The solution to the minimization in (12.10) is $Y = U_{M,k}^\top$, where $M = (I - W^\top)(I - W^\top)$ and $U_{M,k}^\top$ are the bottom k singular vectors of M, excluding the last singular vector corresponding to the singular value 0.

As discussed in exercise 12.5, LLE coincides with KPCA used with a particular kernel matrix K_{LLE} whereby the output dimensions are normalized to have unit variance (as in the case of Laplacian Eigenmaps).

12.4 Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss lemma is a fundamental result in dimensionality reduction that states that any m points in high-dimensional space can be mapped to a much lower dimension, $k \geq O\left(\frac{\log m}{\epsilon^2}\right)$, without distorting pairwise distance between any two points by more than a factor of $(1 \pm \epsilon)$. In fact, such a mapping can be found in randomized polynomial time by projecting the high-dimensional points onto randomly chosen k-dimensional linear subspaces. The Johnson-Lindenstrauss lemma is formally presented in lemma 12.3. The proof of this lemma hinges on lemma 12.1 and lemma 12.2, and it is an example of the “probabilistic method”, in which probabilistic arguments lead to a deterministic statement. Moreover, as we will see, the Johnson-Lindenstrauss lemma follows by showing that the squared length of a random vector is sharply concentrated around its mean when the vector is projected onto a k-dimensional random subspace.

First, we prove the following property of the χ^2-squared distribution (see definition C.6 in appendix), which will be used in lemma 12.2.

Lemma 12.1

Let Q be a random variable following a χ^2-squared distribution with k degrees of freedom. Then, for any $0 < \epsilon < 1/2$, the following inequality holds:

$$\Pr[(1 - \epsilon)k \leq Q \leq (1 + \epsilon)k] \geq 1 - 2e^{-(\epsilon^2 - \epsilon^3)k/4}. \quad (12.11)$$

Proof By Markov’s inequality, we can write

$$
\Pr[Q \geq (1 + \epsilon)k] = \Pr[\exp(\lambda Q) \geq \exp(\lambda(1 + \epsilon)k)] \leq \frac{\mathbb{E}[\exp(\lambda Q)]}{\exp(\lambda(1 + \epsilon)k)} = \frac{(1 - 2\lambda)^{-k/2}}{\exp(\lambda(1 + \epsilon)k)} ,
$$

where we used for the final equality the expression of the moment-generating function of a χ^2-squared distribution, $E[\exp(\lambda Q)]$, for $\lambda < 1/2$ (equation C.14). Choosing $\lambda = \frac{\epsilon}{2(1+\epsilon)} < 1/2$, which minimizes the right-hand side of the final
equality, and using the identity \(1 + \epsilon \leq \exp(\epsilon - (\epsilon^2 - \epsilon^3)/2)\) yield
\[
\Pr[Q \geq (1 + \epsilon)k] \leq \left(\frac{1 + \epsilon}{\exp(\epsilon)}\right)^{k/2} \leq \left(\frac{\exp(\epsilon)}{\exp(\epsilon)}\right)^{k/2} = \exp\left(-\frac{k}{4}(\epsilon^2 - \epsilon^3)\right).
\]
The statement of the lemma follows by using similar techniques to bound \(\Pr[Q \leq (1 - \epsilon)k]\) and by applying the union bound. ■

Lemma 12.2
Let \(x \in \mathbb{R}^N\), define \(k < N\) and assume that entries in \(A \in \mathbb{R}^{k \times N}\) are sampled independently from the standard normal distribution, \(N(0, 1)\). Then, for any \(0 < \epsilon < 1/2\),
\[
\Pr\left[(1 - \epsilon)\|x\|^2 \leq \|Ax\|^2 \leq (1 + \epsilon)\|x\|^2\right] \geq 1 - 2e^{-(\epsilon^2 - \epsilon^3)k/4}.
\]
(12.12)

