
Exploring classification, clustering, and its limits
in a compressed hidden space of a single layer

neural network with random weights

Meiyan Xie and Usman Roshan

Department of Computer Science, New Jersey Institute of Technology, Newark NJ
07090, USA,

mx42@njit.edu,usman@njit.edu

Abstract. Classification in the hidden layer of a single layer neural net-
work with random weights has shown high accuracy in recent experi-
mental studies. We further explore its classification and clustering per-
formance in a compressed hidden space on a large cohort of datasets from
the UCI machine learning archive. We compress the hidden layer with a
simple bit-encoding that yields a comparable error to the original hidden
layer thus reducing memory requirements and allowing to study up to a
million random nodes. In comparison to the uncompressed hidden space
we find classification error with the linear support vector machine to
be statistically indistinguishable from that of the network’s compressed
layer. We see that that test error of the linear support vector machine in
the compressed hidden layer improves marginally after 10,000 nodes and
even rises when we reach one million nodes. We show that k-means clus-
tering has an improved adjusted rand index and purity in the compressed
hidden space compared to the original input space but only the latter
by a statistically significant margin. We also see that semi-supervised
k-nearest neighbor improves by a statistically significant margin when
only 10% of labels are available. Finally we show that different classifiers
have statistically significant lower error in the compressed hidden layer
than the original space with the linear support vector machine reaching
the lowest error. Overall our experiments show that while classification
in our compressed hidden layer can achieve a low error competitive to the
original space there is a saturation point beyond which the error does
not improve, and that clustering and semi-supervised is better in the
compressed hidden layer by a small yet statistically significant margin.

1 Introduction

Single layer neural networks are known to approximate any non-linear function
within a threshold of error [1, 2]. We also know from Cover’s theorems [3] that
there exists a linearly separable feature space given sufficient nodes in the single
layer. Their applicability to classification is limited though because we usually do
not know the non-linear function underlying the data and Cover’s work doesn’t
tell us exactly how to obtain node weights that give a linearly separable space.



As a result we initialize with random weights and use the back propagation
algorithm to fit the weights on training data [4].

It is well known that optimizing a single layer network can overfit on the
training data and give poor results on test data [5]. To relieve this overfitting we
use methods like dropout [6] and stochastic gradient descent [7] while training
the model. These methods introduce randomness into the training process with
the intent to relieve overfitting.

On the extreme end we can use entirely random weights in the single hidden
layer. In fact random weights have been studied as early as Rosenblatt’s original
paper on perceptrons [8]. Recent studies have shown that random weights in
the hidden single layer followed by trained weights in the output layer give
highly accurate classification results [9–12]. Of these the random bit regression
and random bit forest give the highest accuracies [13, 12]. This work is different
from random projections [14, 15] because here we apply a non-linear activation
function on the hidden layer output whereas random projections work on the
actual output.

In this paper we further explore classification in the feature space given by
the hidden layer of a single layer random network. Specifically we compress the
hidden layer with bit-encoding to reduce memory requirements and thus allowing
for up to a million random nodes in the network. We compare the test error of
the linear support vector machine and other classifiers in the compressed hidden
layer compared to the original input space as well as k-means clustering and
k-nearest neighbor semi-supervised learning.

In conclusion we see that adding random nodes reaches a saturation point
and the error begins to increase when we are at a million random nodes. We see
that the linear support vector machine in the hidden layer achieves classification
errors comparable to state of the art methods in the original and compressed
hidden space. We also see that both clustering and k-nearest neighbor semi-
supervised learning are better in the compressed hidden layer by statistically
significant margins (except for the adjusted rand index in k-means clustering).
Overall our study shows that a single hidden layer with random weights improves
classification and clustering by moderate statistically significant margins.

