Challenges in predicting glioma survival time in
multi-modal deep networks
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Abstract—Prediction of cancer survival time is of considerable
interest in medicine as it leads to better patient care and reduces
health care costs. In this study, we propose a multi-path multi-
modal neural network that predicts Glioblastoma Multiforme
(GBM) survival time at the 14 months threshold. We obtained
image, gene expression, and SNP variants from whole-exome
sequences all from the The Cancer Genome Atlas portal for
a total of 126 patients. We perform a 10-fold cross-validation
experiment on each of the data sources separately as well
as the model with all data combined. From post-contrast T1
MRI data, we used 3D scans and 2D slices that we selected
manually to show the tumor region. We find that the model with
2D MRI slices and genomic data combined gives the highest
accuracies over individual sources but by a modest margin. We
see considerable variation in accuracies across the 10 folds and
that our model achieves 100% accuracy on the training data but
lags behind in test accuracy. With dropout our training accuracy
falls considerably. This shows that predicting glioma survival time
is a challenging task but it is unclear if this is also a symptom
of insufficient data. A clear direction here is to augment our
data that we plan to explore with generative models. Overall
we present a novel multi-modal network that incorporates SNP,
gene expression, and MRI image data for glioma survival time
prediction.

Index Terms—TCGA GBM, MRI, SNPs, CNN, mRNA expres-
sion.

I. INTRODUCTION

Predicting glioma survival time helps patients and their clin-
icians evaluate available treatment plans and make informed
choices. Glioblastoma Multiforme (GBM) is the most common
and lethal glioma type in adult [19]. In GBM, less than 5%
of patients reach 5 years survival threshold after diagnosis
with a median survival of 15 months [[18]. Most advanced
cancer patients prefer to know their estimated prognostic
information [10]. However, clinicians’ survival time estimates
are inaccurate, and often optimistic [LO], [17].

Many studies have devised 3D convolutional neural net-
works (CNNs) to improve the accuracy of structural MRI
scans to classify glioma patients into survival categories [3l],
[S], [15], [22]. In this paper we look into a heterogeneous
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combination of somatic and germline genetic single vari-
ations, messenger RNA expressions, and post-contrast T1
MRI modality data that show the malignancy. We obtained
whole exome sequencing data (WES) from the The Cancer
Genome Atlas (TCGA) portal (https://www.cancer.gov/tcga),
messenger RNA, and post-contrast axial T1 MRI sequences
from The Cancer Imaging Archive (TCIA [6]) for all European
ancestry individuals with GBM. For this study we only include
samples for which all three data types are available, giving us
a total of126. For each sample we assign a label of O if their
survival time is below14 months and 1 otherwise (to obtain
balanced sets), thus converting our survival time prediction
problem into a classification one.

We design a multi-path neural network that takes as input
all three data sources and evaluate its accuracy in a 10-fold
cross-validation experiment. We ran the Genome Analysis
Toolkit (GATK4) pipeline to obtain single mutations with
exhaustive site-level and sample-level quality controls to elimi-
nate sequencers artifacts and false-positive SNPs. We included
biallelic and multiallelic loci and converted the two allele
copies of each SNP into a numerical format using an in-house
python script. Then, we ranked SNPs on each training split
to select the best 100 SNPs to use as predictive markers.
We obtained TCGA-GBM samples from mRNA expression
information after Robust Multi-array Analysis (RMA) normal-
ization from the Broad Institute TCGA Genome Data Analysis
Center Firehose.

We downloaded MRI sequences in Digital Imaging and
Communications in Medicine (DICOM) format from TCIA.
From the 3D axial Tl MRI sequences. We explored both
3D volumes and 2D slices. For 3D scans, we converted
the DICOM images to Neuroimaging Informatics Technology
Initiative (NIfTI) format. We extracted non-brain tissue with
FSL BET, and registered the images to T1 MRI MNI152
reference with FSL FLIRT. We train a model with 3D U-
Net [14] separately as well as simultaneously with SNPs and
mRNA data.
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For 2D slices, we manually selected one slice that shows the
tumor for each sample. Then we used these 2-D image slices to
train a 2D CNN with ResNet18 [[11] encoder and measured the
accuracy of predicting test samples in 10-fold cross-validation.
We compared the accuracy of predicting survival time with
SNPs, mRNA expressions, and MRI scans separately as well
as when combining the three data sources. For SNPs and
mRNA expressions we used separate multi-layer neural nets
and for images we used 2D and 3D convolutional neural
networks.

We see a slight improvement with in combined model with
2D images over the individual data sources but considerable
variation in test accuracy across different train test folds.
We conjecture this may be due to our small training set of
126 individuals. By synthetically augmenting the data with a
generative model we may improve sample representation and
consequently model accuracy.

