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Abstract 
 
Phylogenies are widely used for understanding the 
evolutionary histories of species and gene products. 
Maximum parsimony (MP) and maximum likelihood 
(ML) are commonly used optimization criteria for 
constructing phylogenies.  However, phylogenetic 
descriptions depend not only on the employed 
reconstruction technique, but also on the underlying 
sequence alignment. Here, we establish a simple 
prescription to improve the underlying alignments used 
in phylogeny reconstruction. We adapt Gotoh’s 
iterative strategy for improving a progressive 
alignment (by using better guide-trees) specifically for 
the purpose of constructing optimal MP phylogenies. 
We improve the progressive alignment heuristic as 
implemented in the MUSCLE alignment program by 
iterating with maximum parsimony guide-trees 
constructed using PAUP*, yielding both deterministic 
and randomized heuristics. We evaluate accuracy on 
simulated data under a wide range of model conditions 
and show that phylogenies produced using our 
technique are more accurate than phylogenies on other 
alignments. 
 
1. Introduction 
 

Phylogenies are a fundamental tool for 
understanding the evolutionary history of species [1]. 
The most important input to a phylogeny 
reconstruction method is a multiple sequence 
alignment. The progressive alignment strategy of Feng 
and Dolittle [2] is a fast and widely used heuristic for 
aligning multiple sequences to a guide-tree (i.e. 
phylogenetic tree sequence alignment). For example, 
the popular ClustalW program [3] uses a progressive 
alignment  combined with improvements built around 
it. Guide trees for progressive alignment are usually 
obtained by simple distance-based approaches such as 
neighbor joining or UPGMA [4], where distance 
matrices are constructed using pairwise alignments. 

Most previous phylogenetic reconstruction studies 
have focused on constructing optimal trees with the 

alignment fixed. However, the input alignment is 
known to affect the reconstructed phylogeny [5,6,7]. 
Consequently, improving the alignment input could 
lead to better phylogenies. In this report we 
demonstrate that a simple MP iterative refinement 
method, based on Gotoh’s [8] doubly nested 
randomized iterative technique, can result in 
significantly improved sequence alignments for  
phylogeny reconstruction. We compare our approach 
to the standard ClustalW, and different stages of 
MUSCLE on simulated data. 

  
2.  Methods  
2.1 Phylogeny reconstruction and alignment 
 

Maximum parsimony (MP) and maximum 
likelihood (ML) are two widely used optimization 
criteria for phylogeny reconstruction [4]. Both are 
known to be NP-hard; however, in practice, heuristic 
ML implementations are orders of magnitude slower 
than MP [4]. Consequently, we only examine MP for 
constructing phylogenies in this preliminary 
investigation; future work will also investigate ML. 
Standard heuristics for solving MP are hill-climbing 
strategies which use the Tree Bisection and 
Reconnection (TBR) technique for performing local 
moves [4]. These can be found in software packages 
like PAUP* [9].  

Like MP and ML phylogenetic reconstruction, 
standard optimization criteria for multiple sequence 
alignment, i.e. sum-of-pairs and phylogenetic tree 
alignment [1] are also NP-hard. Sum-of-pairs (SP) 
aims to maximize the sum of pairwise similarity 
between the input sequences. Phylogenetic tree 
alignment, on the other hand, aims to minimize 
dissimilarity along the edges of a given tree. The 
progressive alignment strategy [2] has been adapted 
into most software packages for alignment, the most 
popular being ClustalW [3] because of its speed and 
accuracy.  

Various programs have implemented 
improvements around the basic progressive alignment. 



ClustalW implements ideas such as sequence 
weighting and automatic gap penalties that are 
designed to improve the alignment based on 
biologically sound assumptions [3]. ClustalW uses 
neighbor joining for a guide-tree. MUSCLE [10] is a 
three-stage program each of which we study separately 
for this paper. Stage I is the basic progressive 
alignment on a UPGMA guide-tree. Stage II is Gotoh’s 
iterative heuristic [8] but without SP optimization, i.e. 
compute alignment on a UPGMA tree, compute 
UPGMA tree on alignment, recompute alignment on 
UPGMA tree, and iterate until the UPGMA tree does 
not change. Stage III is a SP optimization on the 
alignment from stage II.  

