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Abstract. The identification of brain tumor type, shape, and size from
MRI images plays an important role in glioma diagnosis and treatment.
Manually identifying the tumor is time expensive and prone to error. And
while information from different image modalities may help in principle,
using these modalities for manual tumor segmentation may be even more
time consuming. Convolutional U-Net architectures with encoders and
decoders are state of the art in automated methods for image segmen-
tation. Often only a single encoder and decoder is used, where different
modalities and regions of the tumor share the same model parameters.
This may lead to incorrect segmentations. We propose a convolutional
U-Net that has separate, independent encoders for each image modality.
The outputs from each encoder are concatenated and given to separate
fusion and decoder blocks for each region of the tumor. The features
from each decoder block are then calibrated in a final feature fusion
block, after which the model gives it final predictions. Our network is
an end-to-end model that simplifies training and reproducibility. On the
BraTS 2019 validation dataset our model achieves average Dice values
of 0.75, 0.90, and 0.83 for the enhancing tumor, whole tumor, and tumor
core subregions respectively.

Keywords: Convolutional neural networks · multi-modal · brain MRI

1 Introduction

Gliomas are the most commonly occurring tumor in the human central nervous
system [1]. They fall into low-grade (LGG) and high-grade (HGG) subtypes
and have three subregions: the enhanced tumor, tumor core, and whole tumor.
These regions show up with different intensities and areas across different image
modalities [2]. The tumor core (TC) subregion shows the bulk of the tumor and is
typically removed. The TC contains the enhanced tumor and necrotic fluid-filled
(NCR) and the non-enhancing solid parts (NET) of the tumor. These also show
up with different intensities across image modalities. The whole tumor subregion
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describes the entire tumor since it contains the TC and the peritumoral edema
(ED), which is typically depicted by hyper-intense signal in FLAIR.

Given the complexity of the tumor and different image modalities, manual
identification of the tumor subregions takes time and is prone to error. Auto-
mated methods would facilitate physician diagnosis and lead to better overall
patient treatment. A step towards this is the Multimodal Brain Tumor Segmen-
tation (BraTS) challenge [3–5, 5, 2] that invites automated solutions to predict
the three tumor subregions from images across four different modalities. It pro-
vides 335 patient samples, include 260 HGG cases and 75 LGG cases, each with
four MRI modalities: T1, T1 contrast-enhanced (T1ce), T2, and FLAIR. Each
image in this dataset has been pre-processed by the same method and rescaled to
1 × 1 × 1 mm isotropic resolution and skull-stripped. The dataset also provides
ground truth segmentations of the three subregions. Two additional datasets
whose ground truth are unavailable to us are used for validation and test.

Inspired by the success of convolutional neural networks in image recognition
tasks, we present a convolutional U-neural network (U-Net) solution to this prob-
lem. Our model has multiple encoders for each modality and multiple decoders
for each tumor subregion. Below we describe our model in detail, followed by
variants of our model and final accuracies on the challenge’s validation dataset.

2 Related work

The Convolutional U-Net [6] is the basic architecture for end-to-end seman-
tic segmentation. In previous years of the BraTS competition, researchers have
improved upon the basic UNet and addressed training overfitting problems on
small datasets. For example, we have 2.5D multi-stage segmentation of different
anatomical views [7] and 3D segmentation models [8–10]. The winning entry
in the BraTS 2018 contest used an auto-encoder to regularize their network’s
encoder to prevent over-fitting caused by small sample size [11]. Most teams in
the previous contest performed model ensembling or second phase correction to
integrate the outputs of multiple models for better final results.

The multi-path approach that has separate encoders for different image types
has been explored previously [12]. We have taken this approach further in our
previous work [7, 8] with weighted feature fusion blocks to combine features from
different modality encoders. That approach works well for for binary segmen-
tation of the brain into healthy and non-healthy tissue. For multiple regions
(also known as multi-class segmentation), however, a single fusion block may
not work because it uses one set of shared weights for multiple subregions of
the brain. The squeeze-and-excite block [13] that we have also used in previous
work assigns weights to channel features from different encoders. However, those
encoders still fed into the same fusion block. Considering that the different sub-
regions of glioma have different intensities in different modal images, we expect
that different subregions will require different weights in the feature fusion stage.
Thus we propose a new model with separate fusion and decoder blocks for each
subregion of the tumor to be segmented.
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3 Methods

3.1 3D convolutional multi-encoder multi-decoder neural network

In Figure 1 we show the overview of our model. We see separate encoders for
each of the four image modalities. Each decoder consists of convolutional and
transposed convolutional (also called deconvolutional) blocks. We use three de-
coders corresponding to the three categories: enhanced tumor (ET), tumor core
regions (NCR/NET), and the peritumoral edema (ED) within the whole tumor
subregion.

