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EZPlanes: Ensemble of 0/1 loss local minima hyperplanes for classification

Abstract
We make several new contributions towards op-
timizing the 0/1 loss for binary classification.
We first present a new objective function and
local search algorithm and show that it opti-
mizes 0/1 loss better than previously published
programs on datasets from the UCI repository.
We then present a new method EZplanes that
builds an ensemble of 0/1 loss local minima hy-
perplanes with our local search algorithm and
then uses non-linearized outputs of the ensem-
ble as new features for final linear classifica-
tion. We show that EZplanes achieves a lower
mean error than state of the art methods such as
gradient boosting and multi-layer perceptron in
cross-validation studies on 37 randomly selected
datasets from the UCI repository. We provide a
freely available C implementation of our method
at http:/ezplanes.sourceforge.net.

1. Introduction
The problem of determining the hyperplane with minimum
number of misclassifications in a binary classification prob-
lem is known to be NP-hard (Ben-David et al., 2003). In
mainstream machine learning literature this is called mini-
mizing the 0/1 loss (Shai et al., 2011). Popular linear classi-
fiers such as the linear support vector machine, percpetron,
and logistic regression (Alpaydin, 2004) can be considered
as convex approximations to this problem that yield fast
gradient descent solutions (Bartlett et al., 2004). For exam-
ple, the linear soft margin support vector machine objective
(Cortes & Vapnik, 1995) is given by

argminw,w0

‖w‖
2

2
+C

∑n−1
i=0 max(0, 1− yi(w

Txi+w0))

where w and w0 define the orientation and distance of the
hyperplane to the origin respectively, C ∈ R is a prede-
fined value to control tradeoff between the two terms, n
is the number of input training instances, xi are the train-
ing instances (or feature vectors), and yi ∈ {+1,−1} are

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

class labels. The term on the right is the error of the hy-
perplane on the training data and is (roughly) given by the
distance of misclassified points to the plane (multiplied by
‖w‖) (Alpaydin, 2004). The left term controls complexity
of the classifier. The value of C is typically determined by
cross-validation.

In this paper we make several new contributions towards
optimizing the 0/1 loss for binary classification.

1

2n
argmin

w,w0

∑
i

(1− sign(yi(w
Txi + w0))) (1)

Optimizing objective 1 is hard because it is not a smooth
function and non-differentiable. A simple local search so-
lution is to start with a random w and w0 and make incre-
mental changes until the objective does not improve any
further. However, this alone is fraught with local minima
difficulties. To better understand this consider the toy ex-
ample shown in Figure 1.

w"
w0/||w||"

x"

Figure 1. The hyperplane in solid line is given by w and w0 and
it misclassifies the point x. The dotted hyperplanes are given by
a small step size in the two coordinates of w and insufficient to
cross over point x. The dashed hyperplanes are given by a larger
step size that is sufficient to cross over x and give a potentially
lower 0/1 loss.

We cannot solve the problem demonstrated in Figure 1 by
simply increasing the step size to a very large value because
this would crossover local minima and make the search un-
stable. Instead we propose a new smoother objective. We
add to the 0/1 loss the total Euclidean distance of points
from the plane where misclassified points have a negative
distance and correctly classified points have zero distance.
We also add the geometric margin for the case when we

http:/ezplanes.sourceforge.net
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EZPlanes: Ensemble of 0/1 loss local hyperplanes for classification

have perfect classification of zero error.

argminw,w0
C/2n

∑
i(1− sign(yi(w

Txi + w0)))

+
∑

i max(0,−yi(wTxi + w0)/‖w‖)

+ max{−yi(wTxi + w0)/‖w‖, i = 0..n− 1}
(2)

The intuition behind the new objective is that a local search
method that minimizes this distance would also reduce mis-
classifications and subsequently the 0/1 loss. In objective 2
the distance term can be considerably larger than the loss
term depending upon the structure of the dataset. This in
turn emphasizes the search on optimizing just the distance.
Thus, we add a balance parameter C that controls the trade-
off between the 0/1 loss and the smoothing term in our ob-
jective. We show later how to determine this value for a
given dataset.