Proof Let \(\hat{x} = Ax\) and observe that
\[
E[\hat{x}_j^2] = E\left[\left(\sum_{i=1}^{N} A_{ji}x_i\right)^2\right] = E\left[\sum_{i=1}^{N} A_{ji}^2 x_i^2\right] = \sum_{i=1}^{N} x_i^2 = \|x\|^2.
\]
The second and third equalities follow from the independence and unit variance, respectively, of the \(A_{ij}\). Now, define \(T_j = \frac{\hat{x}_j}{\|x\|}\) and note that the \(T_j\)s are independent standard normal random variables since the \(A_{ij}\) are i.i.d. standard normal random variables and \(E[\hat{x}_j^2] = \|x\|^2\). Thus, the variable \(Q\) defined by \(Q = \sum_{j=1}^{k} T_j^2\) follows a \(\chi^2\)-squared distribution with \(k\) degrees of freedom and we have
\[
\Pr\left[(1 - \epsilon)\|x\|^2 \leq \frac{\|\hat{x}\|^2}{k} \leq (1 + \epsilon)\|x\|^2\right] = \Pr\left[(1 - \epsilon)k \leq \sum_{j=1}^{k} T_j^2 \leq (1 + \epsilon)k\right] = \Pr\left[(1 - \epsilon)k \leq Q \leq (1 + \epsilon)k\right] \geq 1 - 2e^{-(\epsilon^2 - \epsilon^3)k/4},
\]
where the final inequality holds by lemma 12.1, thus proving the statement of the lemma. ■

Lemma 12.3 Johnson-Lindenstrauss
For any \(0 < \epsilon < 1/2\) and any integer \(m > 4\), let \(k = \frac{20 \log m}{\epsilon^2}\). Then for any set \(V\) of \(m\) points in \(\mathbb{R}^N\), there exists a map \(f: \mathbb{R}^N \to \mathbb{R}^k\) such that for all \(u, v \in V\),
\[
(1 - \epsilon)\|u - v\|^2 \leq \|f(u) - f(v)\|^2 \leq (1 + \epsilon)\|u - v\|^2.
\]
(12.13)

Proof Let \(f = \frac{1}{\sqrt{k}}A\) where \(k < N\) and entries in \(A \in \mathbb{R}^{k \times N}\) are sampled
independently from the standard normal distribution, $N(0,1)$. For fixed $u, v \in V$, we can apply lemma 12.2, with $x = u - v$, to lower bound the success probability by $1 - 2e^{-(\epsilon^2 - \epsilon^3)k/4}$. Applying the union bound over the $O(m^2)$ pairs in V, setting $k = \frac{20}{\epsilon^6} \log m$ and upper bounding ϵ by $1/2$, we have

$$\Pr[\text{success}] \geq 1 - 2m^2e^{-(\epsilon^2 - \epsilon^3)k/4} = 1 - 2m^5\epsilon^{-3} > 1 - 2m^{-1/2} > 0.$$

Since the success probability is strictly greater than zero, a map that satisfies the desired conditions must exist, thus proving the statement of the lemma.

12.5 Chapter notes

PCA was introduced in the early 1900s by Pearson [1901]. KPCA was introduced roughly a century later, and our presentation of KPCA is a more concise derivation of results given by Mika et al. [1999]. Isomap and LLE were pioneering works on non-linear dimensionality reduction introduced by Tenenbaum et al. [2000], Roweis and Saul [2000]. Isomap itself is a generalization of a standard linear dimensionality reduction technique called Multidimensional Scaling [Cox and Cox, 2000]. Isomap and LLE led to the development of several related algorithms for manifold learning, e.g., Laplacian Eigenmaps and Maximum Variance Unfolding [Belkin and Niyogi, 2001, Weinberger and Saul, 2006]. As shown in this chapter, classical manifold learning algorithms are special instances of KPCA [Ham et al., 2004]. The Johnson-Lindenstrauss lemma was introduced by Johnson and Lindenstrauss [1984], though our proof of the lemma follows Vempala [2004]. Other simplified proofs of this lemma have also been presented, including Dasgupta and Gupta [2003].

12.6 Exercises

12.1 PCA and maximal variance. Let X be an uncentered data matrix and let $\bar{x} = \frac{1}{m}\sum_i x_i$ be the sample mean of the columns of X.

(a) Show that the variance of one-dimensional projections of the data onto an arbitrary vector u equals $u^\top Cu$, where $C = \frac{1}{m}\sum_i (x_i - \bar{x})(x_i - \bar{x})^\top$ is the sample covariance matrix.

(b) Show that PCA with $k = 1$ projects the data onto the direction (i.e., $u^\top u = 1$) of maximal variance.

12.2 Double centering. In this problem we will prove the correctness of the double