A variable is a container. It can take on different values. For example x can be 0, 1, or 2.

A random variable takes on different values with probabilities.

If our variable x is a random variable then this means there are probabilities associated with the values it can take.

Since x can be 0, 1, or 2 in our example, each of these also has probabilities.

For a random variable x we can ask what is P(x=0) the probability that x has value 0?

For example I can make a random variable X that takes on the values 0, 1, 2, and 3 with the following probabilities:

\[
P(X=0) = .2 \\
P(X=1) = .3 \\
P(X=2) = .4 \\
P(X=3) = .1
\]

The above set of probabilities for X is called the probability distribution of X.

What happens if a random variable X takes on continuous values? Suppose we have X that can take on any value between 0 and 1. How do we model its distribution? Just like the sum of all probabilities for a discrete random variable (like given above) should sum to 1 we require that a continuous random variable has integral 1. In other words \[\int_0^1 P(x)dx = 1 \]. For a continuous random variable the probability at a given point x is undefined. Only the cumulative probability is defined.

What is the cumulative? It’s the sum of probabilities up to a certain point.

Suppose we toss a coin n times. Suppose probability of head is p.

Let’s give exact numbers. Suppose we toss the coin 2 times and probability of head is 0.5.

Q1. What is the probability that I will see exactly one head in the first position?

\[
Pr = \frac{\text{Size of event space}}{\text{size of sample space}}
\]

What is the size of sample space? There are four possibilities if I toss the coin twice:
If I toss the coin 3 times what is the size of sample space? Is it 9?

It’s 8.

If I toss it 4 times what is the sample space size?

16

Now if I toss it n times what is the size of sample space? It’s 2^n

Suppose we toss the coin n times. What is the probability of getting exactly one head in position 1 and remainder all tails? The answer is $1/2^n$

What is the probability of getting exactly one head and remainder all tails?

Suppose we did 5 tosses. The sample space size is $2^5 = 32$. The event space is tosses where we have exactly one head and remainder tails.

For 5 tosses the answer is $5/32$.
Instead of 5 tosses suppose we did \(n \) tosses. What is the probability of getting exactly one head in position 1 and remainder tails?

\[
\text{Pr} = \frac{n}{2^n}
\]

What is the probability of getting exactly two heads and remainder all tails?

HHTTT
HTHTT
HTTHT
HTTTT
THHTT
THTHT
THTTH
TTHHT
TTHHH

\[
\begin{align*}
\text{H} _ _ _ _ & + 4 \\
_ _ _ _ \text{H} & + 3 \\
_ _ _ _ _ \text{H} & + 2 \\
_ _ _ _ _ _ \text{H} & = 10
\end{align*}
\]

The number of ways to select two unique objects from a group of \(n \) objects is \(n \) choose 2 = \(\frac{n(n-1)}{2} \)

The number of ways to select \(k \) unique objects from a group of \(n \) objects is

\[
\text{n choose } k = \frac{n!}{(n-k)!k!}
\]

In general we can ask what is the probability of getting exactly \(k \) heads in \(n \) tosses. The answer is \((n \text{ choose } k) / 2^n \)

We can understand the formula for \(n \text{ choose } k \) by starting with permutations. How many ways are there to permute \(n \) unique numbers? The answer is \(n! \).

Suppose we toss a fair coin \(n \) times. What is the probability of seeing at most 3 heads?

Answer: \(\left(\left(\text{n choose 1} \right) + \left(\text{n choose 2} \right) + \left(\text{n choose 3} \right) \right) / 2^n \)

What is a probability distribution?

Example of a Bernoulli random variable distribution: Single coin lands on head with probability 0.7 and tail with probability 0.3.

Example of binomial distribution: It’s the sum of repeated independent Bernoulli trials.

Independent events:

\[\Pr(\text{Event } X \text{ and Event } Y) = \Pr(\text{Event } X) \times \Pr(\text{Event } Y) \]

if and only if \(X \) and \(Y \) are independent.

Suppose we toss a coin three times. The probability of head is \(p \).

What is the probability of seeing a head in each of the three tosses?

\[\Pr(\text{First toss } = H \text{ and second toss } = H \text{ and third toss } = H) = \]
\[\Pr(\text{First toss } = H) \times \Pr(\text{second toss } = H) \times \Pr(\text{third toss } = H) = p \times p \times p = p^3 \]

Suppose we toss a coin four times and the probability of head is \(p \).