2 Methods

2.1 Single layer random weights network

In Figure 1 we show a basic single layer neural network. Each node in the middle
layer represents a linear classifier (or peceptron). The weights of each node are
usually determined by the back propagation algorithm [4]. Briefly, this algorithm
starts with initial random weights and optimizes each node at a time with gra-
dient descent (here the gradient is given by the chain rule [4]). It iterates over
the entire network until we have convergence.

In our work we use random weights in the hidden single layer followed by a
trained linear support vector machine in the output layer. We describe our single



Input	layer	

Single	hidden	layer	

Output	layer	

Fig. 1. Toy example of a single layer network. Here we see that the original input data
is two dimensional. There are four nodes in the hidden layer which corresponds to a
feature space of four dimensions. From this feature space we learn a classifier in the
output layer.

layer network in detail in Algorithm 1. We see that our algorithm is similar to
the random bit regression method [13] except for two things: the output layer
and selection of offset. Our output layer is a support vector machine whereas
they use logistic regression, and our offset is chosen randomly between projected
points while theirs is an actual projected point (also randomly chosen).

Since the hidden layer has random weights the only optimization required
is in the final layer. The outputs of the hidden layer represent a new feature
space on which we optimize a linear support vector machine with the liblinear
program [16].

3 Results

3.1 Experimental performance study

In order to evaluate the performance of the random weights network we study it
on several dataset from the UCI repository at https://archive.ics.uci.edu/
ml/.

Datasets: We obtained 52 datasets from the UCI repository. The datasets
include data from different sources such as biological, medical, robotics, and
business. Some of the datasets are multi-class and since we are studying only
binary classification in this paper we convert them to binary. We label the largest
class to be -1 and remaining as +1. We trim down excessively large datasets and
ignore instances with missing values across the datasets. Thus, the number of
instances in some of our datasets are different from that given in the UCI website
https://archive.ics.uci.edu/ml/. For example the SUSY dataset originally
has 5 million entries randomly ordered from which we choose the first 5000 for



Algorithm 1 Single layer random weight neural network

Input: Training data xi ∈ Rd with labels yi ∈ {+1,−1}, the number of nodes m ∈ N
in the hidden layer
Output: Single layer network with random weights in the hidden layer and optimized
SVM weights in the final output layer
Procedure:

Single hidden layer:
for node k = 0 to m− 1 do

1. Create a random vector wk for the kth node such that wki ∼ Uniform[−1, 1]
2 . In order to set the offset parameter w0 first let wT

k xi, ∀i = 0, ..., n − 1 be the
projection of the training data on w. Determine w0 by randomly picking it from

{w
T x0+wT x1

2
, wT x1+wT x2

2
, ...,

wT xn−2+wT xn−1

2
} with uniform probability.

3. For each training point xi the output given by node k is zki = sign(wTxi +w0)
end for
Final output layer: Learn a linear cross-validated SVM model (which we do with
the liblinear program [16]) on the outputs given by the hidden layer. This classifier
represents a single node in the output layer.

our study. We provide our data on the website http://web.njit.edu/~usman/

randomnet.

Software We use the Python scikit-learn library version 0.19.1. to study other
classification and clustering programs in the original and our hidden space, ex-
cept for linear support vector machine. For that we use the fast liblinear version
2.20 software.

– XGboost ver 0.81: a Python implementation of gradient boosting [17] for
decision trees. We use the scikit-learn API called XGBClassifier.

– Multi-layer perceptron: Python sci-kit [18] implementation with a single layer
of 100 hidden nodes.

– Liblinear ver 2.20: a fast linear support vector machine program [16] with
cross-validated value of C from the set {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100}.

– K-nearest neighbor: Python sci-kit [18] implementation with cross-validated
value of number of neighbors k from the set {1, 2, 5, 7, 10, 20, 50} for the
semi-supervised study. For the classification we use k = 5 neighbors.

– K-means clustering: Python sci-kit [18] implementation with 1000 random
restarts. We cross-validate the number of clusters k from the set {2, 3, 4, 5, 6, 7, 8, 16, 20, 24, 28}
for the respective accuracy measure.

