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Abstract—As part of their training all medical students and
residents have to pass basic surgical tasks such as knot tying,
needle-passing, and suturing. Their assessment is typically per-
formed in the operating room by surgical faculty where mistakes
and failure by the student increases the operation time and
cost. This evaluation is quantitative and has a low margin of
error. Simulation has emerged as a cost effective option but it
lacks assessment or requires additional expensive hardware for
evaluation. Apps that provide training videos on surgical knot
trying are available to students but none have evaluation. We
propose a cascaded neural network architecture that evaluates a
student’s performance just from a video of themselves simulating
a surgical knot tying task. Our model converts video frame
images into feature vectors with a pre-trained deep convolutional
network and then models the sequence of frames with a temporal
network. We obtained videos of medical students and residents
from the Robert Wood Johnson Hospital performing knot tying
on a standardized simulation kit. We manually annotated each
video and proceeded to do a five-fold cross-validation study on
them. Our model achieves a median precision, recall, and F1-
score of 0.71, 0.66, and 0.65 respectively in determining the level
of knot related tasks of tying and pushing the knot. Our mean
precision score averaged across different probability thresholds
is 0.8. Both our F1-score and mean precision score are 8% and
30% higher than that of a recently published study for the same
problem. We expect the accuracy of our model to further increase
as we add more training videos to the model thus making it a
practical solution that students can use to evaluate themselves.

Index Terms—medical training, surgical knot tying, simulation,
feedback, neural network

I. INTRODUCTION

Surgical skill training and evaluation has a high cost in terms

of impacting operating room efficiency [1], [2]. Simulation

has emerged as an effective method for basic technical skills

acquisition. We see that surgical training skills acquired in

simulation transfer to the operating room and also shorten

learning curves [3], [4]. Simulation can decrease inexperience

and translate to improved efficiency and patient safety out-

comes [5], [6].

The primary limitation of simulation is automatic and accu-

rate feedback to the student on their performance. Evaluation

of a task in simulation requires resources and time [7], [8].

Simulators can be made low cost [9] but automatic evaluation

is still lacking. Simulation with expert level feedback translates

to improved operating room performance [10], but without

an automatic feedback component their usage is limited. A

self-contained simulation complete with feedback facilitates

repetitive use that prevents skills degradation [11].

As a step towards making simulation more broadly available

to students we present an artificial intelligence system that

students can use to evaluate themselves in surgical knot-

tying - a basic yet fundamentally important task in surgical

training. We present a cascaded neural network system trained

on videos of students and residents performing knot tying

in a standardized simulated environment. In cross-validation

studies we show that our model achieves a median precision,

recall, and F1-score of 0.71, 0.66, and 0.65 respectively. Our

mean precision score averaged across different probability

thresholds (versus the standard 0.5 probability threshold) is

0.8. Compared to a recently published study [12] on the same

problem our model has an 8% higher F1-score and a 30%

higher mean precision score. Our model also gives a frame by

frame analysis of the video that allows detailed feedback on

areas where the student can focus on improvement. In the rest

of the paper we present our data, model, and detailed results.
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Fig. 1. Simulation kit recording the student’s exercise. In this study we only
use videos showing the horizontal view. A more sophisticated approach could
utilize both horizontal and lateral views as recorded by separate cameras.

II. METHODS

A. Data

We collected videos of 27 medical students and 7 residents

performing surgical knot tying in simulation under Institution

Review Board (IRB) approval. We have a standardized kit

for knot tying as shown in Figure 1. For a given video our

medical team annotated portions of it into one of four action

categories: {Waiting, Needling, Pushing knot, Tying knot} and

one of three level categories: {Good, OK, Bad}. This gives

us a total of 12 classes making it a multiclass classification

problem.

In Figures 2 and 3 we show examples of a fourth year

medical student and a fifth year medical resident performing

needling, pushing knot, and tying in our simulation environ-

ment. We can see that the medical student has considerably

more pull on the fake skin than the expert. We also see that

the student fumbles during tying and instead of pushing on

the knot they pull on it. During our annotation we labeled the

student’s examples in Figure 2(a) through (c) as Needling-Bad,

Tying knot-Bad, and Pushing knot-Bad respectively. For the

expert, however, we labeled them with the same action but a

level of good. Each combination represents a unique category.