II. METHODS
A. Data

Our data is composed of TCGA-GBM (https://www.cancer.
gov/tcga) European ancestry individuals that have all of the
following data: 1) Survival time (days from diagnosis to
death), we also performed right censoring to increase the
dataset size where we included samples for which days to
the last follow-up are above the 14 months threshold, 2) WES
data, 3) mRNA expressions information, and 4) post-contrast
T1 axial MRI sequence. We excluded samples that don’t meet
the inclusion criteria. The total number of samples included
in the analysis is 126, Table [[| shows the clinical characteristic
of these samples.

TABLE I
SAMPLES CLINICAL CHARACTERISTIC

Clinical characteristic [ TCGA-GBM (n=126)

Ancestry (European) 126
Ethnicity (not reported/not hispanic or latino) 25/101
Gender (male/female) 76/51
Average age 60.38 +13.37
Vital status (dead/alive) 123/3
Average survival (days) excluding censored 483.44 + 431.95
# of samples in each class (short-term/long-term) 63/63

1) SNPs: We obtained TCGA-GBM 126 European ancestry
individuals pre-aligned WES for each sample that met the
inclusion criteria from TCGA (https://www.cancer.gov/tcga)
through the NCI Genomic Data Commons (GDC) data portal
(https://gdc.cancer.gov/). We ran a GATK (version 4) Haplo-
typeCaller [12], [8]], [2] on each sample. We then pooled all
samples together for joint genotyping utilizing a computing
cluster in a scatter and gather approach on each chromosome
to expedite variant discovery process. To filter out low-quality
SNPs, we applied the GATK variant quality recalibration score
(VQSR), which uses a machine learning trained on external
datasets to assign a quality score to each site-level variant.
We used a truth sensitivity of a 99% as a threshold. Those

SNPs that passed VQSR are further interrogated on sample-
level genotype quality (GQ) and depth (DP). SNPs that passed
VQSR at the site-level and GQ > 20 and DP > 5 at the
sample-level are included for further analysis. We performed
the typical widely used multi-allelic encoding of SNPs shown
in Figure [T]

We calculated the chi-squared statistic [7] between each
SNP and the binary class label and ranked SNPs based on
the test statistics. The higher the statistic the more important
the SNP in its predictive ability. We included top-ranked 100
SNPs for further analysis.

2) mRNA expressions: We downloaded gene expression
information for the samples that were normalized with Robust
Multi-array Analysis (RMA) from the Broad Institute TCGA
Genome Data Analysis Center Firehose [L1]].

3) 3D MRI scans: We obtained axial T1 MRI sequences
in DICOM format from The Cancer Imaging Archive (TCIA).
We converted DICOM images to NIfTI format with decmtonii
software and removed non-brain tissue with FSL BET [21]]
with option -B (an option that leads to overall better perfor-
mance in skull-stripping [20]). We then aligned images to T1
axial MNI152 reference with FSL FLIRT.

4) 2D MRI slices: For each subject, we manually selected
an image slice that best shows the tumor and its surrounding
tumor enhancing-area. Table [[I] shows the vector and matrix
dimensions for the three data sources we used in our analysis.

TABLE 11
SNPs, MRNA, AND T1 MRI DATA

Data set Vector (matrix) dimension
SNPs (passed filtering) 79980
mRNA expressions 12042
3D post-contrast T1 MRI scans (182, 218, 182)
2D post-contrast T1 MRI slices (256,256)
REF allele: C
ALT alleles: A,G,T
\ Sample SNP
s1 0/1 (C/A)
S2 2/3 (G/T)
S3 3/3 (T/T)
|
Sample Encoded SNP
S1 1
S2 11
S3 15

Fig. 1. A toy example for encoding a multialleic SNP into a numerical format

B. Network architecture and training

We constructed three separate neural nets using PyTorch
[13] to evaluate the predictive power of each data source
alone. We concatenated the output of these nets to evaluate
combining SNPs, mRNA expressions, and images predictive
ability.
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2D image slices CNN1
(224,224) (ResNet18) for 20 slices and
3D image volume (U-Net) for 3D volumes
(192, 224,192) output 128

SNPs vectors
(100 features)

Gene expressions vectors
(12042 features)
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Fig. 2. Our multi-modal deep neural network. We see three paths each for
SNP, gene expression, and images. We train the network as one model instead
of training the three paths separately.

For SNPs we constructed a net with 2 hidden layers. For
activation function, we used Relu, and 0.01 learning rate, batch
size of 5 and 30 epochs with Stochastic Gradient Descent
(SGD) and Nesterov Momentum update. For mRNA ex-
pressions, we set the parameters to exactly what we used for
SNPs but with 3 hidden layers (1000, 100, 10). For 2D T1
MRI sequence slices, we used ResNetl8 convolutional neural
network [11]] which has 18 hidden layers and has 18 output
nodes. Because the ResNet18 input size shape is (244,244), we
resized all slice images to (256,256) dimensions and randomly
center cropped (224, 224), we use the cropped images as an
input for the ResNet18 convolutional neural network. We used
the following parameters with ResNet18: learning rate of 0.01,
batch size of 6, 15 epochs. For 3D volumes, we employed 3D
U-Net where we padded the original images with zero to
fit the network input dimensions of (192, 224, 192). We used
the same parameters here that we used to train the 2D slices
in ResNet18.