To solve objective 2 we propose a new local search algo-
rithm based on coordinate descent and iterated local search.
Our local search starts with a random solution and makes
incremental coordinate-wise changes to w but for each set-
ting of w also determines the best w0. We show that our
method optimizes the 0/1 loss better than a previously pub-
lished perceptron coordinate descent method for 0/1 loss.

We then present a method EZplanes that creates an en-
semble of 0/1 loss local minima hyperplanes with our lo-
cal search to produce a new set of non-linearized features
which are then subjected to a linear classifier. We show that
our method gives lower mean and median error than the
state of the art gradient boosting and multi-layer perceptron
programs by a non-trivial margin on 37 randomly selected
datasets from the UCI repository. We provide intuition and
discussion behind our method and a freely available C im-
plementation for the machine learning community.

2. Methods
2.1. Coordinate descent

We first describe in Algorithm 1 our local search based on
coordinate descent. In brief, we start with a random w,
make changes to it one coordinate at a time, determine the
optimal w0 for each setting of w, and stop when we reach
a local minimum. There are several aspects of our local
search worth discussing here.

First, we cycle the coordinates randomly. Since we mod-
ify only a single coordinate of w at a time we can update
the projection wTxi for all i = 0..n − 1 in O(n) time —
this update is required to determine the optimal w0 and the
objective value. We perform at most 10 modifications to a
given coordinate (as given by the loop ‘forj = 1 to 10 do’)
before considering the next one. This gives all coordinates

(a) (b)

Figure 2. Illustration of our coordinate search on a toy example.
In (a) we show a hyperplane with an initial random normalized
w. The dotted lines show where the projected points would lie on
w. The optimal w0 that minimizes our objectives lies just after
the fourth projected point. In (b) we increase the x-coordinate of
w thus modifying the orientation of the plane (we renormalize w
after the orientation). In the new projection the optimal w0 is also
after the fourth projected point. Thus we don’t need to perform
a full O(n) search after modifying w but instead considering just
a few projected points around the previous w0 is sufficient as a
heuristic.

a fair chance before we reach a local minimum. In the same
loop we also update the objective if a better one is found
and exit if modifying the coordinate does not improve the
objective further. An alternative is to update the objective
only after cycling through all the coordinates. However, we
find our approach yields a faster search than the alternative
while giving similar objective values.

Another aspect of our search is the determination of the
optimal w0. For each setting of wi (the ith coordinate of
w) we determine the optimal value of w0 by considering
all O(n) settings of w0 between sorted successive projected
points wTxk and wTxk+1 Since we modify w locally the
new projection is similar to the previous (sorted) one and
hence insertion sort (that we use for sorting the projection)
takes much less than the worst case O(n2) time.

For an initial w it takes O(n) to determine the optimal w0.
After that as we change w the new w0 is less likely to be
much different than the previous one. And so we don’t
need to consider all O(n) points again to determine the op-
timal w0. Instead, if the initial w0 was found right after the
projected point i then we only consider the range of points
starting from i − 10 to i + 10 in the new projection to de-
termine the new w0. For a visual illustration see our toy
search problem shown in Figure 2.

Iterated local search: There is no guarantee our local
search algorithm will return the global solution. The global
solution may not even be unique. Once we reach a local
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EZPlanes: Ensemble of 0/1 loss local hyperplanes for classification

Algorithm 1 Local search based on coordinate descent
Input: Training data xi ∈ Rd for i = 0..n− 1 with labels
yi ∈ {+1,−1}, C ∈ R, and winc ∈ R
Output: Vector w ∈ Rd and w0 ∈ R
Procedure:

