

Introduction to Boosted Trees

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAA

Tianqi Chen
Oct. 22 2014

Outline

• Review of key concepts of supervised learning

• Regression Tree and Ensemble (What are we Learning)

• Gradient Boosting (How do we Learn)

• Summary

Elements in Supervised Learning

• Notations: i-th training example

• Model: how to make prediction given

 Linear model: (include linear/logistic regression)

 The prediction score can have different interpretations
depending on the task

 Linear regression: is the predicted score

 Logistic regression: is predicted the probability
of the instance being positive

 Others… for example in ranking can be the rank score

• Parameters: the things we need to learn from data

 Linear model:

Elements continued: Objective Function

• Objective function that is everywhere

• Loss on training data:

 Square loss:

 Logistic loss:

• Regularization: how complicated the model is?

 L2 norm:

 L1 norm (lasso):

Training Loss measures how

well model fit on training data

Regularization, measures

complexity of model

Putting known knowledge into context

• Ridge regression:

 Linear model, square loss, L2 regularization

• Lasso:

 Linear model, square loss, L1 regularization

• Logistic regression:

 Linear model, logistic loss, L2 regularization

• The conceptual separation between model, parameter,
objective also gives you engineering benefits.

 Think of how you can implement SGD for both ridge regression
and logistic regression

Objective and Bias Variance Trade-off

• Why do we want to contain two component in the objective?

• Optimizing training loss encourages predictive models

 Fitting well in training data at least get you close to training data
which is hopefully close to the underlying distribution

• Optimizing regularization encourages simple models

 Simpler models tends to have smaller variance in future
predictions, making prediction stable

Training Loss measures how

well model fit on training data

Regularization, measures

complexity of model

Outline

• Review of key concepts of supervised learning

• Regression Tree and Ensemble (What are we Learning)

• Gradient Boosting (How do we Learn)

• Summary

Regression Tree (CART)

• regression tree (also known as classification and regression
tree):

 Decision rules same as in decision tree

 Contains one score in each leaf value

Input: age, gender, occupation, …

age < 15

is male?

+2 -1 +0.1

Y N

Y N

Does the person like computer games

prediction score in each leaf

Regression Tree Ensemble

age < 15

is male?

+2 -1 +0.1

Y N

Y N

Use Computer

Daily

Y N

+0.9
-0.9

tree1 tree2

f() = 2 + 0.9= 2.9 f()= -1 + 0.9= -0.1

Prediction of is sum of scores predicted by each of the tree

Tree Ensemble methods

• Very widely used, look for GBM, random forest…

 Almost half of data mining competition are won by using some
variants of tree ensemble methods

• Invariant to scaling of inputs, so you do not need to do careful
features normalization.

• Learn higher order interaction between features.

• Can be scalable, and are used in Industry

Put into context: Model and Parameters

• Model: assuming we have K trees

Think: regression tree is a function that maps the attributes to the score

• Parameters

 Including structure of each tree, and the score in the leaf

 Or simply use function as parameters

 Instead learning weights in , we are learning functions(trees)

Space of functions containing all Regression trees

Learning a tree on single variable

• How can we learn functions?

• Define objective (loss, regularization), and optimize it!!

• Example:

 Consider regression tree on single input t (time)

 I want to predict whether I like romantic music at time t

 t < 2011/03/01

t < 2010/03/20

Y N

Y N

0.2

Equivalently

The model is regression tree that splits on time

1.2

1.0

Piecewise step function over time

Learning a step function

• Things we need to learn

• Objective for single variable regression tree(step functions)

 Training Loss: How will the function fit on the points?

 Regularization: How do we define complexity of the function?

 Number of splitting points, l2 norm of the height in each segment?

Splitting Positions

The Height in each segment

Learning step function (visually)

Coming back: Objective for Tree Ensemble

• Model: assuming we have K trees

• Objective

• Possible ways to define ?