Each video has 29 to 30 frames (images) per second. The

mean length of our videos is 99 seconds with a standard

deviation of 36.5, and the mean number of frames in each

video is 2954 with standard deviation of 1095. In Table I

we show the student level, number of frames, and length in

seconds of each video.

B. Models

We propose a cascaded system of two neural networks:

MVFNet for feature extraction and a temporal network for

modeling time dependency between the feature vectors. Dur-

ing training we give the model several frames of the video

and the target prediction as the action and level category of

the middle one. For example if the person is tying without

fumbling and pulling then the output category would be Tying

knot-Good - this is one of the 12 classes our model outputs.

We illustrate this in Figure 4 where we show our overall model

architecture.

(a) Needling

(b) Tying knot

(c) Pushing knot

Fig. 2. Fourth year student needling, tying knot, and pushing knot. We see
pulling and fumbling in all three actions.

1) MVFNet: The first model in our system is called Multi-

View Fusion Network (MNVFNet) [13] whose architecture we

show in Figure 5. This uses 3D convolutions which perform

convolution on a set of frames of a video (that we refer to

as a frameset) represented as a sequence of images in a 3D

matrix. This model was trained on the Kinetics video dataset

[14] of 400 human actions containing at least 400 videos

for each action. Its pre-trained version is available from the

author Github site here https://github.com/whwu95/MVFNet.

The advantage of a pre-trained model is that has been trained

on a large set of videos already and requires only fine-tuning

specific to our training dataset. The output of MVFNet is a

single feature vector from an input of a set of images.

2) Temporal convolutional network: We give the sequence

of feature vectors from MVFNet as input to a temporal convo-

lutional network. Temporal convolutions were first introduced
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(a) Needling

(b) Tying knot

(c) Pushing knot

Fig. 3. Fifth year resident needling, tying knot, and pushing knot. There is
no pulling, and we see that both tying and pushing the knot are correctly
performed.

as dilated causal convolutions shown in Figure 6 [15]. They

are easy to train and have shown to be accurate compared to

traditional recurrent neural networks [16]. The output of this

network is the action-level designation of the middle feature

vector in the input.

3) Ensembling: Deep neural network models like the one

we are using in this study can be sensitive to the choice of

seed for the random number generator. Previous work shows

that the choice of seed can affect the accuracy of the model

[17], but at the same time different seeds can be used to

produce an ensemble that is likely to be more accurate and

robust [18]. Thus, instead of training a single model we train

10 models each with a different initial seed for the random

number generator. Below when we refer to our model we refer

to the ensemble where we take the majority vote output when

making a classification.

TABLE I
NUMBER OF FRAMES (IMAGES) AND LENGTH IN SECONDS OF VIDEOS

USED IN OUR STUDY. MS DENOTES MEDICAL STUDENT AND THE NUMBER

DENOTES THEIR YEAR OF STUDY. PGY DENOTES A MEDICAL RESIDENT IN

TRAINING.

Student level Number of frames Video length (seconds)
MS3 2353 79
MS3 3433 115
MS4 3976 133
MS4 2241 75
MS4 2891 97
MS4 5785 193
MS4 2270 76
MS4 3670 123
MS4 2494 84
MS4 2941 99
MS4 3990 134
MS4 6006 201
MS4 4183 140
MS4 2276 76
MS4 2657 89
MS4 3923 131
MS4 3656 122
MS4 2534 85
MS4 2716 91
MS4 2621 88
MS4 2356 79
MS4 3502 117
MS4 2303 77
MS4 1888 63
MS4 3177 106
MS4 4293 144
MS4 3340 112
MS4 2863 96

PGY1 3303 111
PGY4 1489 50
PGY4 1538 52
PGY4 1802 61
PGY5 1286 43
PGY5 1965 66
PGY5 1680 57

Fig. 4. Our high-level model design. We perform end-to-end training of our
model.
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Fig. 5. MultiView Fusion Network (MVFNet) model [13]