Fig. 1. Our multi-path network with independent encoders for each modality and in-
dependent decoders for each tumor subregion

In Figure 1 we see a candidate region calibrator after the outputs of each
subregion’s decoder. Here we account for the hierarchical relationship between
different tumor subregions. We send the output of each decoder to a simple con-
volutional block (without activation) that outputs a probability. We then multi-
ply the probability by the decoder’s output and concatenate it to the outputs of
the other three decoders. We concatenate features from the ET and NCR/NET
decoders to account for the TC subregion features. We also concatenate TC and
ED subregion features to get features for the whole tumor (WT) subregion. We
run the outputs from the TC and WT layers through simple convolutional blocks
that output probabilities and multiply their outputs by the probabilities.

The purpose of our calibrator is to give specific attention to individual sub-
regions as well as their larger combined parts, which we achieve by multiplying
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their outputs by probabilities as described above. The different subregions of
gliomas do not necessarily appear in all four modal images. Therefore, we ran-
domly set one of the four modality inputs to zero with probability 0.25 during
the training process. We call this modality dropout that we describe in detail
below.

Encoder Our overall encoder shown in Figure 2 downsamples the input im-
age four times. In each downsampling we double the number of output filters
and send the output to the feature fusion component. The encoder consists of
residual convolution blocks shown in Figure 3(c) and downsampling modules
in Figure 3(b). We achieve independent encoder training for different modality
inputs using group convolution. We use instance normalization as the last com-
ponent in the residual block so that the output follows a normal distribution.
This avoids gradient problems in feature addition part in the decoder (that we
identified and solved previously [8]).

Fig. 2. We downsample the input image four times and collect the output after each
residual convolutional block to give to the fusion block.

Feature fusion The output from each downsampling level of the encoder is
given to the feature fusion block as shown in Figure 4. The feature fusion block
shown in Figure 3(a) integrates features from different modal encoders with a
1× 1× 1 convolution. Prior to integration we use the squeeze and effect module
to give different weights to the input feature channels.

Decoder The decoder in Figure 5 consists of a residual convolutional block
shown in Figure 3(b) followed by a transposed convolutional block (also called
upsampling or deconvolutions) shown in Figure 3(d). We add features from the
upsampling module to the output of the fusion block before sending them to
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(a) Feature fusion block that contains squeeze and excite (b) Downsampling block

(c) Residual convolutional block (d) Decoder upsampling block

Fig. 3. We show a detailed description of different components of our network as used
in the overall network, encoder, and decoder.
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Fig. 4. Features from each downsampling layer of the encoder are collected for fusion.
The first set on the left are features from the four encoders for each modality. These
are first concatenated and then fused with a 3D convolutional kernel as shown in
Figure 3(a).

further upsampling blocks. The output of the decoder is given to the candidate
region calibrator.

3.2 Model training and parameters

Loss function We measure the Dice loss of predictions of each the three subre-
gions ET, NCR/NET, and ED after their output from their respective decoder
is given to the convolutional block followed by softmax. We also measure the loss
of predictions of the TC and WT subregions in the candidate region calibrator
after after their outputs are passed through the convolutional block followed by
softmax. For a given segmentation the Dice loss is defined to

D(p) =
2
∑

i
piri∑

i
p2
i
+
∑

i
r2
i

,

where pi are the predicted softmax outputs and ri is 1 if the voxel has a lesion
and 0 otherwise. We also have a final multi-class Dice loss for the three subre-
gions. Our overall loss is the sum of the five Dice losses for the ET, NCT/NET,
ED, TC, and WT subregions plus the final multi-class Dice.

Implementation and optimization We implement our network using the
Pytorch library [14]. We use stochastic gradient descent (SGD) with Nesterov
momentum. We set momentum to 0.9, our initial learning rate to 0.01 and num-
ber of epochs at 240. We decrease the learning rate if the current epoch’s average
loss is no less than the previous epoch’s loss. We also use the Pytorch extension
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Fig. 5. Features from the fusion block are added to the output of the upsampling layer.

library called NVIDIA-apex for mixed precision (16-bit and 32-bit floats) and
distributed training across multiple GPUs [15].