Let each feature wi of w be randomly drawn from
[−1, 1].
Compute normalized data projection wTxi for all i =
0..n− 1 and determine the optimal w0. Determining w0

takes O(n) because we consider mid points between all
projected points wTxi and wTxi+1 for i = 0..n − 2 as
potential candidates.
Compute objective value obj
Set prevobj =∞.
while prevobj − obj > .01 do

Consider a random permutation of the d feature in-
dices.
for i = 0 to d− 1 do

if adding winc to wi (the ith component of w) im-
proves the objective then
sign = 1

else if subtracting winc from wi improves the ob-
jective then
sign = −1

else
skip the next loop

end if
for j = 1 to 10 do
wi += sign× winc

Determine the optimal w0. Since we are mak-
ing local changes to w the new value of w0 is
likely to be not very far from the previous one.
Based on this intuition we avoid expensive O(n)
searches and use a constant time heuristic in-
stead.
if prevobj − obj > .01 then

update the variable obj
Set prevobj = obj.

else
Set j = 10 to exit this loop

end if
end for

end for
end while

minima we may choose the random restart approach and
run the search again. An alternative is to to perturb the local
optimum and continue the search from there (also known as
iterated local search (Hoos & Stützle, 2004)). Our pertur-
bation is to randomly add plus or minus .01 to each wi of
the local minimum. We then perform a new local search
starting from the modified w (See Algorithm 2).

Algorithm 2 Iterated local search
Input: Feature vectors xi ∈ Rd with labels yi ∈
{+1,−1}, C ∈ R, and ilsiter ∈ N (Natural numbers)
Output: Pairs (w ∈ Rd,w0 ∈ R)
Procedure:

Set i = 0.
Run our local search (Algorithm 1) and output local min-
imum w and w0

while j < ilsiter do
for i = 0 to d− 1 do

Randomly add +.01 or −.01 to wi

end for
Run Algorithm 1 starting from w instead of a random
initial vector.
Output local minimum w and w0

Set j = j + 1.
end while

Selection of balance parameter C: For each value of
C from the set {106, 105, 104, 103, 102, 10, 1, .1, 0} we run
a 100 iterated local search (ILS) iterations with step size
winc = 100 and pick the value that gives the lowest total
0/1 loss of all 100 hyperplanes on the full training dataset.
A naive value of C = 1 fails most of the time because the
0/1 loss term is usually much smaller than the smoothing
term. For most datasets we find that a large value of C >=
1000 gives the lowest total 0/1 loss on the training dataset.

Related work: In related work a boosting method (Zhai
et al., 2013), a branch and bound method (Nguyen & San-
ner, 2013), and a random coordinate descent method (Li &
Lin, 2007) have been proposed for 0/1 loss optimization.
We obtained a C implementation of the random coordinate
descent and a Matlab one of the branch and bound to com-
pare against our program. We found the Matlab code to be
very slow and on our smallest dataset it was not better than
our local search. Thus we focus on the random coordinate
descent method in our experimental study.

2.2. EZplanes: ensemble of 0/1 loss local minima from
our local search

A straightforward ensemble approach is to run our local
search on bootstrap replicates and consider the majority
vote while predicting test data (also known as bagging). We
consider a more sophisticated method aimed at classifying
non-linear data and motivate it with a simple example.

Consider the dataset shown in Figure 3. No single hyper-
plane can perfectly classify the data. The two hyperplanes
shown in the figure each minimize the 0/1 loss equally —
both have error of 3. If we consider just the sign of the dat-
apoints as given by the two hyperplanes we indeed can find
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(a)
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(b)

Figure 3. In (a) the crosses have label -1 and circles have label +1.
From the figure it is clear no single hyperplane will classify the
data with 0 error. The dash and dotted hyperplanes both equally
minimize the 0/1 loss and both have error of 3. Now consider the
classifications of the datapoints given by the two hyperplanes H1
and H2: any point to the left of the plane is -1 and otherwise it
is +1. In (b) we see that a new feature space with H1 and H2 as
the new dimensions would give a perfect linear classification of
the data. We use our 0/1 loss local search to sample such local
minima in an attempt to better classify non-linear data.

a linear separation of the data. Our intuition is to use our lo-
cal search to generate many such 0/1 loss local minima and
then perform a linear separation in the new feature space
given by the sign of datapoints relative to each hyperplane.

