
Supplementary Material for ”On the transferability
of adversarial examples between convex and 01 loss

models”

A. Black box adversarial attacks on class 0 and 1 on Mini-
ImageNet with convex substitute model

epoch

Ac
cu

ra
cy

 o
f a

dv
er

sa
ria

l e
xa

m
pl

es

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20

MLP01 MLP SVM SCD01

(a) Black box attack on classes 0 and 1 on Mini-ImageNet
with convex substitute model and distortion ε = 0.0625

Fig. 1. Our 01 loss model are robust to convex substitute black box attacks
also in binary classification. Here we see that the accuracies on clean test data
are higher than multiclass classification and yet our models are still robust.

B. Coordinate descent

Algorithm 1 Coordinate descent
Input: Data (feature vectors) xi ∈ Rd for i = 0..n− 1 with
labels yi ∈ {+1,−1}, winc ∈ R, size of pooled features to
update k, vector w ∈ Rd and w0 ∈ R
Output: Vector w ∈ Rd and w0 ∈ R
Procedure:

1. Initialization: If w is null then let each feature wi of
w be normally drawn from N(0, 1). We set ‖w‖ = 1 and
throughout our search ensure that ‖w‖ = 1 by renormalizing
each time w changes.
2. Let the number of misclassified points with negative
wTxi be errorminus = 0 and those with positive wTxi
be errorplus = 0. These are later used in the Optimal
Threshold algorithm called Opt (see below) for fast update
of our objective.
3. Compute the initial data projection wTxi,∀i = 0..n −
1, sort the projection with insertion sort, and initialize
(w0, obj) = Opt(wTx, y, 0, n−1). We also record the value
of j for the optimal w0 = (wTxj + wTxj+1)/2.
4. Set prevobj =∞, done = 0.
while done != 1 do

Set prevobj = obj
Randomly pick k of the d feature indices.
for all selected features wi we update them do

1. Assume the optimal w0 = (wTxj + wTxj+1)/2
2. Set start = wTxj−10 and end = wTxj+10

3. Modify coordinate wi by winc, compute data pro-
jection wTxi∀i = 0..n−1, and sort the projection with
insertion sort
4. Set (w0, obj) = Opt(wTx, y, start, end) and record
this value for feature wi

5. Reset w0 to try the next coordinate
end for
Pick the coordinate whose update gives the largest de-
crease in the objective and set (w0, obj) to the values
given by the best coordinate with ties decided randomly.
Set done = 1

end while

This is our core coordinate descent algorithm. We perform
just one iterative update instead of convergence. We find this
to be more accurate and faster.



C. Optimal threshold w0 and 01 loss objective value

Algorithm 2 Opt
Input: wTxi ∈ Rd for i = 0..n − 1 with labels yi ∈
{+1,−1}, start, end
Output: Optimal w0 ∈ R with minimum (balanced) 01 loss
and the loss value obj
Procedure:

1: for i = start to end− 1 do
2: w′0 = wT xi+wT xi+1

2
3: if yi(wTxi + w′0) == 0 then
4: If yi == 1 then errorplus++
5: else if yi(wTxi + w′0) > 0 then
6: If yi == 1 then errorplus−− else errorminus−−
7: else if yi(wTxi + w′0) < 0 then
8: If yi == 1 then errorplus++ else errorminus++
9: end if

10: If obj′ = errorplus+errorminus
n is lower than current

best objective obj then obj = obj′ and w0 = w′0.
11: end for
12: return (w0, obj)

This is our fast algorithm to update w0 and the model
objective. Once we have the objective for w0 = wT xi+wT xi+1

2

we can calculate it for w0 = wT xi+1+wT xi+2

2 in constant time.