Dropout Dropout is a popular technique to prevent overfitting in neural net-
works [16]. We perform an image-modality dropout: we randomly pick an image
modality and set its input to all zeros. In other words we randomly ignore one
out of the four image modalities. One reason for doing this is that some of the
tumor subregions are visible only in some modalities. For example enhanced tu-
mor (ET) subregion is visible in T1ce images while the ED subregion in T2 or
FLAIR only. We achieve this dropout with the 3D dropout function in Pytorch
[14]. Alternatively we could ignore more than one modality but we found this to
lower the cross-validation accuracy than when zeroing just one.

Data preprocessing and augmentation We randomly crop each original size
image volume from 240×240×155 to 160×192×144. We then perform a mean
0 variance 1 normalization (including background zero intensity pixels) for each
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modality and each 3D image volume. We randomly flip each 3D image in the
three view directions with probability 0.5. In the inference part, we do a center
crop of size 160 × 192 × 160 and zero pad to original size without flip.

3.3 Measure of accuracy: Dice coefficient

The Dice coefficient is typically used to measure the accuracy of segmentations
in MRI images [17]. The output of our network is a binary mask of the same
dimensions as the input image, but with a 1 for each voxel prediced to be a tumor
region, and a 0 otherwise. Starting with the human binary mask as ground truth,
each predicted voxel is determined to be either a true positive (TP, also one in
true mask), false positive (FP, predicted as one but zero in the true mask),
or false negative (FN, predicted as zero but one in the true mask). The Dice
coefficient is formally defined as

DICE = 2TP
2TP+FP+FN .

4 Results

We first performed a five-fold cross-validation on the training dataset provided
by the BraTS consortium. This dataset contains four modality images along
with the segmentations of the three tumor subregions. In Table 1 we see the
average Dice accuracies and other statistics of our training samples obtained
under cross-validation.

Table 1. Average Dice values of our model for each of the three tumor regions after
5-fold cross validation on the training dataset (total of 335 patients).

Dice Sensitivity Specificity Hausdorff95
ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.75 0.90 0.84 0.81 0.90 0.83 1.00 0.99 1.00 5.34 5.67 6.06
Std. dev 0.26 0.07 0.17 0.21 0.09 0.18 0.00 0.01 0.00 10.34 8.31 9.11
Median 0.85 0.92 0.90 0.88 0.93 0.90 1.00 1.00 1.00 1.73 3.38 3.00

We then evaluated our model on the validation dataset provided by BraTS.
This dataset contains only the four modality images without ground truth seg-
mentations. To obtain the validation accuracies we uploaded our predicted seg-
mentations to the BraTS server. In Table 2 we see our statistics for the validation
dataset returned by the BraTS server. We see that the Dice mean and median
values are similar in both training cross-validation and the validation dataset,
which shows that our model is generalizing.

To obtain a sense of our method’s performance relative to others we evaluate
the rank of our validation data Dice accuracies on the BraTS 2019 challenge
leaderboard on their web page. At the time of writing of our paper there were
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a 113 submissions on all 125 validation samples. We found that on the tumor
core (TC) Dice measure our method stood at rank 16 from the top. On the
whole tumor (WT) and enhanced tumor (ET) Dice measures our method stood
at ranks 22 and 34 respectively. Thus, while not amongst the top three, our
method obtained segmentations better than most other submissions.

Table 2. Average Dice values of our model of each of the three tumor regions on the
validation dataset provided by BraTS (total of 125 patients)

Dice Sensitivity Specificity Hausdorff95
ET WT TC ET WT TC ET WT TC ET WT TC

Mean 0.75 0.90 0.83 0.76 0.93 0.81 1.00 0.99 1.00 5.07 6.13 6.77
Std. dev 0.28 0.08 0.16 0.27 0.07 0.20 0.00 0.01 0.00 12.64 12.18 11.44
Median 0.85 0.92 0.89 0.85 0.95 0.89 1.00 0.99 1.00 2.24 3.16 3.39

In Table 3 we show the average Dice accuracies and the Hausdorff distance
[18] on the test data. These were provided to us by the conference organizers
since the test data is unavailable to all participants. We see that the average and
median Dice accuracies are similar to what we obtained in cross-validation and
validation testing above, thus further supporting our model’s generalizability.