To further test this idea we simulate two non-linear datasets
shown in Figure 4 and run EZplanes on them with a 1000
planes. We then plot the first three principal components
and see that the new data representation is clearly linearly
separable.

Our EZplanes method described in Algorithm 3 has simi-
larities to a single hidden layer perceptron network. Each
hyperplane in EZplanes can be considered as a hidden node
whose outputs are non-linearized (with the sign function
in our case). The intermediate outputs are then combined
linearly for the final output. However, in a typical percep-
tron network the optimization of all hyperplane parameters
is given by one single objective that is usually optimized
by backward propagation (Rumelhart et al., 1988; Bryson
et al., 1963). Furthermore the hidden nodes are not com-
puted on randomly selected samples of the training data.
We consider randomly selected samples instead of a boot-
strapped one purely for runtime reasons.

(a) (b)

(c) (d)

Figure 4. We simulated two non-linear datasets shown in (a) and
(b) and generated a 1000 new features using EZplanes. In (c) and
(d) we plot the first three principal component analysis of the new
datasets where we see they are now linearly separable.

Algorithm 3 EZplanes
Input: Training data xi ∈ Rd with labels yi ∈ {+1,−1},
test data x′j ∈ Rd, the number of features m ∈ N (Natural
numbers) in the new data representation
Output: New training data zi ∈ Rm and new test data
z′i ∈ Rm

Procedure:
for k = 0 to m− 1 do

1. Make dataset Bk by randomly selecting 10% of the
training data without replacement.
2. Determine value of C as described previously
3. Run our local search (Algorithm 1) on Bk and let w
and w0 be the output. At this stage we can potentially
run any binary classification program and we examine
this later in our results. We call the algorithm that we
use at this stage our base method.
4. Compute non-linearized outputs given by w and
w0. For each training point xi and test point x′j
we compute zi = sign(wTxi + w0) and z′j =

sign(wTx′j + w0) respectively.
5. Set the kth feature of the new training data zik = zi
6. Set the kth feature of the new test data z′jk = z′j

end for
Learn a linear SVM model (with the liblinear program)
and cross-validated parameter C on the new training dat-
apoints representation zi.
Predict labels of datapoints in the new test data represen-
tation z′i.
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2.3. Software

We provide a Linux C implementation of our program on
the website ezplanes.sourceforge.net. We also
provide instructions and supplementary Perl scripts to pro-
cess the output of the main bsp program.

3. Results
We first compare our local search to a previous percep-
tron coordinate descent method for the 0/1 loss (Li & Lin,
2007). We then compare EZplanes to state of the art clas-
sifiers. In both cases we use 37 randomly selected datasets
from the UCI repository (A. Asuncion, 2007). First we pro-
vide details of our experimental study.

3.1. Experimental performance study

Datasets We obtained 37 datasets from the UCI repos-
itory. The datasets include data from different sources
such as biological, medical, robotics, and business. Some
of the datasets are multi-class and since we are studying
only binary classification in this paper we convert them
to binary. We label the largest class to be -1 and remain-
ing as +1. We trim down excessively large datasets and
ignore instances with missing values across the datasets.
Thus, the number of instances in some of our datasets are
different from that given in the UCI website https://
archive.ics.uci.edu/ml/. For example the SUSY
dataset originally has 5 million entries but we choose the
first 5000 for our study. We provide our cleaned data
with labels, splits, and a README file on the website
http://ezplanes.sourceforge.net.

Programs compared We consider state of the art clas-
sification methods for comparing against EZplanes. We
consider cross-validate parameters for all methods except
XGboost and FEST. For the former we pick parameters that
give even a lower test error and for FEST we use the default
ones.