What is

\[\Pr(\text{First toss } = H \text{ and second toss } = T \text{ and third toss } = H \text{ and fourth toss } = T) = \]
\[\Pr(\text{First toss } = H) \times \Pr(\text{second toss } = T) \times \Pr(\text{third toss } = H) \times \Pr(\text{fourth toss } = T) = p \times (1-p) \times p \times (1-p) \]
\[= p^2 \times (1-p)^2 \]

Expected value of random variable \(X = \sum_{i=1}^{n} \Pr(X=i) \times i \)

If \(X \) is Bernoulli with probability of success \(p \) what is \(E(X) = 0 \times (1-p) + 1 \times p = p \)

Define \(X = \sum_{i=1}^{n} X_i \) where each \(X_i \) is a Bernoulli variable with probability of success \(p \). In other words \(X \) is a binominal random variable. Recall that a Bernoulli random variable has the distribution:

\[\Pr(X=0) = 1-p \]
\[\Pr(X=1) = p \]
What is \(E(X) = \sum_{i=1}^{n} X_i \) ?

We apply the distributive property of expectation: \(E(X+Y) = E(X) + E(Y) \)

What is \(E(X) = \sum_{i=1}^{n} E(X_i) = np? \)

So this means if you flip a fair coin 100 times we can expect to see \(100 \times 0.5 = 50 \) heads. Suppose the coin is biased and \(p = 0.1 \). Now if we flip it 100 times I expect \(100 \times 0.1 = 10 \) heads.

Probability distribution of a Binomial random variable which sums three Bernoullis. I can model this as three coin flips. The number of outcomes are given below. To complete the distribution I need to assign a probability to each outcome. Suppose the probability of heads \(P(X=1) \) is \(p \).

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHH</td>
<td>(P(H \text{ and } H \text{ and } H) = P(H)P(H)P(H) = p \times p \times p)</td>
</tr>
<tr>
<td>HHT</td>
<td>(p \times (1-p) \times p)</td>
</tr>
<tr>
<td>HTH</td>
<td>(p \times (1-p) \times p)</td>
</tr>
<tr>
<td>HTT</td>
<td>(p \times (1-p) \times (1-p))</td>
</tr>
<tr>
<td>THH</td>
<td>((1-p) \times p \times p)</td>
</tr>
<tr>
<td>THT</td>
<td>((1-p) \times p \times (1-p))</td>
</tr>
<tr>
<td>TTH</td>
<td>((1-p) \times (1-p) \times p)</td>
</tr>
<tr>
<td>TTT</td>
<td>((1-p) \times (1-p) \times (1-p))</td>
</tr>
</tbody>
</table>

Outcome	Probability
0 Heads | \((1-p) \times (1-p) \times (1-p) \) |
1 Head | \(p \times (1-p) \times (1-p) + (1-p) \times p \times (1-p) + (1-p) \times (1-p) \times p \) |
2 Heads | \(p \times p \times (1-p) + p \times (1-p) \times p + (1-p) \times p \times p \) |
3 Heads | \(p \times p \times p \) |

Basic hypothesis testing:

We are given some data and we want to know if the data “agrees” with some distribution. The basic idea is to determine the probability of the data under a null distribution. If the probability is small we can reject the null hypothesis.

Variance of random variable
\[
\text{Var}(X) = E(X - E(X))^2 \\
= E(X^2) + (E(X))^2 - 2 \cdot X \cdot E(X) \\
= E(X^2) + E(X)^2 - 2E(X)^2 \\
= E(X^2) - E(X)^2
\]

What is the variance of a Binomial random variable? In other words what is \(\text{Var}(X) = \text{Var}\left(\sum_{i=1}^{n} X_i \right) \)

To solve this you need to first know what is \(\text{Var}(X+Y) =? \)

\[
\text{Var}(X+Y) = E\left((X + Y)^2 \right) - (E(X+Y))^2 \\
= E\left(X^2 + Y^2 + 2XY \right) - (E(X) + E(Y))^2 \\
= E(X^2) + E(Y^2) + 2E(XY) - (E(X))^2 - 2E(X)E(Y) + (E(Y))^2 \\
= E(X^2) - (E(X))^2 + E(Y^2) - (E(Y))^2 + 2E(XY) - E(X)E(Y) \\
= \text{Var}(X) + \text{Var}(Y) - 2\text{Cov}(X,Y)
\]

Covariance between variables X and Y is defined as

\[
\text{Cov}(X,Y) = E((X - E(X)) \cdot (Y - E(Y)) \\
= E(XY) - XE(Y) - YE(X) + E(X)E(Y) \\
= E(XY) - E(Y)E(X) - E(Y)E(X) + E(X)E(Y) \\
= E(XY) - E(X)E(Y)
\]

Conditional probability:

\[
P(A \text{ and } B) = P(B) \cdot P(A|B)
\]

I can also write \(P(A \text{ and } B)\) as \(P(B \text{ and } A)\)

\[
P(B \text{ and } A) = P(A) \cdot P(B|A)
\]

But \(P(A \text{ and } B)\) is the same as \(P(B \text{ and } A)\) therefore

\[
P(B) \cdot P(A|B) = P(A) \cdot P(B|A)
\]

and rearranging the above gives us Bayes rule:

\[
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
\]