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Abstract—Carotid ultrasound is a screening modality used
by physicians to direct treatment in the prevention of ischemic
stroke in high-risk patients. It is a time intensive process that
requires highly trained technicians and physicians. Evaluation
of a carotid ultrasound requires identification of the vessel wall,
lumen, and plaque of the carotid artery. Automated machine
learning methods for these tasks are highly limited. We propose
and evaluate here single and multi-path convolutional U-neural
network for lumen identification from ultrasound images. We ob-
tained de-identified images under IRB approval from 98 patients.
We isolated just the internal carotid artery ultrasound images
for these patients giving us a total of 302 images. We manually
segmented the vessel lumen, which we use as ground truth to
develop and validate our model. With a basic simple convolutional
U-Net we obtained a 10-fold cross-validation accuracy of 95%.
We also evaluated a dual-path U-Net where we modified the
original image and used it as a synthetic modality but we found
no improvement in accuracy. We found that the sample size
made a considerable difference and thus expect our accuracy
to rise as we add more training samples to the model. Our work
here represents a first successful step towards the automated
identification of the vessel lumen in carotid artery ultrasound
images and is an important first step in creating a system that
can independently evaluate carotid ultrasounds.

Index Terms—vascular ultrasounds, lumen segmentation, con-
volutional neural networks

I. INTRODUCTION

Stroke is the 5th leading cause of death in the United
States [1]. Annually, it is responsible for billions of dollars
in lost income and health care costs. For this reason there is
significant effort and investment in the prevention of stroke.

Ischemic strokes account for 87% of all strokes. Narrow-
ing and deposition of plaque in the carotid arteries due to
atherosclerosis is the most common cause of ischemic stroke.
Carotid ultrasound is a safe, low-cost procedure that is used as
a screening test in patients with risk factors for atherosclerosis
[2]. It allows physicians to stratify the stroke risk of a patient
and identify those patients that will most benefit from medical
therapy or surgical intervention.

During a vascular ultrasound high-frequency sound pulses
are transmitted into your body. The sound waves travel into
your body and hit the boundaries between tissues and are re-
flected back to the ultrasound probe. The ultrasound uses these
signals to create a two dimensional image of the vessel being
imaged. To evaluate a carotid ultrasound studies physicians
first must identify the vessel in the image. They then identify
any atherosclerotic plaque within the wall and lumen of the
vessel and finally they evaluate the physiologic impact of those
plaques on the flow of blood within the vessel. This is a time
intensive and resource intensive process that requires highly
skilled technicians and physicians to perform and interpret the
results. As physician workload has increased and healthcare
systems investigate ways to streamline processes and cut costs
automating the interpretation of vascular ultrasounds has great
potential.

Prior work in automated approaches to evaluating carotid
ultrasounds is highly limited and does not use modern deep
learning methods. Previously vessel identification in carotid ul-
trasounds with preprocessing and marker-controlled watershed
transform has been explored [3]. Deep learning solutions have



been proposed for vessel segmentation in liver ultrasounds [4]
and for vessel detection in femoral regions [5]. In the latter
study authors also evaluate their method on carotid ultrasound
images from two individuals, however their target is detection
as opposed to segmentation that we seek. DeepVesselNet [6]
is another deep learning model designed for vessel detection
but in 3D angiographic volumes. A patch-based deep learning
solution has also been proposed for 3D ultrasounds [7]. None
of these are end-to-end systems that are simple to train and
implement and non address vessel lumen segmentation in
carotid ultrasounds that we seek here.

We present here a study to evaluate using a basic U-Net
convolutional neural network to accurately identify the lumen
of carotid artery in a vascular ultrasound. Our network is a
simple end-to-end solution and addresses for the first time
the problem of vessel lumen segmentation in carotid artery
2D ultrasounds. These ultrasounds are more affordable and
common than 3D ones. Such ultrasounds are broadly used in
vascular diagnosis and thus our solution has a broader impact
than previous work.

II. METHODS

A. Data collection

We obtained IRB approval from Robert Wood Johnson
Medical School to use de-identified images from the Depart-
ment of Vascular Surgery for this research. We the carotid
ultrasound study of 98 patients. We utilized an automated
script to crop all patient identifies from the ultrasound images
and manually verified this de-identification. For this study we
focused exclusively on the left and right internal carotid artery
ultrasound images.