Fig. 6. Dilated convolutions used in our temporal network [15]
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III. RESULTS

A. Five-fold cross-validation results

We perform a standard five-fold cross-validation ex-

periment to evaluate our model’s accuracy. We divide

our videos into five subsets {S0, S1, S2, S3, S4} and

train models on all combinations of four of the five

subsets: {S0, S1, S2, S3}, {S0, S1, S2, S4}, {S0, S1, S3, S4},

{S0, S2, S3, S4}, and {S1, S2, S3, S4}. This gives us five

models that we evaluate on the fifth subset omitted from

training. The precision, sensitivity, and F1-score are popular

metrics for measuring the binary classification performance of

a model. Roughly speaking, precision measures the accuracy

of retrieving positives (or class of interest) - if a classifier

predicted everything as belonging to positive class it would

have precision of 100%. The sensitivity measures the accuracy

of making a mistake in predicting positives - this would be 0%

if the model predicted everything as positive. The F1-score is

the harmonic mean of precision and sensitivity and loosely

speaking corrects for imbalance in predictions.

These are well-defined for binary classification but in our

case we have a multi-class classification in each frameset. A

simple extension to multiclass case is to calculate the metrics

for each class at a time in a one-vs-all manner [19]. For

example suppose we have a video of 10 framesets and we want

to evaluate metrics for the level of knot tying and knot pushing

considered together. We have three classes for the level: 0 that

denotes ’good’, 1 denotes ’okay’, and 2 that denotes ’bad’. In

the one-vs-all setting we compute three sets of metrics: class

good vs classes okay and bad considered together, class okay

vs classes good and bad, and class bad vs classes good and

okay.

We illustrate this with an example of good vs classes okay

and bad. Suppose in framesets 1 through 3 and 5 through 7 the

ground truth level is ’good’ for knot tying and pushing. We

denote this as gt = [2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 2] where the first

item has index 0. To evaluate the metrics for the ’good’ level

we look at the model’s predictions for knot related tasks (tying

and pushing) in framesets 1 through 3 and 5 through 7, which

is where the ground truth is ’good’. If a prediction is good (0)

we consider it a true positive, if the prediction is okay or bad (1

or 2) we consider it a false negative. If the prediction outside

these framesets is good we consider that a false positive. So for

example if the prediction is pr = [2, 0, 0, 1, 1, 1, 0, 0, 0, 2, 2]
we have TP = 4 (shown in blue), FN = 2 (in red), and

FP = 1 (shown in green). With these in hand we can calculate

the precision, sensitivity, and F1-scores for class ’good’ as

shown below.

precision = TP
TP+FP sensitivity = TP

TP+FN

F1score = 2× precision×sensitivity
precision+sensitivity

We then calculate the same metrics above for ’okay’ and

’bad’ and take their averaged weighted by class. For example

average weighted F1-score would be 6
11 × F1score(good) +

2
11 × F1score(okay) + 3

11 × F1score(bad). In this way we

get the F1-score in the multiclass setting.

We measure the three metrics for each video in our test set.

In Table II we report the median precision, recall, and F1-score

of the level of knot related tasks as well the activity the student

is performing. We see that our model has a median precision,

sensitivity, and F1-score of 0.71, 0.66, and 0.65 respectively

for the level of tying and pushing the knot considered as one

action. If we consider metrics for level of tying and pushing

the knot as separate actions we see that the F1-score for tying

is lower at 0.46 but for pushing the knot the F1-score is

0.65. In both actions separately our model is likely to make

more mistakes in determining the level (as indicated by the

sensitivity) than if we considered them as one action.

TABLE II
PRECISION, SENSITIVITY, AND F1-SCORE OF OUR MODEL FOR THE LEVEL

(GOOD, OKAY, BAD) OF TYING AND PUSHING KNOT CONSIDERED AS ONE

ACTION AND ALSO CONSIDERED AS SEPARATE ACTIONS.