• XGboost: a Python implementation of gradient boost-
ing (Friedman, 2001) for decision trees and also a fre-
quent winner of Kaggle (http://www.kaggle.
com) contests.

• Multi-layer perceptron: we use the Python sci-kit (Pe-
dregosa et al., 2011) implementation with a single
layer of k hidden nodes for k = 500.

• FEST: a fast implementation of boosted trees available
from http://lowrank.net/nikos/fest/.

• Random forest: we use the Python sci-kit implemen-
tation.

• Logistic regression: we use the Python sci-kit imple-
mentation

• Liblinear: a fast linear support vector machine pro-
gram (Fan et al., 2008)

• Perceptron coordinate descent: a previous coordinate
descent program for 0/1 loss optimization (Li & Lin,
2007)

Experimental platform: We run our experiments on a
cluster of computing nodes eqipped with Intel Xeon E5-
2660v2 2.27GHz processors with one method and dataset
exclusively on a processor core.

Train and test splits For each dataset we create 10 ran-
dom partitions into training and test datasets in the ratio of
90% to 10%. We run all programs on each training dataset
and predict the labels in the corresponding test set. From
the predictions we calculate the error and subsequently the
mean error across the 10 random splits.

Standardization Standardization is known to improve
coordinate descent methods in continuous vector spaces.
We normalize all columns in the training datasets to length
1. For the test data we divide each column by the length of
the column in the training dataset. We perform this only for
our local search method since it is not really recommended
for the other programs. In fact for most of the other pro-
grams standardization gives a higher mean test error.

3.2. Comparison of our iterated local search to
perceptron coordinate descent

We start by comparing our iterated local search to a previ-
ous random coordinate descent method (Li & Lin, 2007).
In Table 2 we see that our training errors are considerably
lower suggesting that our search method is more effective
in optimizing the 0/1 loss. We also see that our mean test er-
ror is lower which suggests that our approach is less prone
to overfitting.

Our local search is also a coordinate descent method. But
the main difference is in our update step. The perceptron
coordinate descent updates each coordinate of their solu-
tion w in a way that corresponds to the gradient of w with
respect to that dimension. Our update step explores more of
the search space and thus tends to find better local minima
as shown here.

3.3. EZplanes

To better understand our new method we first study its
mean test error as a function of the number of planes. In
Figure 5 we see that the EZplanes error continues to drop

ezplanes.sourceforge.net
https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/
http://ezplanes.sourceforge.net
http://www.kaggle.com
http://www.kaggle.com
http://lowrank.net/nikos/fest/
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Table 1. Mean training and test error across 37 randomly selected
datasets from UCI repository

METHOD TRAIN ERROR TEST ERROR

PERCEPTRON 11.71 15.28
COORDINATE DESCENT

OUR LOCAL 14.6 17.3
SEARCH

OUR ITERATED 8.34 13.69
LOCAL SEARCH

as we start from one plane up to 100,000. Due to computa-
tional limitations we were unable to study a million planes.
However, our result here suggests that the error may con-
tinue to drop even further.
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Figure 5. The EZplanes mean test error on our 37 datasets contin-
ues to drop as we consider more planes.

We then study the EZplanes algorithm with decision trees,
perceptron coordinate descent, and xgboost as different
base methods (see step 3 of Algorithm 3). We see that
none of the other methods gives the same error as EZPlanes
with our local search method. We have already shown that
the train and test errors of our local search are lower than
the previous perceptron coordinate descent method. In the
context of EZplanes this is helpful because it means we can
find better local minima and thus better new features.

3.4. Comparison of EZplanes to other classifiers

We now come to the main result of our paper in Table 3. We
see that EZplanes with 100,000 planes wins in both mean
and median errors against other popular and hard to beat
classifiers. For example the second best method XGboost
is a regular entry amongst top scorers of Kaggle contests.

