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Clustering

* Suppose we want to cluster n vectors in R%into two groups. Define C,
and C, as the two groups.

* Our objective is to find C, and C, that minimize
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i=1 x; €C;

where m; is the mean of class C,



Clustering

* NP hard even for 2-means
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* NP hard even on plane

14. A Mahajan, M.; Nimbhaorkar, P.; Varadarajan, K. (2009). “The
Planar k-Means Problem is NP-Hard". Leciure Notes in
Computer Science 5431: 274—-285. doi:10.1007/978-3-642-
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e K-means heuristic

* Popular and hard to beat
* Introduced in 1950s and 1960s



K-means algorithm for two clusters

nput:  x eR,i=1...n
Algorithm:
1.  Initialize: assign x; to C, or C, with equal probability and compute
means: 1
Zx Zx
x; €C; x; €C,

2. Recompute clusters: assign x; to C; if //x,-m1//<//x,.-m2//, otherwise
assign to C,

3.  Recompute means m; and m,
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2
> Dlx,—m]|

i=1 x; eC;

4.  Compute objective

5. Compute objective of new clustering. If difference is smaller than é
then stop, otherwise go to step 2.



K-means example

Step 1: randomly initialize clusters

Step 2: compute means

Step 4: Recompute means. If the objective is the same a
In the previous cluster then stop otherwise go to
Step 3 and repeat.
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Step 3: yecompute clusters




K-means

* Is it guaranteed to find the clustering which optimizes the objective?
* It is guaranteed to find a local optimal

* We can prove that the objective decreases with subsequence
iterations



Proof sketch of convergence of k-means

2 Justification of first inequality: by
Z Z” X;—m, ||2 > asgignjng x; to the closest mean the

objective decreases or stays the
same

2
Z Z” X;—m, ||2 > Justification of second inequality:
for a given cluster its mean
minimizes squared error loss

=1 x; €C;
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K-means clustering

* K-means is the Expected-Maximization solution if we assume data is
generated by Gaussian distribution

e EM: Find clustering of data that maximizes likelihood
* Unsupervised means no parameters given. Thus we iterate
between estimating expected and actual values of parameters
* PCA gives relaxed solution to k-means clustering. Sketch of proof:
* Cast k-means clustering as maximization problem

e Relax cluster indicator variables to be continuous and solution is
given by PCA



K-means clustering

e K-medians variant:
e Select cluster center that is the median
* Has the effect of minimizing L1 error

e K-medoid
* Cluster center is an actual datapoint (not same as k-medians)

* Algorithms similar to k-means
 Similar local minima problems to k-means



Other clustering algorithms

e Spherical k-means
 Normalize each datapoint (set length to 1)
* Clustering by finding center with minimum cosine angle to cluster points
* Similar iterative algorithm to Euclidean k-means
* Converges with similar proofs.



Other clustering algorithms

* Hierarchical clustering
* |nitialize n clusters where each datapoint is in its own cluster
* Merge two nearest clusters into one
* Update distances of new cluster to existing ones
* Repeat step 2 until k clusters are formed.



Methods to evaluate a given clustering:

2.

If we don't have ground truth labels then we can measure the homogeneity and
separability.

Homogeneity: this is the same as the k-means objective and measures how compact are
the clusters.

ljmz X ”r —m”

i= Dx El_".'
where m is the number of clusters and mi is the mean of cluster Ci.

Separability measures how separated the clusters:
i m— 1 m
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where |Ci| is the size of cluster Ci.

5
We could combined the above into one metnc e
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If we have ground truth then there are two methods:
a. Eﬂ_| |T;_J_ - CH||2where T;=1 iff xi and Xj have the same ground truth label and 0

L

otherwise, and C,= 1 iff xi and xj are in the same cluster and 0 otherwise
b. Classification accuracy: this is the maximum accuracy across permutations of
class labelings in the clustering



Methods to choose number of clusters:

1. Cross-validation. Just like classification we can try to determine the number of clusters
that maximize cross-validation accuracy. We would need labels for this. Without labels
we can try to maximize perhaps cluster homogeneity and separability.

