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Clustering

• Suppose we want to cluster n vectors in Rd into two groups. Define C1 
and C2 as the two groups. 

• Our objective is to find C1 and C2 that minimize

where mi is the mean of class Ci



Clustering
• NP hard even for 2-means

• NP hard even on plane

• K-means heuristic
• Popular and hard to beat
• Introduced in 1950s and 1960s



K-means algorithm for two clusters

Input: 
Algorithm:

1. Initialize: assign xi to C1 or C2 with equal probability and compute 
means:

2. Recompute clusters: assign xi to C1 if ||xi-m1||<||xi-m2||, otherwise 
assign to C2

3. Recompute means m1 and m2

4. Compute objective  

5. Compute objective of new clustering. If difference is smaller than     
then stop, otherwise go to step 2.  
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K-means example



K-means

• Is it guaranteed to find the clustering which optimizes the objective?
• It is guaranteed to find a local optimal
• We can prove that the objective decreases with subsequence 

iterations



Proof sketch of convergence of k-means

Justification of first inequality: by 
assigning xj to the closest mean the 
objective decreases or stays the 
same

Justification of second inequality: 
for a given cluster its mean 
minimizes squared error loss



K-means clustering

• K-means is the Expected-Maximization solution if we assume data is 
generated by Gaussian distribution

• EM: Find clustering of data that maximizes likelihood
• Unsupervised means no parameters given. Thus we iterate 

between estimating expected and actual values of parameters
• PCA gives relaxed solution to k-means clustering. Sketch of proof:

• Cast k-means clustering as maximization problem
• Relax cluster indicator variables to be continuous and solution is 

given by PCA



K-means clustering

• K-medians variant:
• Select cluster center that is the median
• Has the effect of minimizing L1 error

• K-medoid
• Cluster center is an actual datapoint (not same as k-medians)

• Algorithms similar to k-means
• Similar local minima problems to k-means



Other clustering algorithms

• Spherical k-means
• Normalize each datapoint (set length to 1)
• Clustering by finding center with minimum cosine angle to cluster points
• Similar iterative algorithm to Euclidean k-means
• Converges with similar proofs.



Other clustering algorithms

• Hierarchical clustering
• Initialize n clusters where each datapoint is in its own cluster
• Merge two nearest clusters into one
• Update distances of new cluster to existing ones
• Repeat step 2 until k clusters are formed.







Graph clustering

• Graph Laplacians widely used in spectral clustering (see tutorial on 
course website)

• Weights Cij may be obtained via 
• Epsilon neighborhood graph
• K-nearest neighbor graph
• Fully connected graph

• Allows semi-supervised analysis (where test data is available but not 
labels)



Graph clustering for non-linear data



Graph clustering

• We can cluster data using the mincut problem
• Balanced version is NP-hard
• We can rewrite balanced mincut problem with graph 

Laplacians. Still NP-hard because solution is allowed only 
discrete values

• By relaxing to allow real values we obtain spectral 
clustering.



Min cut graph clustering



Drawback of min cut approach



Graph clustering

• We can cluster data using the mincut problem
• Balanced version is NP-hard
• We can rewrite balanced mincut problem with graph 

Laplacians. Still NP-hard because solution is allowed only 
discrete values

• By relaxing to allow real values we obtain spectral 
clustering.



Graph Laplacians

• We can perform clustering with the Laplacian L = D – C 
where Dii = ΣjCij

• Basic algorithm for k clusters:
• Compute first k eigenvectors vi of Laplacian matrix
• Let V = [v1, v2, …, vk]
• Cluster rows of V (using k-means)



Graph clustering

• Why does it work?
• Relaxation of NP-hard clustering
• What is relaxation: changing the hard objective into an easier one 

that will yield real (as opposed to discrete) solutions and be at most 
the true objective

• Can a relaxed solution give optimal discrete solution? No guarantees



Graph clustering
• Cut problems are NP-hard.
• We obtain relaxed solutions via eigenvectors of original weight matrix and its 

Laplacian.

From Shi and Malik,
IEEE Pattern Analysis and
Machine Intelligence, 2000



Graph Laplacians and cuts

• Recall from earlier the WMV dimensionality reduction criterion

• WMV is also given by

where X = [x1, x2, …, xn] contains each xi as a column and L is the 
graph Laplacian.
• Thus 



Graph Laplacians and cuts

• For a graph with arbitrary edge weights if we define input vectors x in 
a certain way then the WMV criterion gives us the ratio cut. 

• For proof see page 9 of tutorial (also give in next slide)



Graph Laplacians and cuts

From Spectral clustering tutorial by 
Ulrike von Luxborg



Graph Laplacians and cuts

From Spectral clustering tutorial by 
Ulrike von Luxborg



Application on population structure data

• Data are vectors xi where each feature takes on values 0, 1, and 2 to 
denote number of alleles of a particular single nucleotide 
polymorphism (SNP)

• Output yi is an integer indicating the population group a vector 
belongs to



Publicly available real data

• Datasets (Noah Rosenberg’s lab):
• East Asian admixture: 10 individuals from Cambodia, 15 from Siberia, 49 from China, and 16 

from Japan; 459,188 SNPs
• African admixture: 32 Biaka Pygmy individuals, 15 Mbuti Pygmy, 24 Mandenka, 25 Yoruba, 7 

San from Namibia, 8 Bantu of South Africa, and 12 Bantu of Kenya; 454,732 SNPs
• Middle Eastern admixture: contains 43 Druze from Israil-Carmel, 47 Bedouins from Israel-

Negev, 26 Palestinians from Israel-Central, and 30 Mozabite from Algeria-Mzab; 438,596 SNPs 



East Asian populations
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African populations


[image: image1.png]eigenvector 2

0.25

BiakaPygmy

MbutiPygmy

02 Mandenka  *

- Yoruba

" San -

BantuSouthAfrica

015 “Bantukenya  »
o1}
005
ol

°

-
o1 b -
015 - ke
&
02 -
015 01 0,05 [3 0,05 o1 015








Middle Eastern populations
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K-means applied to PCA data

• PCA and kernel PCA (poly degree 2)
• K-means and spherical k-means
• Number of clusters set to true value
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