2.3 Simulation 
 

Simulations are commonly used to evaluate 
phylogenetic accuracy since we have no way of 
knowing “true” evolutionary trees [11]. The ROSE 
software package [12] implements the HKY85 [13]  
model of DNA sequence evolution, but also allows  for 
insertions and deletions.  

Given the true tree (which we know since we are 
simulating data) and an estimated tree, we can use the 
Robinson-Foulds distance [14] to measure accuracy. 
This is a standard measure of evaluating tree accuracy 
in phylogenetics and basically measures the number of 
false positive and false negative clades in the estimated 
tree. We present the error rate as percentages  
(between 0 and 100). 
 
3. Improved progressive alignment   

Gotoh [8] introduced a doubly nested randomized 
iterative method which iterated between  progressive 
alignments and distance-based UPGMA  phylogenies. 
We modify this approach by alternating between MP 
trees and progressive alignments and output the pair of 
alignment and tree with the best MP score.  

We implemented this heuristic using the MUSCLE 
program (for computing the progressive alignment) 
and PAUP* (for computing MP trees) and call it 
MUSCLE-PARS (see Figure 1). Our approach is 
specifically designed to find alignments and 
phylogenies that optimize the MP score, and thus is 
likely to be more appropriate for phylogeny-centric 
applications, i.e. predicting functional sites with 
phylogenetic motifs [15]. In MUSCLE-PARS we 
strictly follow the order of the tree in aligning 
sequences. PAUP* implements various hill-climbing 
heuristics for solving MP. The MP heuristic we use 
builds a starting tree by adding sequences in the order 
of their closeness (see [4] for more details). Once the 

tree is constructed, a TBR-based standard hill-climbing 
search is applied to it. The initial starting tree for the 
search can also be built by adding sequences in a 
random order instead of their closeness; this produces a 
randomized search heuristic since each time the search 
starts from a different tree. We use the former 
deterministic search for MP so that MUSCLE-PARS is 
also deterministic. We leave a thorough study of the 
randomized version of MUSCLE-PARS to a later 
study.  

 
Figure 1: Description of MUSCLE-PARS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
MUSCLE-PARS differs from Gotoh’s original 

implementation in several key ways. First, the original 
method of Gotoh [8] used UPGMA trees instead of 
MP. Second, Gotoh’s method performed SP 
optimization on the progressive alignment before 
recomputing a phylogeny on it. We do not perform this 
additional optimization step because it does not 
necessarily improve accuracy and extends running  
time (data not shown here). Third, the stopping 
criterion for Gotoh’s method is when the UPGMA tree 
does not change; Gotoh’s method usually reaches 
convergence in a few iterations. MUSCLE-PARS uses 
parsimony trees (that may be deterministic or 
randomized) which provides no guarantee of 
convergence; alignments and trees could get worse or 
improve with iterations. If the same alignment is 
obtained in two consecutive iterations, the MP trees  
(which are used for constructing the alignment of the 
following iteration) may not be the same if randomized 
heuristics are used. And fourth, the alignment 
outputted from Gotoh [8] is the one from the most 
recent iteration. MUSCLE-PARS outputs the 
alignment and tree with the best MP score over all the 
iterations.    
 
4. Experimental design 

Input: unaligned sequences, initial guide-tree T, 
number of iterations n 
Output: alignment A* and guide-tree T* 
Algorithm: 

(1) Set best score bs to infinity. 
(2) Compute MUSCLE progressive alignment 

A on guide-tree T 
(3) Compute MP score MP(T,A) of tree T on 

alignment A.  
(4) If MP(T,A) < bs then set bs=MP(T,A), 

A*=A, and T*=T 
(5) Compute MP tree T on A using PAUP*.   
(6) If number of iterations not done then go to 

2, else return A* and T*. 