Task Precision Sensitivity F1 score
Tying and pushing
knot level (median) 0.71 0.66 0.65

Tying knot
level (median) 0.75 0.44 0.46
Pushing knot
level (median) 0.89 0.5 0.65

To better understand our metrics we compare them to the

same metrics of a recent study on evaluating level of surgical

knot tying [12]. In that study authors have a training dataset

of 229 videos which is more than 6 times the number that

we have. That study also evaluates an entire video as pass

or fail whereas we look at each frameset of the video. We

see in Table III that our mean F1-score is 8% higher than

their reported one. We see that although their precision is high

at 0.92, their recall is much lower which indicates that their

model is biased towards one of the classes. On other other

hand, our precision and sensitivity are closer to the F1-score

indicating a balanced prediction.

TABLE III
WE COMPARE OUR MEAN METRICS TO THOSE OF A RELATED STUDY FOR

THE SAME PROBLEM. ALSO SHOWN ARE STANDARD DEVIATIONS AFTER

THE ± SYMBOL.

Task Precision Sensitivity F1 score
Tying and pushing
knot level (mean) 0.69 ± 0.33 0.62 ± 0.32 0.62 ± 0.33

Knot level [12] 0.92 ± 0.44 0.38 ± 0.31 0.54 ± 0.32

To gain further insight into our metrics we measure the

average precision score [20]. This is defined as the weighted

mean of precisions at different thresholds with the increase

in sensitivity from the last threshold as the weight. In other

words, this gives us the model precision for different probabil-

ity thresholds. The values we reported above for knot related

tasks of tying and pushing knot are for a probability threshold

of 0.5 since we are doing binary classification in a one-vs-

all manner. To measure the effect of different thresholds we
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average with the mean precision score. We measure the mean

precision score for each video in our test set and report the

mean value and standard deviation shown after ± in Table IV.

We see that our mean precision score is 31% higher than the

one reported in the related study [12].

TABLE IV
WE COMPARE OUR MEAN PRECISION SCORE OF THE LEVEL OF KNOT

RELATED TASKS (TYING AND PUSHING) TO THAT OF A RELATED STUDY

FOR THE SAME PROBLEM.

Task Mean precision score
Tying and pushing
knot level (mean) 0.8 ± 0.2

Knot level [12] 0.49

In Table V we show our model metrics for just determining

the action the student is performing. We see higher scores

in all three metrics indicating that knot tying related activity

recognition is easier than determining how well the student is

performing the activity.

TABLE V
OUR MEDIAN MODEL METRICS FOR RECOGNIZING THE ACTION THAT THE

STUDENT IS PERFORMING, SUCH AS WAITING, NEEDLING, TYING KNOT,
AND PUSHING KNOT.

Task Precision Sensitivity F1 score
Action recognition 0.86 0.82 0.82

Finally we compare the metrics of our ensemble model to

one of the single models in our ensemble. In Table VI we see

that the ensemble clearly has a better sensitivity than each of

the single models, meaning it is less prone to making mistakes

when predicting the positive class (class of interest). We also

see that the F1-score of each individual model hovers around

that of the ensemble. Even if we were to compare the metrics

of a single model to that of the related study [12] we see a

large improvement in the F1-score given by our models.

TABLE VI
COMPARING MEDIAN METRICS OF ENSEMBLE OF 10 MODELS TO SINGLE

MODELS ON EVALUATING LEVEL OF KNOT TYING AND PUSHING. WE

SHOW THE SEEDS FOR SINGLE MODELS IN PARENTHESIS.

Task Precision Sensitivity F1 score
Ensemble 0.71 0.66 0.65

Single (seed=2022) 0.73 0.64 0.68
Single (seed=30548) 0.81 0.59 0.61
Single (seed=85844) 0.76 0.57 0.62

Single (seed=20) 0.68 0.63 0.66
Single (seed=180) 0.81 0.63 0.65
Single (seed=357) 0.78 0.53 0.59

Single (seed=485621) 0.81 0.63 0.64
Single (seed=102314) 0.7 0.61 0.64
Single (seed=305945) 0.69 0.59 0.65