We cropped each image to obtain just the ultrasound re-
moving all text and annotations on the image. Each images
was resized to 224 × 224 pixels. This gave us a total of 302
images that we then manually segmented. Using RectLabel
software (https://rectlabel.com/) we manually segmented the
vessel lumen for each image to serve as ground truth for
training and validation.

B. Convolutional neural networks

Convolutional neural networks are the current state of the art
in machine learning for image recognition [8], [9], including
for MRI [10]. They are typically composed of alternating lay-
ers for convolution and pooling, followed by a final flattened
layer. A convolution layer is specified by a filter size and the
number of filters in the layer. Briefly, the convolution layer
performs a moving dot product against pixels given by a fixed
filter of size k × k (usually 3× 3 or 5× 5). The dot product
is made non-linear by passing the output to an activation
function such as a sigmoid or rectified linear unit (also called
relu or hinge) function. Both are differentiable and thus fit
into the standard gradient descent framework for optimizing
neural networks during training. The output of applying a
k × k convolution against a p × p image is an image of size
(p− k + 1)× (p− k + 1). In a CNN, the convolution layers
just described are typically alternated with pooling layers. The

pooling layers serve to reduce dimensionality, making it easier
to train the network.

C. Convolutional U-network

After applying a series of convolutional filters, the final
layer dimension is usually much smaller than that of the
input images. For the current problem of determining whether
a given pixel in the input image is part of a lesion, the
output must be of the same dimension as the input. This
dimensionality problem was initially solved by taking each
pixel in the input image and a localized region around it as
input to a convolutional neural network instead of the entire
image [11].

A more powerful recent solution is the Convolutional U-
Net (U-Net) [12]. This has two main features that separate it
from traditional CNNs: (a) deconvolution (upsampling) layers
to increase image dimensionality, and (b) connections between
convolution and deconvolution layers.

D. Basic U-Net for vessel segmentation

We implemented a basic U-Net [12] in the Pytorch library
[13] as shown in Figure 1. The U-Net is a popular choice
for medical artificial intelligence work and has proven to be
a successful baseline that can be built upon. The input to
the model is an ultrasound image and output is an image
of the same dimensions with 0 and 1 pixel values indicating
background and vessel lumen.

Fig. 1. Basic U-Net architecture [12] that we use in our preliminary work.
Shown here are dimensions of our images in each layer and the number of
convolutional and transposed convolutions per layer.

Roughly speaking, in our model we first extract features
with a series of convolutional kernels and then apply transpose
convolutions to increase the dimensionality of the image up
to the original. Thus we have an end-to-end network that is
much simpler to train than otherwise patch-based approaches
that have previously been used for segmentation.

Inspired by our success in synthetic modalities for brain
MRI systems [14] we utilized a dual-encoder model as well.
We modified the original input ultrasound image by flipping it
along the y-axis (called flip) and modifying the brightness and



contrast separately. These modified images were then used the
as a second modality. In Figure 2 we see our dual-path encoder
model that has a feature fusion for combining features from
the two encoders.

Our feature fusion is a simple concatenation of features from
the two encoders. In order to maintain the correct dimensions
for the decoder we reduced each downsampling layer’s output
channels by half. In this way the concatenation restores the
original dimensionality that is required by the decoder layer.

Fig. 2. Dual-encoder network that treats a modification of the input image
as a synthetic modality.

E. Dice loss

The final output from our network is a 2D predicted image
of dimensions 224 × 224. We convert each pixel value into
probabilities with softmax [15] and call the resulting image p.
The target ground truth r is also of the same dimensions as p
and contains a 1 if the pixel is within the vessel lumen and 0
otherwise. We then use the Dice loss to train our model. This
is defined to be 1−D where

D(p) =
2
∑
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i p

2
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∑
i r

2
i

and pi and ri are the ith pixel values of p and r respectively.

F. Model implementation and training

We implemented our system using Pytorch [13] and ran
it on NVIDIA Pascal P100 and NVIDIA Titan RTX GPUs.
We trained our model with 20 epochs of stochastic gradient
descent [16], a learning rate of 0.03, decay step of 15, and a
batch size of 1. We did not perform any normalization on the
input images.

