Distance based phylogeny reconstruction

Usman Roshan
Phylogenetics

- Study of how species relate to each other
- Rich in computational problems
- Fundamental tool in comparative bioinformatics
Why phylogenetics?

• Study of evolution
 – Origin and migration of humans
 – Origin and spread of disease

• Many applications in comparative bioinformatics
 – Sequence alignment
 – Motif detection (phylogenetic motifs, evolutionary trace, phylogenetic footprinting)
 – Correlated mutation (useful for structural contact prediction)
 – Protein interaction
 – Gene networks
 – Vaccine development
 – And many more…
Phylogeny Problem

AGGGGCAT TAGCCCCA TAGACTTT TGCACAAA TGCACGCTT
Phylogeny Problem

• Two main methodologies:
 – Alignment first and phylogeny second
 • Construct alignment using one of the MANY alignment programs in the literature
 • Do manual (eye) adjustments if necessary
 • Apply a phylogeny reconstruction method
 • Fast but biologically not realistic
 • Phylogeny is highly dependent on accuracy of alignment (but so is the alignment on the phylogeny!)
 – Simultaneously alignment and phylogeny reconstruction
 • Output both an alignment and phylogeny
 • Computationally much harder
 • Biologically more realistic as insertions, deletions, and mutations occur during the evolutionary process
First methodology

• Compute alignment (for now we assume we are given an alignment)
• Construct a phylogeny (two approaches)
• Distance-based methods
 – Input: Distance matrix containing pairwise statistical estimation of aligned sequences
 – Output: Phylogenetic tree
 – Fast but less accurate
• Character-based methods
 – Input: Sequence alignment
 – Output: Phylogenetic tree
 – Accurate but computationally very hard
Definitions

• Tree:
 – Set of nodes and edges
 – Undirected graph
 – No cycles
 – Connected

• Examples

• Degree of node = number of edges connected to the node

• Binary tree: every node has at most two children

• Phylogeny: unrooted binary tree
Distance-based methods

TRUE TREE

DNA SEQUENCES
- S_1: ACAATTAGAAC
- S_2: ACCCTTAGAAC
- S_3: ACCATTCCAAAC
- S_4: ACCAGACCAAC

STATISTICAL ESTIMATION OF PAIRWISE DISTANCES

METHODS SUCH AS NEIGHBOR JOINING

DISTANCE MATRIX

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>S_2</td>
<td></td>
<td>0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>S_3</td>
<td></td>
<td></td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>S_4</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Distance methods

TRUE TREE

DNA SEQUENCES

STATISTICAL ESTIMATION OF PAIRWISE DISTANCES

METHODS SUCH AS NEIGHBOR JOINING

DISTANCE MATRIX
Distance methods

• UPGMA: similar to hierarchical clustering but not additive
• Neighbor-joining: more sophisticated and additive
• What is additivity?
Additivity

A distance matrix D is additive if there exists a tree, $T = (V, E)$, and $w : E \rightarrow \mathbb{R}^+$ such that $D_{ij} = \sum_{e \in P_{ij}} w(e)$.

Waterman et al, 1977, showed that:

\begin{tabular}{c|cccc}
 & S_1 & S_2 & S_3 & S_4 \\
\hline
S_1 & 0 & 3 & 6 & 5 \\
S_2 & 0 & 5 & 4 & \\
S_3 & 0 & 5 & & \\
S_4 & 0 & & &
\end{tabular}

POLYTIME INVERTIBLE
UPGMA

UPGMA is not additive but works for ultrametric trees. Takes $O(n^3)$ time.
UPGMA

Input: distance matrix D, **Output**: Phylogeny T

1. Set $d=D$
2. Initialize n clusters where each cluster i contains the sequence I
3. Find closest pair of clusters i, j, using distances in matrix d
4. Make them neighbors in the tree by adding new node (ij), and set distance from (ij) to i and j as $d_{ij}/2$
5. Update distance matrix d with weighted average. For all clusters k do the following (ni and nj are size of clusters i and j respectively)

$$d(i, j) = \frac{1}{n_i n_j} \sum_{i' \in L(i)} \sum_{j' \in L(j)} D(i', j')$$
UPGMA

6. Delete columns and rows for i and j in d and add new ones corresponding to cluster (ij) with distances as computed above.

7. Goto step 2 until only one cluster is left.
UPGMA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A → B

13

3

3

A

B

C

D
UPGMA

Doesn’t work (in general) for non ultrametric trees
UPGMA

UPGMA constructs incorrect tree here

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13</td>
<td>19</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UPGMA

Bipartition \((BC, AD)\) is not in true tree