2. Magnitude of PCA eigenvalues. Recall that the eigenvalue itself in PCA is the variance
of the data when projected on the corresponding eigenvector. One rough way to
measure the number of clusters is to see how many eigenvalues are playing an
important role in the variance of the data. If there is a large drop between eigenvalues e,
and e, then this means there are probably k+1 clusters in the data.
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Eigenvalue
magntiude

Eigenvalue index



Graph clustering

* Graph Laplacians widely used in spectral clustering (see tutorial on
course website)

* Weights C; may be obtained via
* Epsilon neighborhood graph
* K-nearest neighbor graph
* Fully connected graph

 Allows semi-supervised analysis (where test data is available but not
labels)



Graph clustering for non-linear data

Graph clustering is really useful in clustering non-linear data. In the example below we see two clusters.
One is the circle at the center with a short radius and the other has a larger radius. However, k-means
will mix the points in the outer and inner circles because it is a linear separator. Suppose instead of
k-means we created a similarity graph and connected each edge to its nearest two neighbors. That
would clearly give us two connected components: one of the points in the inner circle and one of the
outside. The connected components are the two clusters that we seek.
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Graph clustering

* We can cluster data using the mincut problem
* Balanced version is NP-hard

* We can rewrite balanced mincut problem with graph
Laplacians. Still NP-hard because solution is allowed only
discrete values

* By relaxing to allow real values we obtain spectral
clustering.



Min cut graph clustering

Consider the connected graph above. Let each edge have weight 1/(exp(||xi-xj||*2). We can cluster
the points above by looking for the mincut. A mincut is a set of edges of minimum weight that
separates the graph into two connected components. If you take out the edges of weight 1 then we
have two connected components and cut of total weight 6. And so we can cluster points by forming a
graph and looking for the mincut. Remember from your computer science algorithms course we can
find a mincut with the maxflow-mincut polynomial time algorithm. This algorithm gives us a set of
edges wirth the maximum flow that are also the edges with the mincut.



Drawback of min cut approach

Consider the connected graph above from the drawing in Graph Cluster |. We now have a
new datapoint that is connected to just one point and has edge weight of 2. We see that
the mincut is now given by the edge of weight 2. If we remove this edge we don't get a
meaningful cluster. In fact the new datapoint is an outlier. In this way min cuts are
problematic.



Graph clustering

* We can cluster data using the mincut problem
* Balanced version is NP-hard

* We can rewrite balanced mincut problem with graph
Laplacians. Still NP-hard because solution is allowed only
discrete values

* By relaxing to allow real values we obtain spectral
clustering.



Graph Laplacians

* We can perform clustering with the Laplacian L=D—-C
where D; = 2,C,
* Basic algorithm for k clusters:
* Compute first k eigenvectors v, of Laplacian matrix
* LetV=1[v,V,, .., V]
 Cluster rows of V (using k-means)



Graph clustering

* Why does it work?
* Relaxation of NP-hard clustering

* What is relaxation: changing the hard objective into an easier one
that will yield real (as opposed to discrete) solutions and be at most
the true objective

* Can a relaxed solution give optimal discrete solution? No guarantees



Graph clustering

« Cut problems are NP-hard.

« We obtain relaxed solutions via eigenvectors of original weight matrix and its

Laplacian.

Average association

asso(ALA) 4 8ss o(B,B)

Normalized Cut

cut(A,B) 4 cut(A,B)
asso(A,V)  asso(B,V)

Average cut

cut(A,B) |, cut(A,B)

A B A B
or
asso(ALA) n asso(B,B)
asso(A,V) asso(B,V)
Wx= A x (D-W)x= ADx (D-W)x= Ax
or
Wx=(1- MDx

From Shi and Malik,
IEEE Pattern Analysis and
Machine Intelligence, 2000




Graph Laplacians and cuts

* Recall from earlier the WMV dimensionality reduction criterion

1
T y
arg max — E Cii(w (x; — x;
g w o L ?»J( (z j‘))
isJ
* WMV is also given by
AT 1MAaXy, % wl XLXTw

where X =[xy, X,, ..., X,] contains each x; as a column and L is the
graph Laplacian.