Table 2. Mean classification error of EZplanes (1000 new fea-
tures) with different base methods across 37 randomly selected
datasets from UCI repository

EZPLANES WITH BASE METHOD TEST ERROR

OUR LOCAL SEARCH 9.87
PERCEPTRON COORDINATE DESCENT 14.33
DECISION TREE 10.72
XGBOOST 11.01

Here its mean and median is at least 1% worse off than
EZplanes.

Table 3. Mean and median classification error of different meth-
ods across 37 randomly selected datasets from UCI repository

METHOD MEAN MEDIAN

EZPLANES 8.97 6.16
XGBOOST 10.1 7.2
FEST 10.23 6.94
MLP 10.53 7.68
RANDOM-FOREST 10.92 6.96
LIBLINEAR 12.6 7.23
LOGISTIC REGRESSION 12.63 10.51

In Table 4 we compare EZplanes to XGBoost on each of
our 37 datasets individually. We see that EZplanes wins in
18 datasets while XGboost wins in 16 with remaining 3 as
ties. Given these results and the progressive improvement
of EZplanes with the number of hyperplanes we expect it
to be statistically significantly better than XGBoost with a
million hyperplanes.

4. Discussion
Although we haven’t presented running times of our local
search our C implementation is very fast. EZplanes in com-
parison can be much slower but it is also highly scalable.
The local search base method can be run independently and
in parallel. It’s unclear at this stage how EZplanes com-
pares to deep learning methods but running it for as long as
deep learners could potentially give similar or even lower
errors.

Our initial study here opens several interesting avenues for
future work. To the best of our knowledge there is no other
comparable method to EZplanes except for perhaps deep
learning (Bengio et al., 2013). In deep learning we train a
large neural network (mainly unsupervised) to obtain a new
set of features on which we then apply a supervised method
(Le, 2013; Coates et al., 2011). In our case we also have a
large network except that the nodes are independent from
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Table 4. Shown here are cross-validation errors of EZplanes (with
100,000 planes) and XGBoost (best parameter setting we could
find) on 37 datasets from the UCI repository (A. Asuncion, 2007).
Dataset names labeleled with a ∗ means they were originally
multi-class and were converted into binary. by labeling the largest
class -1 and remaining as +1.

DATASET INST(ATTR) EZ XGB

WILT 4339(5) 0.85 0.51
BANKNOTE 1371(4) 0 0.58
SUSY 5000(18) 20.84 23.62
WALL-FOLLOW* 5455(24) 3.5 0.22
SEISMIC 2538(18) 6.56 7.3
THEOREM-PROVING* 6118(51) 15.06 14.61
INSURANCE 5822(85) 6 7.65
SPAMBASE 4601(57) 4.42 4.23
STEEL-FAULTS* 1941(27) 18.1 16.51
GESTURE* 1743(32) 9.91 9.2
INDIAN-LIVER-PATIENT 579(10) 28.64 30.51
GAS-SENSOR* 6953(128) 0.3 0.32
PARKINSON-SPEECH 1040(26) 30 29.81
CLIMATE 540(18) 4.73 5.45
OZONE 1847(72) 6.16 5.78
QSAR 1055(41) 14.06 12.83
ISOLET* 1559(617) 0.51 2.24
BREAST-CANCER 569(30) 2.76 3.28
FERTILITY 99(9) 18.18 20
LIBRAS* 360(90) 1.35 2.97
SMARTPHONE* 7352(561) 0 0
SECOM 1567(590) 7.53 7.22
IONOSPHERE 351(34) 13.06 7.22
MFEAT* 2000(649) 0.25 0.25
PARKINSONS 195(22) 5.5 7.5
HEART 267(44) 18.57 20
CNAE9* 1080(856) 1.57 3.98
URBAN-LAND 675(147) 6.38 4.64
HILL-VALLEY 606(100) 0.16 40.48
SONAR 208(60) 20.91 15.45
MUSK 476(166) 10.21 10.42
LSVT* 126(310) 13.57 15
MICROMASS 931(1300) 1.81 1.81
FOREST* 522(27) 11.13 8.3
PHISHING WEBSITES 2455(30) 2.87 2.51
GRAMMATICAL FACIAL 4225(300) 2.52 2.48
DIABETIC RETIN. 1150(19) 24.05 28.71

AVERAGE 8.97 10.1

each other and the final output. We believe this makes it
less susceptible to overfitting and thus gives low test errors.
At the same time our local search plays an important role
because as we show other base methods fail to reach the
test errors given by our base method.

