and learning rates for single- and multi-path neural
network system. Fig. 2 shows the mean balanced accuracy
attained with different learning rates and the number of epochs
across the ten folds. The best mean balanced accuracy of
63% (±0.08) across ten folds is realized when we fed both
SNP and demographic features into our multi-path model with
0.01 as the learning rate. The mean balanced accuracy slightly
drops after it reaches its peak at 13th epoch. With SNP data
alone, the best learning rate was 0.001 with nine epochs,
where the single-path convolutional neural network attained
54% (±0.12) mean balanced accuracy. With the demographic
features alone, the single-path neural network reached its
highest mean balanced accuracy of 59% (±0.12) at epoch 14
with a learning rate of 0.1.
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Fig. 2. Validation dataset average balanced accuracy across 10-folds as a
function of the number of epoch and learning rate for multiple data inputs:
demographic characteristics (age+age groups+gender) only, SNPs only, or
SNPs and demographic characteristics combined. Each line color, which is
shown in the series color legends, represents input data (learning rate in
parentheses).

We also tuned SVM C regularization hyperparameter and
the number of trees to grow for random forest classifiers. Fig. 3
shows that the SVM achieved its best results when C= {1, 0.1}
were both values are equally the best in combined SNP and
demographic features, SNP alone, and demographic features
alone. When learning with demographic features alone, SVM
attained 61% (±0.08) mean balanced accuracy. SVM achieved
56% (±0.11) mean balanced accuracy with SNPs data alone,
and the mean balanced accuracy drops to 50% (±0.10) when
combining SNP and demographic features.

For random forest, setting the number of trees to 10 yielded
a better performance for SNPs alone with 50% (±0.12)
mean balanced accuracy and demographic features alone 52%
(±0.08) mean balanced accuracy. The optimal number of trees
for combined SNPs and demographic is 100 with 49% (±0.11)
mean balanced accuracy. Fig. 3 shows the average 10-fold
cross-validation with different hyperparameters for SVM and
random forest.
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Fig. 3. Validation dataset mean balanced accuracy across 10-folds with linear
SVM (with different C regularization values) and random forest (with different
number of trees values) and multiple data inputs: demographic characteris-
tics (age+age groups+gender) only, SNPs only, or SNPs and demographic
characteristics combined. Each bar color represents a data source.

B. Test set prediction performance

After cross-validating the optimal hyperparameters for each
classifier with each data source. We fit a model on the full
training and validation sets and predict an independent, bal-
anced test set. Table IV shows the accuracies attained by our
model, SVM, and random forest accuracies with and without
combining SNP and demographic features. Our multi-path
model, with combined SNP and demographic features (age,
age group, and gender), achieved the highest classification
accuracy of 67%, when learning with the hyperparameters
selected with the 10-fold cross-validation: learning rate of
0.01, and 13 epochs.

TABLE IV
PREDICTION ACCURACY ON TEST DATASET WITH THE OPTIMAL

HYPERPARAMETERS

SNP and SNP Demographic
demographic

Our method 0.67 0.60 0.60
lr =0.01 lr =0.001 lr =0.1

epoch =13 epoch =9 epoch =14
SVM 0.60 0.57) 0.60

C = 1 C = 1 C = 1
Random forest 0.46 0.50 0.53

ntrees =10 ntrees =10 ntrees =100

1) Combined SNP and demographic features: When com-
bining SNP and demographic features, our multi-path model
achieved an accuracy of 67%, which outperform both SVM
(60%) and random forest (47%) accuracies. Furthermore, pass-
ing SNP, age, age groups, and gender yielded a nicer training
curve that is stable across training epochs. Fig. 4 compares
the training balanced accuracy of the combined SNP and
demographic features with SNP data alone and demographics
alone.

2) SNP and demographic features alone: In the test set,
fitting a model with SNPs alone or age+age groups+gender
alone had lower accuracy than combining SNPs and demo-
graphic features. With SNP data only, our single-path CNN



Fig. 4. Training accuracy on with training set (n=244)

had an accuracy of 60% with a learning rate of 0.001 and
9 epochs. SVM achieved an accuracy of 57% with C=1,
and random forest accuracy is 50% with 100 trees. Fig. 5
displays our proposed model prediction accuracy with different
data sources on the test set. With demographic features only,
SVM and our single-path neural network performed equally
with 60% accuracy. Random forest attained 50% accuracy.
Table IV compares the accuracy achieved by our proposed
CNN, SVM, and random forest with combined SNP and
demographic features and with each data source alone.

Fig. 5. Test set prediction accuracy for SNP and demographic features

IV. CONCLUSIONS

We proposed a new multi-path convolutional neural network
for combined SNP and age, age group, and gender that
improved upon SVM and random forest in terms of model
accuracy in cross-validation and an independent test set. We
show that using combined SNP and demographic features in a
multi-path network attains a better classification performance
than each data source alone and stabilized the learning process.
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