G. Post processing

We applied a simple post processing procedure to reduce
potential false positives. In the final predicted segmentation
we remove all disconnected components except for the largest
one that is meant to be the vessel lumen. We found that this
improved accuracy by a moderate margin.

H. Measure of accuracy: Dice coefficient

The Dice coefficient is typically used to measure the accu-
racy of predicted segmentations in medical images [17]. We
convert the output image of our network into a binary mask by
setting each pixel value to 1 if its softmax output is at least 0.5
and 0 otherwise. Thus we use 0.5 as the probability threshold
that a pixel value is part of the vessel lumen or outside it.
Starting with the human binary mask as ground truth, each

predicted pixel is determined to be either a true positive (TP,
also one in true mask), false positive (FP, predicted as one
but zero in the true mask), or false negative (FN, predicted as
zero but one in the true mask). The Dice coefficient is formally
defined as

DICE =
2TP

2TP + FP + FN
(1)

I. 10-fold cross-validation

We performed 10-fold cross-validation experiments on our
data. We randomly split our dataset into ten equal parts and
selected one part for validation while the remaining nine parts
were used to train the model. We then rotated the validation
part across the other nine parts giving us a total of 10 pairs
of training validation splits. We trained the model on each
split and reported the average validation and training accuracy
below.

III. RESULTS

A. Cross-validation on all images

In Table I we show the average 10-fold Dice values of
vessel lumen segmentations separately for both training and
validation samples. The training Dice is typically higher than
validation as we see below and the validation is not far behind
which suggests that our model is generalizing. We ran the 10-
fold three times on our model to check for stability and found
that each time our model gives a high training and validation
accuracy.

Model train run Vessel train Vessel validation
Sample size of 234 images

1 97.95% 93.96%
2 98.00% 93.73%
3 97.99% 93.67%

Sample size of all 302 images
1 97.83% 94.63%

TABLE I
AVERAGE DICE COEFFICIENTS OF TRAIN AND VALIDATION SPLITS IN OUR

10-FOLD CROSS-VALIDATION ACROSS THREE DIFFERENT RUNS OF OUR
MODEL.

In Figure 3 we see ultrasound images with their ground
truth and predicted segmentations In (a) we see a vessel with
no plaque or calcified walls. In (b) we see a vessel with thick
calcified walls, in (c) we have a vessel with plaque, and in
(d) we have a vessel with plaque and other regions above
that could be mistaken for vessel lumen. In all four cases
our model predicts the vessel lumen accurately as clear from
the predicted segmentations. We found that the plaque and
calcified wall does not affect the model and are contained
within and outside the lumen respectively as we desire. From
Figure 3(d) we also see that the model can tell the true vessel
lumen from other regions that appear to be the lumen when
in fact they are not.



(a)

(b)

(c)

(d)
Fig. 3. Examples of ultrasound images with their manual ground truth and
predicted segmentations.

B. Effect of sample size

We ran the training model with 5 different sample sizes (25,
50, 100, 234, and all 302 images). Figure 4 demonstrates the
average Dice coefficient in our 10-fold experiment with the
respective different sample sizes. We see that both training
and validation accuracies increase as we add more samples.
In fact the validation accuracy approaches the training one as
the sample size increases.

C. Effect of dual-path encoder

To study the performance of the synthetic modality of our
dual-encoder model, we modified the original input image
by flipping it along the y-axis (called flip) and adjusting the
brightness and contrast separately by a factor of 2 (using

Fig. 4. As our sample size increases we see both training and validation
accuracy in 10-fold cross-validation increases.

functions implemented in Pytorch and Torchvision). In Table II
we show that all four synthetic modalities don’t improve the
validation accuracy of the single-path model.

Synthetic modality Vessel train Vessel validation
Flip 98.46% 91.76%

Brightness 98.48% 93.83%
Contrast 98.39% 93.7%

TABLE II
TRAINING AND VALIDATION DICE ACCURACY OF OUR DUAL-ENCODER

MODEL WITH DIFFERENT SYNTHETIC MODALITIES.