The speed and accuracy of liblinear is an important compo-
nent of EZplanes. We find that even on 100,000 features it
is very fast and consumes modest memory. This is highly
encouraging for our future aspirations to study EZplanes
with at least a million features.

Our local search is just for binary classification at this
stage. We plan to extend this to regression and unsuper-
vised learning. In both cases our local search algorithm
allows for optimization of hard objective functions that we
plan to explore. Along the same lines we have also yet
to examine the effect of more iterated local search hyper-
planes in EZplanes. In this paper all the results are with our
basic local search algorithm and no further iterations.

We plan to study the optimization of a 0/1 loss objective
for a one layer network with an approach similar to our
local search. This means we update the offset variable after
each modification to the coordinate. However, it may suffer
from overfitting and not perform as well as EZplanes.

Another extension of our local search is a recursive version
of our local search that would give a decision tree like algo-
rithm. Except that here the dividing hyperplanes are based
on 0/1 loss and don’t have to be parallel to the axes (as in a
typical decision tree algorithm).

5. Conclusion
We present a new coordinate descent algorithm for 0/1 loss
optimization and show that it performs better than a pre-
viously published one for this problem. We then present
another new method called EZplanes for non-linear clas-
sification using our 0/1 loss optimizer as a base method.
We show that EZplanes has lower mean and median er-
ror on several randomly selected datasets from UCI when
compared to other leading state of the art classification pro-
grams.

References
A. Asuncion, D.J. Newman. UCI machine learning repos-

itory, 2007. URL http://www.ics.uci.edu/$\
sim$mlearn/{MLR}epository.html.

Alpaydin, Ethem. Machine Learning. MIT Press, 2004.

Bartlett, Peter L., Jordan, Michael I., and Mcauliffe,
Jon D. Large margin classifiers: Convex loss, low
noise, and convergence rates. In Thrun, S., Saul, L.K.,
and Schölkopf, B. (eds.), Advances in Neural Informa-
tion Processing Systems 16, pp. 1173–1180. MIT Press,
2004.

Ben-David, Shai, Eiron, Nadav, and Long, Philip M. On
the difficulty of approximately maximizing agreements.
Journal of Computer and System Sciences, 66(3):496–
514, 2003.

Bengio, Yoshua, Courville, Aaron, and Vincent, Pierre.
Representation learning: A review and new perspectives.
Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 35(8):1798–1828, 2013.

http://www.ics.uci.edu/$\sim $mlearn/{MLR}epository.html
http://www.ics.uci.edu/$\sim $mlearn/{MLR}epository.html


770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

EZPlanes: Ensemble of 0/1 loss local hyperplanes for classification

Bryson, Arthur E, Denham, Walter F, and Dreyfus, Stew-
art E. Optimal programming problems with inequality
constraints. AIAA journal, 1(11):2544–2550, 1963.

Coates, Adam, Ng, Andrew Y, and Lee, Honglak. An
analysis of single-layer networks in unsupervised feature
learning. In International conference on artificial intel-
ligence and statistics, pp. 215–223, 2011.

Cortes, Corinna and Vapnik, Vladimir. Support-vector net-
works. Machine learning, 20(3):273–297, 1995.

Fan, Rong-En, Chang, Kai-Wei, Hsieh, Cho-Jui, Wang,
Xiang-Rui, and Lin, Chih-Jen. Liblinear: A library
for large linear classification. The Journal of Machine
Learning Research, 9:1871–1874, 2008.

Friedman, Jerome H. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pp.
1189–1232, 2001.
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