To combined each of SNPs and mRNA dataset with MRI
slices, we add one more dense layer to the end of ResNetl8.
After ReLu activation we concatenate the output to the net-
work’s output. Then we feed it into a dense layer with 50
input nodes and 2 output nodes. For combining the three data
sources, we concatenate the three outputs of each network.
Figure [2| shows our network architecture for combined data
sources.

III. RESULTS

We report on our 10-fold cross-validation results on all three
data sources combined as well as individual data sources with
both 2D and 3D images. We evaluate accuracy as the sum of
correct predictions over the total number of the test set. We
selected our survival threshold at 14 months intentionally so
that our data is balanced: we have equal number of samples
on both classes.

A. Combined data with 3D volumes

In Figure 3] we show the mean accuracy of our model across
10-folds and 15 epochs for each of the three data sources
separately and the combined data model. We see that our
model can achieve a 100% accuracy on the individual and
combined data models. In the test, however, the accuracies are
lower. We see that the combined data model does not perform
better than the individual ones. In fact here the gene expression
data source gives the best test accuracy of 62.4% at epoch 13.

1 @ Train set (SNPs)
@ Test set (SNPs)

Train set (MRNA
expressions)

@ Test set (MRNA
expressions)

=]
~
o

&

@

5

8

@

§ 05 B = e N\ @ Train set (MRI)

g ‘-—M @ Test set (MR)

®

3 @ Train set (SNPs+mRNA

é‘L 0.25 expressions+MRI)
Test set (SNPs+mRNA
expressions+MRI)

0
1 2 3 4 5 6 7 & 9 10111213 14 15

Epochs

Fig. 3. Mean 10-fold accuracy of our network across 15 epochs for training
and test sets with 3D volumes as the image data.

In In Figure [6] we see the test accuracy of each of the ten
folds of the combined model. We see in some folds the test
accuracy goes to 75% whereas in other as low as 25%. This
suggests that in some in some folds we have a diverse enough
training set that captures the distribution of test datapoints,
whereas in other folds the training and test image datasets are
very different.
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Fig. 4. Test accuracy of each of the 10-folds of our network across 15 epochs
on all three data sources combined with 3D volumes as the images.

B. Combined data with 2D slices

In Figure [5| we show the mean 10-fold accuracy on training
and test sets across 15 epochs of our model with 2D slices
as images. Here we see an overall better test accuracy with



the combined model but by a small margin. At epoch 11
the combined data gives 63% accuracy whereas the gene
expression alone gives 62.4% at epoch 13. This difference
however is not statistically significant.
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Fig. 5. Mean 10-fold accuracy of our network across 15 epochs for training
and test sets with handpicked 2D slices (that manifest the tumor) as the image
data.

When we see the test accuracy of each of the 10 folds on
the combined data we see considerable variation as shown in
Figure [6] Again this shows that in some folds our train and
test distributions are likely to be the same and in others very
different, thus making it hard to classify.
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Fig. 6. Test accuracy of each of the 10-folds of our network across 15 epochs
on all three data sources combined with 2D slices as the images.

IV. DISCUSSION

We see that combining data into three sources yields a
slight improvement that is not statistically significant. Clearly
simply by combining more data we cannot expect to predict
survival time accurately but we also possibly need to enlarge
our training set size. The variation in test accuracy across the
folds suggests model instability that we attribute to insufficient
data. One possible avenue to solve this is to generate artificial
samples for all three sources with a generative model like a
generative adversarial network [9].

Another thing in our results is the 100% accuracy in training
on the combined data in both 2D and 3D. Could our model be
overfitting? We add dropout [16] that is a popular and powerful
method to reduce overfitting. It reduces the training accuracy
all the way down to in the 50-60% range and does not improve
test accuracy. This suggests we may need a richer model with
dropout since even fitting training samples becomes very hard
with this method.

Finally we see that the 2D combined model performs better
than the 3D. A 3D model in general requires much more data
than a 2D which is one likely reason for the 3D model’s
poorer performance. We fine-tuned our 3D U-Net but it did
not improve accuracy. Again we conjecture here that additional
data points via generative modeling may increase accuracy.

V. CONCLUSION

We show that integrating genomic and neuroimages in
multi-path neural network slightly improves glioma survival
time prediction at the 14 month threshold. We see instability in
test accuracy in our model and conjecture that a larger sample
size produced via a generative model may improve stability
and overall accuracy.
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