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Dimensionality reduction
• What is dimensionality reduction?

– Compress high dimensional data into lower 
dimensions

• How do we achieve this?
– PCA (unsupervised): We find a vector w of length 

1 such that the variance of the projected data onto 
w is maximized.

– Binary classification (supervised): Find a vector w 
that maximizes ratio (Fisher) or difference (MMC) 
of means and variances of the two classes.



Data projection
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Data projection

• Projection on x-axis
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Data projection

• Projection on y-axis
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Mean and variance of data

• Original data Projected data



Data projection

• What is the mean and variance of 
projected data?
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Data projection

• What is the mean and variance here?
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Data projection

• Which line maximizes variance?
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Data projection

• Which line maximizes variance?
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Principal component analysis

• Find vector w of length 1 that maximizes 
variance of projected data



PCA optimization problem



PCA optimization problem



PCA solution
• Using Lagrange multipliers we can show that 

w is given by the largest eigenvector of ∑.
• With this we can compress all the vectors xi

into wTxi
• Does this help? Before looking at examples, 

what if we want to compute a second 
projection uTxi such that wTu=0 and uTu=1?

• It turns out that u is given by the second 
largest eigenvector of ∑.



PCA space and runtime 
considerations

• Depends on eigenvector computation
• BLAS and LAPACK subroutines 

– Provides Basic Linear Algebra 
Subroutines.

– Fast C and FORTRAN implementations.
– Foundation for linear algebra routines in 

most contemporary software and 
programming languages.

– Different subroutines for eigenvector 
computation available



PCA space and runtime 
considerations

• Eigenvector computation requires 
quadratic space in number of columns

• Poses a problem for high dimensional 
data

• Instead we can use the Singular Value 
Decomposition



PCA via SVD
• Every n by n symmetric matrix Σ has an 

eigenvector decomposition Σ=QDQT where D 
is a diagonal matrix containing eigenvalues of 
Σ and the columns of Q are the eigenvectors 
of Σ.

• Every m by n matrix A has a singular value 
decomposition A=USVT where S is m by n 
matrix containing singular values of A, U is m 
by m containing left singular vectors (as 
columns), and V is n by n containing right 
singular vectors. Singular vectors are of 
length 1 and orthogonal to each other.



PCA via SVD
• In PCA the matrix Σ=XXT is symmetric and so the 

eigenvectors are given by columns of Q in Σ=QDQT.
• The data matrix X (mean subtracted) has the singular 

value decomposition X=USVT.
• This gives 

– Σ = XXT  = USVT(USVT)T

– USVT(USVT)T=  USVTVSUT

– USVTVSUT      =  US2UT

• Thus Σ = XXT = US2UT => XXTU = US2UTU = US2

• This means the eigenvectors of Σ (principal 
components of X) are the columns of U and the 
eigenvalues are the diagonal entries of S2.



PCA via SVD

• And so an alternative way to compute 
PCA is to find the left singular values of 
X.

• If we want just the first few principal 
components (instead of all cols) we can 
implement PCA in rows x cols space 
with BLAS and LAPACK libraries

• Useful when dimensionality is very high 
at least in the order of 100s of 
thousands.



PCA on genomic population 
data

• 45 Japanese and 
45 Han Chinese 
from the 
International 
HapMap Project

• PCA applied on 
1.7 million SNPs

Taken from “PCA-Correlated SNPs for Structure Identification in Worldwide Human Populations” by Paschou et. al. in PLoS Genetics 2007



PCA on breast cancer data



PCA on climate simulation



PCA on QSAR



PCA on Ionosphere



Kernel PCA

• Main idea of kernel version
– XXTw = λw
– XTXXTw = λXTw
– (XTX)XTw = λXTw
– XTw is projection of data on the eigenvector w and 

also the eigenvector of XTX
• This is also another way to compute 

projections in space quadratic in number of 
rows but only gives projections.



Kernel PCA
• In feature space the mean is given by

• Suppose for a moment that the data is 
mean subtracted in feature space. In 
other words mean is 0. Then the scatter 
matrix in feature space is given by



Kernel PCA
• The eigenvectors of ΣΦ give us the PCA 

solution. But what if we only know the 
kernel matrix?

• First we center the kernel matrix so that 
mean is 0

where j is a vector of 1’s.K = K 



Kernel PCA
• Recall from earlier 

– XXTw = λw
– XTXXTw = λXTw
– (XTX)XTw = λXTw
– XTw is projection of data on the eigenvector w and 

also the eigenvector of XTX
– XTX is the linear kernel matrix

• Same idea for kernel PCA
• The projected solution is given by the 

eigenvectors of the centered kernel 
matrix. 



Polynomial degree 2 kernel
Breast cancer



Polynomial degree 2 kernel
Climate



Polynomial degree 2 kernel
Qsar



Polynomial degree 2 kernel
Ionosphere



Random projections

• What if we projected our data onto 
random vectors instead of PCA or LDA?

• Turns out that random projections 
preserve distances upto a certain error



Johnson-Lindenstrauss lemma
• Given any ε and n and k >= O(log(n)/ε2), for any set of P 

of n points in Rd there exists a lower dimensional 
mapping f(x) (x in P) to Rk such that for any u,v in P

• Furthermore, this mapping can be found in randomized 
polynomial time. Simply let each random vector be 
randomly sampled from thenormal  Gaussian 
distribution.

• Why does this work? Because random projections of 
vectors preserve length and we model distance 
between vectors u and v as vectors.
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