Experimental platform: We run our experiments on a cluster of computing
nodes equipped with Intel Xeon E5-2660v2 2.27GHz processors with one method
and dataset exclusively on a processor core.



Train and test splits: For each dataset we create a single random partition
into training and test datasets in the ratio of 90% to 10%. We run all programs
on each training dataset and predict the labels in the corresponding test set.

Measure of accuracy: We measure error as the number of misclassifications
divided by the number of test datapoints. We use two measures for clustering
accuracy: the adjusted Rand index [19] (ARI) and purity [20]. Briefly, the Rand
index is a pairwise similarity measure defined by RI = TP+TN

TP+FP+FN+TN whereas
purity is the classification accuracy given by labeling clusters to maximize the ac-
curacy. We use the adjusted Rand index (ARI) that accounts for pairs occurring
due to chance.

3.2 Compressed hidden layer with bit-encoding

Fig. 2. Raincloud plot showing distribution of errors across the 52 datasets as well as
the five summary statistics of min, max, first and third quartiles, and median. The
graph shows errors of the linear support vector machine in the uncompressed hidden
space vs. 8, 16, 32, and 64 bit compressions.

Since the output of each hidden layer is a 0 or 1 we perform a simple bit
encoding. We divide the hidden nodes into sets of k and replace each set of k



outputs with their bit encoded single value. For example for a set of all 0’s except
for 1’s in position 0 and 2 we would give it the number 20 + 22 = 5. A 64 bit
compression on 100,000 features would thus give us 1563 features in the end.

In Figure 2 we see Raincloud plots showing the five summary statistics of
median, min, max, first, and third quartile as well as the distribution of errors
across the 52 datasets for different k-bit encodings. The uncompressed hidden
layer has 100,000 random nodes. We see that the median error increases some-
what marginally as we increase the number of bits in the encoding. At 64 bits
the median error is statistically indistinguishable by the t-test from the uncom-
pressed version even though it is a little higher.

3.3 Effect of number of nodes on the accuracy of the linear support
vector machine

Number of random weight nodes in hidden layer

Cl
as

si
fic

at
io

n 
er

ro
r

0

0.05

0.1

0.15

0.2

20000 40000 60000 80000 100000

64bit_test

64bit_train

Uncompress_train

Uncompress_test

Original_train

Original_test

Effect of number of random nodes on train and test error

Fig. 3. Average error of the linear support vector machine as a function of number of
random weight nodes in the uncompressed and 64-bit compressed hidden layer, and in
the original input feature space

In Figure 3 we see that as we increase the number of nodes both the train and
test error in the uncompressed and 64-bit encoded compressed layers decrease
but become flat after 10,000 nodes. With the compressed features we can now
study classification accuracy in the hidden layer up to a million random nodes
compressed with 64 bits. In Table 1 we see that the error of both the linear
support vector machine and k-nearest neighbor increases as we go from 100,000
to a million random nodes.



Classifier 105 random nodes 106 random nodes

Linear support vector machine 11.4% 11.8%
K nearest neighbor 13.4% 13.9%

Table 1. Average error in the 64-bit compressed hidden layer with a million random
nodes originally uncompressed

3.4 Performance of k-means clustering in original and 64 bit
compressed hidden layer

In Figure 4 we see the Raincloud plot of adjusted rand index (ARI) and the pu-
rity of k-means in the original and 64 bit encoded hidden layers. In the original
uncompressed layer we have 100,000 random nodes. In both cases the improve-
ment in median ARI and purity over the original space is small (about 2%) but
statistically significant for purity under the t-test (p-value < 0.01).

(a) (b)

Fig. 4. Raincloud plots of k-means adjusted rand index and purity across the 52
datasets in the original space and the 64 bit compressed hidden layer

3.5 Performance of semi-supervised k-nearest neighbor in original
and 64 bit compressed hidden layer

In this setup we randomly pick 90% (and 50% separately) of the training data
and set it aside as unlabeled. We use the label propagation method [21] based on
k-nearest neighbor to determine labels of the remainder of the training dataset.
We then predict the test dataset with k-nearest neighbor.