We compare ClustalW, and MUSCLE and its 
three different stages to two variants of MUSCLE-
PARS using default scoring matrices and gap 
penalties. The scoring matrices and gap penalties of 
the MUSCLE variants and MUSCLE-PARS are 
exactly the same; the only difference is in the guide-
tree iterations. We use the abbreviations MUSCLE-
PROG to refer to stage I of MUSCLE, MUSCLE-
UPGMA to refer to stage II, and MUSCLE to refer to 
the final stage III alignment.  Additionally, we present 
two variants of MUSCLE- PARS. In the first, which 
we call MUSCLE-PARS, the initial guide-tree is the 
UPGMA one constructed on pairwise alignment 
distances, and in the second one, which we call 
MUSCLE-PARS2, the initial guide-tree is the one used 
in the last iteration of MUSCLE-UPGMA. 

We construct MP phylogenies on all the 
alignments (on each simulated dataset) using a more 
thorough TBR search heuristic than the basic one used 
in MUSCLE-PARS (available upon request from 
authors). Since PAUP* was used in MUSCLE-PARS, 
we use PAUP* for constructing MP phylogenies on all 
alignments  

Simulation parameters are selected such that the 
MP tree on the true alignment has, at most, 15% error. 
We use birth-death model trees produced using the r8s 
software package [16]. Birth-death trees produced by 
r8s are scaled to be ultrametric by default, which 
means that the evolutionary distance from the root to 
each leaf is the same. Biological trees on real data are 
not necessarily ultrametric; therefore, to deviate the 
tree from ultrametricity we randomly multiply each 
edge length by a deviation factor as described in [17]. 
A deviation of 1 means no deviation, 2 means small, 
and 4 is moderate deviation. We also multiply the edge 
lengths of each tree by scaling factors of 16, 32, and 64 
to produce different levels of evolutionary rates. We 
generated 20 model trees of sizes 100, 200, and 400 
taxa for each setting of deviation and scale to produce 
a total of 360 different model trees.   

For each model tree we generate DNA sequences 
using ROSE under the HKY85 [13] model with 
transition/transversion ratio set to 2.  We study two 
sequence lengths used at the root, 500 and 1000, and 
examine two different indel probabilities of 0.00005 
and 0.0005 (see [12] for more details). On each of the 
360 model trees we evolved DNA sequences for each 
setting of sequence length and indel probability; thus, 
producing a total of 1,440 simulated datasets.   
 

5. Experimental results   

For each set of simulated unaligned sequences, we 
compute ClustalW, MUSCLE (all three stages), and 

MUSCLE-PARS (both variants) alignments. 
Subsequently, we construct MP trees, using a thorough 
TBR search heuristic. The accuracy of each 
phylogeny, computed using the RF distance, is 
compared against the true tree. In Tables 1 and 2, we 
report the average error rate for each parametric 
setting. The improvement, in terms of percentage 
differences, is also provided for the best scoring 
alignment. We also report the improvement in 
MUSCLE-PARS1 and MUSCLE-PARS2 error rates 
over the best error rate of the other methods.  While 
the average gain is modest, the overall results clearly 
indicate that improvement when using the two 
MUSCLE-PARS methods is a robust result.   

Our results follow some of the general trends one 
would expect to see in simulation studies. For 
example, the error rates decrease as the sequence 
length increases.  Conversely, error rates tend to 
increase as the evolutionary rates, number of  taxa, 
deviations, or indel probabilities increases, all  of 
which are known to make the phylogeny  estimation 
problem harder. However, trees at evolutionary rates 
of 32 fare better than 16. Overall MUSCLE-PARS1 
and MUSCLE-PARS2 have the lowest error rates. At 
sequence lengths of 1000 and low indel probability of 
0.00005 the improvement using MUSCLE-PARS is 
the smallest (especially at 100 taxa), if any at all. We 
take a closer look at the part of the parameter space 
where improvement is over 1% in topological 
accuracy.   