Table 3. Average Dice values of our model of each of the three tumor regions on the
test dataset provided by BraTS

Dice Hausdorff95
ET WT TC ET WT TC

Mean 0.8 0.88 0.83 2.2 4.89 4.09
Std. dev 0.21 0.12 0.24 2.1 5.8 6.8
Median 0.85 0.91 0.92 1.41 3.08 2.45

5 Discussion and Conclusion

We present a multi-encoder and multi-decoder convolutional neural network to
handle different image modalities and predict different subregions of the input
image (multi-class segmentation). We build upon previous work [8] where we
used multiple encoders and squeeze-and-excite blocks [13] to give weights to
different modalities. However, in that previous work we used a single feature
fusion block that shares weights for different subregions, which is not as accurate
as the separate fusion and decoder blocks we developed in this study.

The squeeze-and-excite blocks that we use here are designed for classification.
Our global average pooling considers the entire feature map. For tumor subregion
segmentation this may not be the best approach since the tumor region is given
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by just a small region of the full feature map. Thus in future work we plan to
develop squeeze-and-excite to give better modality weights based on just the
tumor region instead of the entire feature map.

With 3D components our model is more challenging to train than a 2D one.
The additional parameters introduced by 3D typically require more data as well
as memory and runtime to train. With the additional parameters the model may
overift and so careful training is required. In comparison a 2D model would be
easier and faster to train and require less memory but may not be as accurate
as a 3D one.

References

1. McKinsey L Goodenberger and Robert B Jenkins. Genetics of adult glioma. Cancer
genetics, 205(12):613–621, 2012.

2. Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler,
Alessandro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha,
Martin Rozycki, et al. Identifying the best machine learning algorithms for brain
tumor segmentation, progression assessment, and overall survival prediction in the
brats challenge. arXiv preprint arXiv:1811.02629, 2018.

3. Bjoern H Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Key-
van Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom,
Roland Wiest, et al. The multimodal brain tumor image segmentation benchmark
(brats). IEEE transactions on medical imaging, 34(10):1993–2024, 2014.

4. Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki,
Justin S Kirby, John B Freymann, Keyvan Farahani, and Christos Davatzikos. Ad-
vancing the cancer genome atlas glioma mri collections with expert segmentation
labels and radiomic features. Scientific data, 4:170117, 2017.

5. S Bakas, H Akbari, A Sotiras, M Bilello, M Rozycki, J Kirby, J Freymann, K Fara-
hani, and C Davatzikos. Segmentation labels and radiomic features for the pre-
operative scans of the tcga-gbm collection. the cancer imaging archive (2017), 2017.

6. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation. In International Conference on Medi-
cal image computing and computer-assisted intervention, pages 234–241. Springer,
2015.

7. Yunzhe Xue, Fadi G Farhat, Olga Boukrina, AM Barrett, Jeffrey R Binder, Us-
man W Roshan, and William W Graves. A multi-path 2.5 dimensional convolu-
tional neural network system for segmenting stroke lesions in brain mri images.
arXiv preprint arXiv:1905.10835, 2019.

8. Yunzhe Xue, Meiyan Xie, Fadi G Farhat, Olga Boukrina, AM Barrett, Jeffrey R
Binder, Usman W Roshan, and William W Graves. A fully 3d multi-path con-
volutional neural network with feature fusion and feature weighting for automatic
lesion identification in brain mri images. submitted, 2019.

9. Konstantinos Kamnitsas, Christian Ledig, Virginia FJ Newcombe, Joanna P Simp-
son, Andrew D Kane, David K Menon, Daniel Rueckert, and Ben Glocker. Efficient
multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation.
Medical image analysis, 36:61–78, 2017.

10. Hao Chen, Qi Dou, Lequan Yu, Jing Qin, and Pheng-Ann Heng. Voxresnet: Deep
voxelwise residual networks for brain segmentation from 3d mr images. NeuroIm-
age, 170:446–455, 2018.



A multi-path decoder network for brain tumor segmentation 11

11. Andriy Myronenko. 3d mri brain tumor segmentation using autoencoder regular-
ization. In International MICCAI Brainlesion Workshop, pages 311–320. Springer,
2018.

12. Kuan-Lun Tseng, Yen-Liang Lin, Winston Hsu, and Chung-Yang Huang. Joint
sequence learning and cross-modality convolution for 3d biomedical segmentation.
In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on,
pages 3739–3746. IEEE, 2017.

13. Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7132–7141,
2018.

14. Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017.

15. Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al. Mixed precision training. arXiv preprint arXiv:1710.03740, 2017.

16. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

17. Alex P Zijdenbos, Benoit M Dawant, Richard A Margolin, and Andrew C Palmer.
Morphometric analysis of white matter lesions in mr images: method and valida-
tion. IEEE transactions on medical imaging, 13(4):716–724, 1994.

18. R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317.
Springer Science & Business Media, 2009.