D. Stochastic coordinate descent for linear 01 loss

Algorithm 3 Stochastic coordinate descent for linear 01 loss
Input: Data (feature vectors) xi ∈ Rd with labels yi ∈
{+1,−1}, number of votes rr ∈ N (Natural numbers),
number of iterations per votet it ∈ N (Natural numbers), batch
size as a percent of training data p ∈ [0, 1], and winc ∈ R
Output: Total of rr pairs of (bestw ∈ Rd, bestw0 ∈ R) after
each vote
Procedure:

Set j = 0
while j < rr do

1. Set bestw = null, bestw0 = null, bestloss =∞
for i = 0 to it do

1. Randomly pick p percent of rows as input training
data to the coordinate descent algorithm and run it
to completion starting with the values of w and w0

from the previous call to it (if i == 0 we set
w = null, w0 = null).
2. In the next step we calculate the linear 01 loss
objective on the full input training set
if objective(w,w0) < objective(bestw, bestw0) then

Set bestw = w, bestw0 = w0, and bestloss =
objective(w,w0)

end if
end for
2. Output bestw and bestw0

3. Set j = j + 1.
end while
We output all (bestw, bestw0) pairs across the votes. We
can use the pair with the lowest objective or the majority
vote of all pairs for prediction.

Our stochastic descent search performs coordinate descent
for the model parameters w,w0. We keep track of the best
parameters across iterations by evaluating the model objective
on the full dataset after each iteration.



E. Stochastic coordinate descent for two layer 01 loss network

Algorithm 4 Stochastic coordinate descent for two layer 01
loss network
Input: Data (feature vectors) xi ∈ Rd with labels yi ∈
{+1,−1}, number of hidden nodes h, number of votes rr ∈ N
(Natural numbers), number of iterations per vote it ∈ N , batch
size as a percent of training data p ∈ [0, 1], winc ∈ R and
winc2 ∈ R
Output: Total of rr sets of (bestW ∈ Rk×d, bestW0 ∈
Rk, bestw ∈ Rk, bestw0 ∈ R) after each vote
Procedure:

1. Initialize all network weights W,w to random values from
the Normal distribution N(0, 1).
2. Set network thresholds W0 to the median projection
value on their corresponding weight vectors and w0 to the
projection value that minimizes our network objective.
while j < rr do

Set bestW = null, bestW0 = null, bestw =
null, bestw0 = null, bestloss =∞
for i = 0 to it do

Randomly pick p percent of rows as input training data.
Run the Coordinate Descent Algorithm 1 on the final
output node w to completion starting with the values
of w and w0 from the previous call to it (if i == 0
we set w = null). We use learning rate winc2 in the
coordinate descent.
Run the Coordinate Descent Algorithm 1 on a ran-
domly selected hidden node wk (kth column in W )
starting with the values of wk and wk0 (kth entry
in W0) from the previous call to it (if i == 0 we
set wk = null). We use learning rate winc in the
coordinate descent for the hidden nodes.
Calculate the two layer network 01 loss objective on
the full input training set
if objective(W,W0, w, w0) <
objective(bestW, bestW0, bestw, bestw0) then

Set bestW = W , bestW0 = W0,
bestw = w, bestw0 = w0, and bestloss =
objective(bestW, bestW0, bestw, bestw0)

end if
end for
Output (bestW , bestW0, bestw, bestw0)
Set j = j + 1.

end while
We output all sets of (bestW, bestW0, bestw, bestw0)
across the votes. We can use the first set or the majority
vote of all sets for predictions.

Our stochastic descent search performs coordinate descent
on the final node and then a random hidden node in each
iteration. We keep track of the best parameters across iterations
by evaluating the model objective on the full dataset after each
iteration.