There are 9 parametric settings at which 
MUSCLE-PARS has error rate lower than 1% than the 
other methods. Out of those 7 are for sequence lengths 
of 500. Thus MUSCLE-PARS can be most effective 
when sequence lengths are short relative to the number 
of sequences. On 6 of these settings the indel 
probability is 0.0005 (the higher value) thus showing 
that MUSCLE-PARS can be useful for data that has 
undergone a modest number of insertions and 
deletions. The largest improvement is of 2.2% for 200 
sequences, 500 sequence length, 64 scaling, 4 
deviation, and 0.0005 indel probability, which can be 
considered a hard setting.    

A curious observation is that MUSCLE has high 
error rates, especially when considering high 
evolutionary rates and indel probabilities. In fact, the 
error rates sometimes go above 25%, which is much 
higher than that of the other methods. Recall that 
MUSCLE computes a SP optimization in stage III after 
the progressive alignments are done. We conjecture 
that this significantly decreases the quality of the 
alignment for phylogeny reconstruction. However, for 
other tasks, such as aligning structurally conserved 
regions, it may be more appropriate as seen from 
performance on BAliBASE [18] structural alignment 



benchmarks. When considering protein data, we have 
also noticed this anti-correlation between phylogeny 
reliability (using bootstraps) and BAliBASE accuracy. 
These observations underscore the reality that no 
single assessment strategy can be considered perfect 
when evaluating alignments and phylogenies.    

 
6.  Conclusions   

Our experiments on data show that MUSCLE-
PARS1 and MUSCLE-PARS2 produce phylogenies of 
better accuracy than those on ClustalW, MUSCLE-
PROG, MUSCLE-UPGMA, and MUSCLE. 
Furthermore, MUSCLE-PARS is efficient in the 
running time required to produce an alignment and 
phylogeny (data not shown here), which means it can 
be used to analyze datasets containing even hundreds 
to thousands of sequences. We expect MUSCLE-
PARS to quickly produce very good starting trees for 
expensive simultaneous alignment and phylogeny 
reconstruction local search strategies, such as those 
conducted in Poy [19] and statistical alignment 
packages [20].  MUSCLE-PARS can easily be 
implemented using existing available software 
packages with a simple Perl script. 
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Table 1: Summary of simulation results (continued on next page) 
Scale /   

Deviation   ClustalW  MUSCLE   MUSCLE-  
PROG   

MUSCLE-  
UPGMA   

MUSCLE-  
PARS1   

MUSCLE-   
PARS2   

Best   
Diff.2   

Percent error rates for 100 taxa, 500 sequence length, indel probability 5x10-5  

16 / 2    9.4    9.1    9.5    9.4    8.7  (0.1)    8.8    0.4   
32 / 2    8.7    8.7    8.6    8.7    8.2 (0.3)    8.5    0.4   
64 / 2    10.2    10.1    10.9    10.3    11.0    9.9 (0.2)    0.2   
16 / 4    13.8    13.8    13.9    13.7    13.5 (tie)    13.5 (tie)    0.2   
32 / 4    13.3    13.0 (tie)    13.1    13.2    13.0 (tie)    13.0 (tie)    ---   
64 / 4    14.1    14.3    15.0    14.0 (0.1)    15.5    14.7     -0.7   

Percent error rates for 100 taxa, 1000 sequence length, indel probability 5x10-5  

16 / 2    6.1    6.0    5.9    5.8    5.4 (tie)    5.4 (tie)    0.4   
32 / 2    4.8    5.0    4.9    4.8    4.6 (0.1)    4.7     0.2   
64 / 2    7.0    6.9    7.1    6.5    6.4 (0.1)    6.9    0.1   
16 / 4    9.1    9.1    8.9    9.0    8.9    8.8 (0.1)    0.1   
32 / 4    8.9    8.5    8.7    8.4    8.0 (0.1)    8.1    0.4   
64 / 4    13.4    11.5 (0.7)    13.8    12.2    14.0    12.5    -1.0   