 Number of nodes in the tree, depth

 L2 norm of the leaf weights

 … detailed later

Training loss Complexity of the Trees

Objective vs Heuristic

• When you talk about (decision) trees, it is usually heuristics

 Split by information gain

 Prune the tree

 Maximum depth

 Smooth the leaf values

• Most heuristics maps well to objectives, taking the formal
(objective) view let us know what we are learning

 Information gain -> training loss

 Pruning -> regularization defined by #nodes

 Max depth -> constraint on the function space

 Smoothing leaf values -> L2 regularization on leaf weights

Regression Tree is not just for regression!

• Regression tree ensemble defines how you make the
prediction score, it can be used for

 Classification, Regression, Ranking….

 ….

• It all depends on how you define the objective function!

• So far we have learned:

 Using Square loss

 Will results in common gradient boosted machine

 Using Logistic loss

 Will results in LogitBoost

Take Home Message for this section

• Bias-variance tradeoff is everywhere

• The loss + regularization objective pattern applies for
regression tree learning (function learning)

• We want predictive and simple functions

• This defines what we want to learn (objective, model).

• But how do we learn it?

 Next section

Outline

• Review of key concepts of supervised learning

• Regression Tree and Ensemble (What are we Learning)

• Gradient Boosting (How do we Learn)

• Summary

So How do we Learn?

• Objective:

• We can not use methods such as SGD, to find f (since they are
trees, instead of just numerical vectors)

• Solution: Additive Training (Boosting)

 Start from constant prediction, add a new function each time

Model at training round t

New function

Keep functions added in previous round

Additive Training

• How do we decide which f to add?

 Optimize the objective!!

• The prediction at round t is

• Consider square loss

This is what we need to decide in round t

Goal: find to minimize this

This is usually called residual from previous round

Taylor Expansion Approximation of Loss

• Goal

 Seems still complicated except for the case of square loss

• Take Taylor expansion of the objective

 Recall

 Define

• If you are not comfortable with this, think of square loss

• Compare what we get to previous slide

Our New Goal

• Objective, with constants removed

 where

• Why spending s much efforts to derive the objective, why not
just grow trees …

 Theoretical benefit: know what we are learning, convergence

 Engineering benefit, recall the elements of supervised learning

 and comes from definition of loss function

 The learning of function only depend on the objective via and

 Think of how you can separate modules of your code when you
are asked to implement boosted tree for both square loss and
logistic loss

Refine the definition of tree

• We define tree by a vector of scores in leafs, and a leaf index
mapping function that maps an instance to a leaf

age < 15

is male?

Y N

Y N

Leaf 1 Leaf 2 Leaf 3

q() = 1

q() = 3

w1=+2 w2=0.1 w3=-1

The structure of the tree

The leaf weight of the tree

Define the Complexity of Tree

• Define complexity as (this is not the only possible definition)

age < 15

is male?

Y N

Y N

Leaf 1 Leaf 2 Leaf 3

w1=+2 w2=0.1 w3=-1

Number of leaves L2 norm of leaf scores

Revisit the Objectives

• Define the instance set in leaf j as

• Regroup the objective by each leaf

• This is sum of T independent quadratic functions

The Structure Score

• Two facts about single variable quadratic function

• Let us define

• Assume the structure of tree (q(x)) is fixed, the optimal
weight in each leaf, and the resulting objective value are

This measures how good a tree structure is!

The Structure Score Calculation

age < 15

is male?

Y N

Y N

Instance index

1

2

3

4

5

g1, h1

g2, h2

g3, h3

g4, h4

g5, h5

gradient statistics

The smaller the score is, the better the structure is

Searching Algorithm for Single Tree

• Enumerate the possible tree structures q

• Calculate the structure score for the q, using the scoring eq.

• Find the best tree structure, and use the optimal leaf weight

• But… there can be infinite possible tree structures..