In Figure 5 we see the Raincloud plot of test error across the 52 datasets
in the original hidden space of 100,000 random nodes and the compressed one.
We see that when 90% of the training data is unlabeled there is a statistically
significant improvement in the median error. However, if 50% are unlabeled they
are statistically indistinguishable.



Fig. 5. Raincloud plots of k-nearest neighbor test error across the 52 datasets in the
original space and the 64 bit compressed hidden layer

3.6 Accuracy of linear support vector machine, xgboost, multi-layer
perceptron, and k-nearest neighbor in the compressed hidden
layer

For our final experiment we compare several classifiers in the original hidden
layer of 100,000 nodes and its 64-bit compression. In Figure 6 we see that the
linear support vector machine in the 64-bit compressed encoded space has the
lowest median error of all methods across the original and hidden layer feature
spaces. We also see that the linear support vector machine, MLP classifier, and
k-nearest neighbor all improve in the new feature space by statistically significant
margins under the t-test (p-value < 0.01). However xgboost performs slightly
better in the original space and is statistically indistinguishable in the hidden
space under the t-test.

4 Conclusion

We see that classification with the linear support vector machine in a random
network’s compressed hidden layer achieves low errors competitive with state
of the art classifiers but does not decrease considerably beyond 10,000 random
nodes. Both semi-supervised and clustering are better in the network’s com-
pressed hidden layer by statistically significant margins except for the case of
adjusted rand index in clustering.



Fig. 6. Raincloud plots of test error of the linear support vector machine, XGboost,
multi-layer perceptron, and k-nearest neighbor in the original space and 64 bit com-
pressed hidden layer

References

1. Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neu-
ral networks, 4(2):251–257, 1991.

2. George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 2(4):303–314, 1989.

3. Thomas M Cover. Geometrical and statistical properties of systems of linear in-
equalities with applications in pattern recognition. IEEE transactions on electronic
computers, (3):326–334, 1965.

4. David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning rep-
resentations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

5. Rich Caruana, Steve Lawrence, and C Lee Giles. Overfitting in neural nets: Back-
propagation, conjugate gradient, and early stopping. In Advances in neural infor-
mation processing systems, pages 402–408, 2001.

6. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

7. Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

8. F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, pages 65–386, 1958.



9. Wouter F Schmidt, Martin A Kraaijveld, and Robert PW Duin. Feedforward
neural networks with random weights. In 11th IAPR International Conference on
Pattern Recognition. Vol. II. Conference B: Pattern Recognition Methodology and
Systems, pages 1–4. IEEE.

10. Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning ma-
chine: theory and applications. Neurocomputing, 70(1-3):489–501, 2006.

11. Yi Wang, Yi Li, Momiao Xiong, Yin Yao Shugart, and Li Jin. Random bits
regression: a strong general predictor for big data. Big Data Analytics, 1(1):12,
2016.

12. Yi Wang, Yi Li, Weilin Pu, Kathryn Wen, Yin Yao Shugart, Momiao Xiong, and
Li Jin. Random bits forest: a strong classifier/regressor for big data. Scientific
Reports, 6, 2016.

13. Yi Wang, Yi Li, Momiao Xiong, Yin Yao Shugart, and Li Jin. Random bits
regression: a strong general predictor for big data. Big Data Analytics, 1(1):12,
2016.

14. Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction:
applications to image and text data. In Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 245–250.
ACM, 2001.

15. William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings
into a hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

16. Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification. The Journal of Machine Learning
Research, 9:1871–1874, 2008.

17. Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

18. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

19. William M Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association, 66(336):846–850, 1971.

20. Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
information retrieval. Natural Language Engineering, 16(1):100–103, 2010.

21. Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data
with label propagation. Technical report, Citeseer, 2002.