F. White box adversarial attacks

Algorithm 5 White box adversaries for MLP01
Input: MLP01 model vector weights W ∈ Rk×d,W0 ∈
Rk, w ∈ Rk, w0 ∈ R, feature vector x ∈ Rd and label
y ∈ {+1,−1}
Output: Adversarial feature vector x′ ∈ Rd

Procedure:
for each hidden node wk ∈W (each row of W in a random
order) do

Evaluate output of x from the hidden node wk as y′ =
sign(wT

k x+ wk0)
Make x adversarial w.r.t. the boundary wk with x′ =
x+ ε(−y′)sign(wk).
Evaluate model output of x′ as y′′ = wT (sign(WTx′ +
W0)) + w0

if y not equal to y” then
Accept adversarial example x′ and exit loop

end if
end for
if no adversarial example found then

Evaluate output of x from the first hidden node w1 as
y′ = sign(wT

1 x+ w10)
Set x′ = x+ ε(−y′)sign(w1)

end if

If the datapoint x is already misclassified by our model our
attack simply performs the perturbation given by a random
hidden node w1 (since the ordering is chosen randomly).
Otherwise it picks the distortion of the first random node wk

that makes it misclassified. If no distortion misclassifies the
point it distorts the datapoint by the first hidden node w1 in
the random ordering.



G. Black box adversarial attacks

Algorithm 6 Substitute model training with augmented adver-
saries
Input: Model M to be attacked, adversarial attacker B, λ and
ε that determine amount of adversarial perturbation in each
sample where λ is used in training the substitute model and
ε is to generate adversaries to attack the target model, dataset
xi ∈ Rd with labels yi ∈ {+1,−1} (for 10 classes we have
{0, 1, ..., 9}), number of epochs ep ∈ N (Natural numbers)
Procedure:

Set the initial data D = {xi} as 200 random samples from
the input dataset.
for i = 0 to ep do

1. Obtain predictions y′i of D from black box model M
3. Train attacker B with D as input training data
4. With B’s gradient we produce adversarial examples
as augmented data to train the substitute with the step
below.
5. For each sample xi in D create adversary x′i = xi ±
λsign(∇fx(x, y′)) where ∇f is the gradient of B with
respect to the data x and λ is given in the input. We
randomly decide to add or subtract λ by a coin flip and
found this trick to improve the substitute model accuracy
on the input data and produce more effective adversarial
examples.
6. We have the optional step of generating adversaries
with the trained substitute model and evaluating their
accuracy on the target. In this way we can see the
adversarial accuracy of the target models across epochs as
we train the substitute. We use the same method described
below: generate adversaries on the input dataset minus the
200 samples with the formula x′ = x+εsign(∇fx(x, y))
and ε set to the 0.0625 for CIFAR10 and ImageNet and
0.3 for MNIST.
7. Add new adversarial samples {x′i} to D. This doubles
the number of adversarial samples after each iteration
until we reach 6400. After this we just replace the
adversarial examples from the previous epoch with the
new one.

end for
Now that our attacked B is trained we produced adversaries
for the remaining datapoints. For each datapoint x in the
dataset minus the 200 selected initially to train the substitute
we produce adversaries using x′ = x + εsign(∇fx(x, y))
as in step 5 above but now we use ε instead of λ. We
now test the accuracy of the target model M with the
newly generated adversaries. Note that this is an untargeted
attacked. We just want the datapoint to be misclassified by
the model, we don’t care which class it is misclassified into.

In the above procedure we use the test data as the input
when attacking a model on a benchmark. We set λ = 0.1
for MNIST and CIFAR10 and λ = 0.01 for ImageNet since
these values produce the most effective attack. We use ε values
on MNIST, CIFAR10, and ImageNet that are typical in the

literature. For MNIST ε = .3 corresponds to a change of 255×
.3 = 76.5 in each pixel and for CIFAR10 and ImageNet ε =
.0625 corresponds to a change of 255 × .0625 = 16 in each
pixel.

When our substitute model is the dual layer network each
with 200 hidden nodes we train it with stochastic gradient de-
scent, batch size of 200, learning rate of 0.01, and momentum
of 0.9. When it is SCD01 we run 1000 iterations with batch
size (nrows) of 75%.


	Black box adversarial attacks on class 0 and 1 on Mini-ImageNet with convex substitute model
	Coordinate descent
	Optimal threshold w0 and 01 loss objective value
	Stochastic coordinate descent for linear 01 loss
	Stochastic coordinate descent for two layer 01 loss network
	White box adversarial attacks
	Black box adversarial attacks