D. Effect of modified Dice loss to emphasize recall

While our overall validation accuracy is at 95% our model
still has difficulty in some cases. In Figure 5(a) we see that
the predicted segmentation is incomplete for this image even
though the image does not appear to be hard. While there are
no false positives the true positive rate (recall) is low. To fix
this we try a modified Dice loss below that upweights the
recall component by a factor of 4.

D(p) =
5
∑

i piri∑
i p

2
i+4×

∑
i r

2
i

We evaluate our model with the modified Dice loss on a
subset of 234 samples on which we also report the original
model’s accuracy above. In Figure 5(b) we see that the
modified loss improves the segmentation of this particular
image. We see it also improves segmentation of the image
shown in Figure 5(c) with our original Dice loss to cover the
entire vessel with the modified loss in Figure 5(d).

While we see an improvement in individual images our
average accuracy with the modified loss on train and validation
is the same as the original one on 234 samples (see Table III
below). This suggests that the new loss lowers the accuracy of
other images and thus may not be the best solution to improve
our recall.

IV. DISCUSSION

One of the difficulties that automated systems face in the
evaluation of vascular ultrasounds is that image output and



(a)

(b)

(c)

(d)
Fig. 5. Examples of ultrasound images and their manual ground truth and
predicted segmentations obtained from the original Dice loss in (a) and (c)
and the modified loss in (b) and (d).

Model train run Vessel train Vessel validation
1 97.75% 93.7%
2 97.77 % 93.51%
3 97.77 % 93.24%

TABLE III
AVERAGE DICE COEFFICIENTS OF TRAIN AND VALIDATION SPLITS IN OUR

10-FOLD CROSS-VALIDATION WITH OUR MODIFIED DICE LOSS ACROSS
THREE DIFFERENT RUNS OF OUR MODEL.

quality is highly dependent upon both technician technique
and the patient’s body habitus and individual anatomy. Plaque
and calcium in the vessel wall can result in acoustic shadows
that make it difficult to visualize the posterior wall. At 95%
accuracy the basic U-Net system that we have developed is
able to adjust for these issues. In Figure 6 we present 4

different images where the posterior vessel wall is difficult
to image and in each of these cases our system is able to
accurately predict the correct vessel segmentation except for
minor errors as in Figure 6(b).

(a)

(b)

(c)

(d)
Fig. 6. Examples of ultrasound images and their manual ground truth and
predicted segmentations that have part of the vessel missing from the image
due to ultrasound shadowing.

We believe that the strengths of our model will be beneficial
as we expand the scope of our work. While initially we focused
on imaging just the internal carotid artery we next plan to
expand this to the entire carotid artery study looking at the
common carotid artery, external carotid artery and the carotid
bifurcation. We chose the internal carotid artery initially due
to the significant amount of plaque and atherosclerotic disease,
making it one of the more difficult areas to get accurate
predictions of the vessel lumen. Due to our successes with



internal carotid artery we expect an overall high accuracy on
ultrasounds of the entire carotid artery system.

Accurate visualization of the vessel lumen is only the first
step in creating a valid clinical tool that can evaluate vascular
ultrasounds. Creating a system that can also identify and
accurately segment atherosclerotic plaque, identify the vessel
wall and accurately measure its width and identify calcification
within the wall will be required. Identifying several regions
of the vessel within the ultrasound is more challenging and
falls under multi-class segmentation. Our encouraging results
here suggest we should achieve high accuracy there as well
but may need to add more images from patients just because
multi-class classification typically requires more data than the
binary case.

V. CONCLUSION

We evaluated a single and dual path convolutional neural
network for vessel lumen segmentation in carotid artery vas-
cular ultrasounds. In 10-fold cross-validation on 302 images
from 98 patients we obtained 95% accuracy and expect this
to rise as we add more images. Our work shows that vessel
lumen segmentation can be achieved with high accuracy.
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[16] Léon Bottou. Large-scale machine learning with stochastic gradient

descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

[17] Alex P Zijdenbos, Benoit M Dawant, Richard A Margolin, and An-
drew C Palmer. Morphometric analysis of white matter lesions in mr
images: method and validation. IEEE transactions on medical imaging,
13(4):716–724, 1994.