Percent error rates for 100 taxa, 500 sequence length, indel probability 5x10-4  

16 / 2    10.9    10.9    10.8    10.7    10.3 (tie)    10.3 (tie)    0.4   
32 / 2    11.5    10.2    9.0 (0.2)    9.2     9.3    9.2    -0.2   
64 / 2    16.6    25.3    19.7    17.6    17.3    16.4 (0.2)    0.2   
16 / 4    13.9    13.9    13.7    13.5    12.7 (0.3)    13.0    0.8   
32 / 4    17.5    16.4    14.9    14.6    14.4    13.7 (0.7)          0.9   
64 / 4    24.4    30.6    24.2    23.3    22.9    22.6 (0.3)    0.7   

Percent error rates for 100 taxa, 1000 sequence length, indel probability 5x10-4  

16 / 2    5.7    5.6    5.6    5.8    5.2 (0.3)    5.5    0.4   
32 / 2    6.9    6.7    6.1    6.4    6.0    5.9 (0.1)    0.2   
64 / 2    13.9 (0.4)    18.3    18.5    15.9    15.9    14.3    -0.4   
16 / 4    8.8    9.0    8.5    8.5    8.3 (tie)    8.3 (tie)    0.2   
32 / 4    13.4    12.3    10.6    10.5 (tie)    11.0    10.5 (tie)   ---   
64 / 4    23.4    26.7    23.7    21.7    23.1    20.6 (1.1)    1.1   

Percent error rates for 200 taxa, 500 sequence length, indel probability 5x10-5  

16 / 2    11.1    11.2    11.2    11.3    10.5 (0.7)    10.5 (0.7)    0.7   
32 / 2    8.3    8.2    7.9 (tie)    7.9 (tie)    7.9 (tie)            8.0    ---   
64 / 2    10.2    11.2    11.4    9.6 (0.4)    11.3    10.0    -0.4   
16 / 4    15.3    15.5    15.4    15.5    13.8 (0.2)    14.0    1.5   
32 / 4    11.5    11.3    11.4    11.4    11.3    11.2 (0.1)    0.1   
64 / 4    17.0    16.5    17.3    15.4 (0.3)    17.0    15.7    -0.3   

Percent error rates for 200 taxa, 1000 sequence length, indel probability 5x10-5  

16 / 2    6.2    6.3    6.3    6.3    5.7 (tie)    5.7 (tie)    0.6   
32 / 2    5.6    5.6    5.5    5.5    5.4 (tie)    5.4 (tie)    0.1   
64 / 2    7.2    7.7    8.2    6.9 (tie)    8.2    6.9 (tie)   ---   
16 / 4    9.4 (tie)    9.5    9.4 (tie)    9.4 (tie)   9.5    9.5    -0.1   
32 / 4    9.0    8.9    8.8 (tie)    8.8 (tie)    8.9    8.8 (tie)    ---   
64 / 4    14.4    13.6    14.4    12.8    14.2    12.7 (0.1)    0.1   

Percent error rates for 200 taxa, 500 sequence length, indel probability 5x10-4  

16 / 2    11.9    11.7    11.2    11.2    10.2    9.7 (0.5)    1.5   
32 / 2    12.5    14.7    10.3    10.0    10.0    9.5 (0.5)    0.5   
64 / 2    19.0 (0.4)    37.4    22.2    20.7    19.9    19.4    -0.4   



16 / 4    16.1    16.4    15.3    15.3    14.4    14.2 (0.2)    1.1   
32 / 4    17.0    19.6    15.6    15.4    14.6    14.5 (0.1)    0.9   
64 / 4    26.6    44.0    26.6    26.1    25.6    23.9 (1.7)    2.2   