Greedy Learning of the Tree

• In practice, we grow the tree greedily

 Start from tree with depth 0

 For each leaf node of the tree, try to add a split. The change of
objective after adding the split is

 Remaining question: how do we find the best split?

the score of left child

the score of right child

the score of if we do not split

The complexity cost by

 introducing additional leaf

Efficient Finding of the Best Split

• What is the gain of a split rule ? Say is age

• All we need is sum of g and h in each side, and calculate

• Left to right linear scan over sorted instance is enough to
decide the best split along the feature

g1, h1 g4, h4 g2, h2 g5, h5 g3, h3

a

An Algorithm for Split Finding

• For each node, enumerate over all features

 For each feature, sorted the instances by feature value

 Use a linear scan to decide the best split along that feature

 Take the best split solution along all the features

• Time Complexity growing a tree of depth K

 It is O(n d K log n): or each level, need O(n log n) time to sort
There are d features, and we need to do it for K level

 This can be further optimized (e.g. use approximation or caching
the sorted features)

 Can scale to very large dataset

What about Categorical Variables?

• Some tree learning algorithm handles categorical variable and
continuous variable separately

 We can easily use the scoring formula we derived to score split
based on categorical variables.

• Actually it is not necessary to handle categorical separately.

 We can encode the categorical variables into numerical vector
using one-hot encoding. Allocate a #categorical length vector

 The vector will be sparse if there are lots of categories, the
learning algorithm is preferred to handle sparse data

Pruning and Regularization

• Recall the gain of split, it can be negative!

 When the training loss reduction is smaller than regularization

 Trade-off between simplicity and predictivness

• Pre-stopping

 Stop split if the best split have negative gain

 But maybe a split can benefit future splits..

• Post-Prunning

 Grow a tree to maximum depth, recursively prune all the leaf
splits with negative gain

Recap: Boosted Tree Algorithm

• Add a new tree in each iteration

• Beginning of each iteration, calculate

• Use the statistics to greedily grow a tree

• Add to the model

 Usually, instead we do

 is called step-size or shrinkage, usually set around 0.1

 This means we do not do full optimization in each step and
reserve chance for future rounds, it helps prevent overfitting

Outline

• Review of key concepts of supervised learning

• Regression Tree and Ensemble (What are we Learning)

• Gradient Boosting (How do we Learn)

• Summary

Questions to check if you really get it

• How can we build a boosted tree classifier to do weighted
regression problem, such that each instance have a
importance weight?

• Back to the time series problem, if I want to learn step
functions over time. Is there other ways to learn the time
splits, other than the top down split approach?

Questions to check if you really get it

• How can we build a boosted tree classifier to do weighted
regression problem, such that each instance have a
importance weight?

 Define objective, calculate , feed it to the old tree learning
algorithm we have for un-weighted version

 Again think of separation of model and objective, how does the
theory can help better organizing the machine learning toolkit

Questions to check if you really get it

• Time series problem

• All that is important is the structure score of the splits

 Top-down greedy, same as trees

 Bottom-up greedy, start from individual points as each group,
greedily merge neighbors

 Dynamic programming, can find optimal solution for this case

Summary

• The separation between model, objective, parameters can be
helpful for us to understand and customize learning models

• The bias-variance trade-off applies everywhere, including
learning in functional space

• We can be formal about what we learn and how we learn.
Clear understanding of theory can be used to guide cleaner
implementation.

Reference

• Greedy function approximation a gradient boosting machine. J.H. Friedman

 First paper about gradient boosting

• Stochastic Gradient Boosting. J.H. Friedman

 Introducing bagging trick to gradient boosting

• Elements of Statistical Learning. T. Hastie, R. Tibshirani and J.H. Friedman

 Contains a chapter about gradient boosted boosting

• Additive logistic regression a statistical view of boosting. J.H. Friedman T. Hastie R. Tibshirani

 Uses second-order statistics for tree splitting, which is closer to the view presented in this slide

• Learning Nonlinear Functions Using Regularized Greedy Forest. R. Johnson and T. Zhang

 Proposes to do fully corrective step, as well as regularizing the tree complexity. The regularizing trick
is closed related to the view present in this slide

• Software implementing the model described in this slide: https://github.com/tqchen/xgboost