* Thus - )
XLX :ch.(xi—xj)
i,



Graph Laplacians and cuts

* For a graph with arbitrary edge weights if we define input vectors x in
a certain way then the WMV criterion gives us the ratio cut.

* For proof see page 9 of tutorial (also give in next slide)



Graph Laplacians and cuts

We first will rewrite the problem in a more convenient form. Given a subset A © V' we define the vector f =
{f1,-.., fu)" € R™ with entries

VIAl/IA ifu e A

; = — _ (2)
/A4 ifved

Now the RatioCut objective function can be conveniently rewritten using the unnormalized graph Laplacian, This
15 due to the following caleulation:

FLE= Y wylfi— £

i, =1

—
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(Al [la] [14] _ (14l

( Vi Z Vaya

[4] 4] )
= 2cut{A, fl + = +
[4] 7 A
|A| + |A4] |ﬂ|+lﬂlj
= 2euti A, A (
| Al |Al

— 2|V| - RatioCut{ 4, A).
From Spectral clustering tutorial by
Ulrike von Luxborg



Graph Laplacians and cuts

Addinonally, we have

l4) IHI [la]

;ﬂ ZH:'I :j: Zl 1] Iﬁll'lh, 4] |A|1I.|' A = 0.

A

In other words, the vector f as defined in Equation (2) is orthogonal to the constant one vector 1. Finally, note that
f satisfies
EY

e = — |A _
I = 3072 = 1Al g + AZ = [+ 4] = .

30 the problem of minimizing (1) can be equivalently rewrnitten as

11|11| f'Lf subjectto f L 1, f; as defined in Eq. (2), | f]| = +/'n. (3)
ACY

This is an NP-hard discrete optimization problem as the entries of the solution vector f are only allowed to take
two particular values. The obvious relaxation in this setting is to discard the condition on the discrete values for f;
and instead allow f; € E. This leads to the relaxed optimization problem

min f'Lf subjectto f L 1. [If]] = VT (4)

From Spectral clustering tutorial by
Ulrike von Luxborg



Application on population structure data

* Data are vectors x. where each feature takes on values 0, 1, and 2 to
denote number of alleles of a particular single nucleotide
polymorphism (SNP)

* Output vy, is an integer indicating the population group a vector
belongs to



Publicly available real data

* Datasets (Noah Rosenberg’s lab):

* East Asian admixture: 10 individuals from Cambodia, 15 from Siberia, 49 from China, and 16
from Japan; 459,188 SNPs

* African admixture: 32 Biaka Pygmy individuals, 15 Mbuti Pygmy, 24 Mandenka, 25 Yoruba, 7
San from Namibia, 8 Bantu of South Africa, and 12 Bantu of Kenya; 454,732 SNPs

* Middle Eastern admixture: contains 43 Druze from Israil-Carmel, 47 Bedouins from Israel-
Negev, 26 Palestinians from Israel-Central, and 30 Mozabite from Algeria-Mzab; 438,596 SNPs



East Asian populations
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African populations

eigenvector 2
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Middle Eastern populations
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K-means applied to PCA data

* PCA and kernel PCA (poly degree 2)

* K-means and spherical k-means

* Number of clusters set to true value

Table 1: Spherical and Euclidean k-means mean classification error over 100 runs (with standard deviation) on

standard PCA and polynomial degree 2 kernel PCA

Datasets Euclidean k-means on | Spherical k-means Euclidean k-means | Spherical k-means
standard PCA on standard PCA on kernel PCA on kernel PCA

East Asia 243146 27.1£4.5 15.6 £ 7.5 19816

Africa 1945 12.5+5.2 205+7.4 125 5.8

Middle East 346 +4.7 237275 30.7+4.2 20348

Worldwide I 16.5+4.8 12.7£4.0 122+£54 99+4.0

Worldwide II 27.6+3.0 28.7+3.0 27.6 £3.8 31.7x4.5
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