  
Table 2: Summary of simulation results (continued from previous page)1 
 

Scale /   
Deviation   ClustalW  MUSCLE   MUSCLE-  

PROG   
MUSCLE-  
UPGMA   

MUSCLE-  
PARS1   

MUSCLE-   
PARS2   

Best   
Diff.2   

Percent error rates for 200 taxa, 1000 sequence length, indel probability 5x10-4  

16 / 2    7.2    7.6    7.1    6.9    6.6    6.4 (0.2)    0.5   
32 / 2    9.5    10.4    6.8    6.8    6.6 (tie)    6.6 (tie)    0.2   
64 / 2    15.8 (0.9)    28.4    19.8    18.4    17.6    16.7    -0.9   
16 / 4    11.1    11.4    10.1    10.1    9.5 (0.2)    9.7    0.6   
32 / 4    14.4    16.0    11.9    11.8    11.2 (0.1)    11.3    0.6   
64 / 4    23.7    36.0    24.6    22.9    22.6    21.5 (1.1)    1.4   

Percent error rates for 400 taxa, 500 sequence length, indel probability 5x10-5  

16/2    12.6    12.6    12.6    12.6    11.5 (0.1)   11.6    1.1   
32/2    8.7    8.6    8.6    8.6    8.3    8.1 (0.2)   0.5   
64/2    9.0    10.1    9.6    8.6    9.0    8.3 (0.3)   0.3   
16/4    17.8    17.9    17.9    17.9    16.2 (0.2)   16.4    1.6   
32/4    13.3    13.3    13.2    13.2    12.8 (0.1)   12.9    0.4   
64/4    15.1    15.7    14.7    13.9    14.5    13.5 (0.4)   0.4   

Percent error rates for 400 taxa, 1000 sequence length, indel probability 5x10-5  

16 / 2    7.4    7.3    7.4    7.3    7.0 (tie)    7.0 (tie)    0.3   
32 / 2    5.5 (tie)    5.6    5.5 (tie)    5.5 (tie)    5.5 (tie)    5.5 (tie)    ---   
64 / 2    6.5    7.1    6.8    6.0 (0.1)    6.4    6.1    -0.1   
16 / 4    10.3    10.3    10.3    10.3    9.6 (tie)    9.6 (tie)    0.7   
32 / 4    8.8    8.9    8.5 (tie)    8.7    8.5 (tie)    8.5 (tie)    ---   
64 / 4    12.2    11.9    11.5    10.9 (0.1)    11.9    11.0    -0.1   

Percent error rates for 400 taxa, 500 sequence length, indel probability 5x10-4  

16 / 2    13.1    14.5    12.8    12.7    12.0 (tie)    12.0 (tie)    0.7   
32 / 2    11.8    16.3    10.0    9.8    9.4    9.3 (0.1)    0.5   
64 / 2    15.9    40.1    17.9    16.6    15.5    15.3 (0.2)    0.6   
16 / 4    18.2    19.7    17.6    17.6    15.9 (tie)    15.9 (tie)    1.7   
32 / 4    17.0    21.2    15.4    15.6    14.5 (0.1)    14.6    0.9   
64 / 4    22.8    44.5    22.9    21.8    22.4    21.5  (0.3)    0.3   

Percent error rates for 400 taxa, 1000 sequence length, indel probability 5x10-4  

16 / 2    8.0    9.3    7.6    7.6    7.2 (tie)    7.2 (tie)    0.4   
32 / 2    8.2    10.0    6.6    6.4    6.2 (0.1)    6.3    0.2   
64 / 2    12.3 (0.6)    33.3    15.0    14.5    13.5    12.9    -0.6   
16 / 4    11.6    13.4    11.0    11.0    10.3 (0.1)    10.4    0.7   
32 / 4    12.9    15.1    10.6    10.6    10.2 (0.1)    10.3    0.4   
64 / 4    20.4    39.5    19.8    19.0    18.6    18.2 (0.4)    0.8   

Overall results: number of times each method was best (ties are counted in each occurrence)   
Dev. = 2   5    0    3    5   16    20   ---   
Dev. = 4   1    2    3    6   16    21   ---   

Total   6    2    6    11   32    41   ---   
  
1 Best scoring alignments (across all six possibilities) also included the percent difference between it and the next  
best scoring alignment (again, across all six possibilities) in parentheses.   2 In the final column, the difference 
between the best scoring MUSCLE-PARS alignment and the best of the remaining four alignments is presented. 