Single (seed=0) 0.68 0.6 0.66

B. Examples of model prediction on a fourth year medical
student

Here we look closely at frameset by frameset prediction of a

fourth year medical student video as given by our model. The

(a) Fumbling and pulling while tying

(b) Pushing the knot correctly

(c) Slight pulling while pushing the knot

Fig. 7. Our model predictions of a video of a fourth year medical student.
They have different levels of performance during knot tying which our model
captures.

advantage of having a detailed feedback at every frameset is

that we can identify specific parts of the simulation where the

student needs improvement. In Figure 7(a) we see that they

fumble and pull while tying the knot but correctly push the

knot later in (b). Both actions and levels are correctly identified

by our model and shown in text in the images. Later on as the

student is progressing they pull while pushing the knot leading

to an okay prediction. In practice such feedback is useful to

the student doing the simulation vs a simple yes or no on the

entire video (as done elsewhere [12]).

C. Discussion

While our number of videos is limited in this initial study,

our results show that our models can identify the level of

knot related tasks better than a random baseline of 50% and

a recent study of the same problem [12]. This shows we can
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potentially create a practical system that would allow medical

students and residents to automatically and accurately evaluate

and improve their surgical knot tying skills prior to entering the

operating room. Such a system could be deployed on a mobile

device allowing students to instantaneously get feedback on

their performance.

Going forward we plan to add more videos to further boost

our model accuracy. Another avenue of future work is to

consider the camera view from both horizontal and lateral

view. While this may improve the model accuracy, it adds

another layer of data that students would need to collect during

their exercise. It also requires both horizontal and lateral

camera views to be in sync.

ACKNOWLEDGMENT

We thank NJIT Academic Research Computing Systems for

their computational support.

REFERENCES

[1] M. Bridges and D. L. Diamond, “The financial impact of teaching
surgical residents in the operating room,” The American Journal of
Surgery, vol. 177, no. 1, pp. 28–32, 1999.

[2] R. W. Allen, M. Pruitt, and K. M. Taaffe, “Effect of resident involvement
on operative time and operating room staffing costs,” Journal of Surgical
Education, vol. 73, no. 6, pp. 979–985, 2016.

[3] V. N. Palter and T. P. Grantcharov, “Individualized deliberate practice
on a virtual reality simulator improves technical performance of surgical
novices in the operating room,” Journal of the American College of
Surgeons, vol. 213, no. 3, p. S126, 2011.

[4] S. R. Dawe, G. Pena, J. A. Windsor, J. Broeders, P. C. Cregan, P. J.
Hewett, and G. J. Maddern, “Systematic review of skills transfer after
surgical simulation-based training,” Journal of British Surgery, vol. 101,
no. 9, pp. 1063–1076, 2014.

[5] B. Zendejas, D. A. Cook, J. Bingener, M. Huebner, W. F. Dunn, M. G.
Sarr, and D. R. Farley, “Simulation-based mastery learning improves
patient outcomes in laparoscopic inguinal hernia repair: a randomized
controlled trial,” Annals of surgery, vol. 254, no. 3, pp. 502–511, 2011.

[6] T. Cox, N. Seymour, and D. Stefanidis, “Moving the needle: simulation’s
impact on patient outcomes,” Surgical Clinics, vol. 95, no. 4, pp. 827–
838, 2015.

[7] J. Lu, R. F. Cuff, and M. A. Mansour, “Simulation in surgical education,”
The American Journal of Surgery, vol. 221, no. 3, pp. 509–514, 2021.

[8] R. Nicholas, G. Humm, K. MacLeod, S. Bathla, A. Horgan, D. Nally,
J. Glasbey, J. Clements, C. Fleming, and H. Mohan, “Simulation in
surgical training: Prospective cohort study of access, attitudes and
experiences of surgical trainees in the uk and ireland,” International
Journal of Surgery, vol. 67, pp. 94–100, 2019.

[9] D. Sharma, V. Agrawal, J. Bajajb, and P. Agarwala, “Low-cost sim-
ulation systems for surgical training: a narrative,” Journal of Surgical
Simulation, vol. 5, pp. 1–20, 2020.

[10] J. Price, V. Naik, M. Boodhwani, T. Brandys, P. Hendry, and B.-K.
Lam, “A randomized evaluation of simulation training on performance
of vascular anastomosis on a high-fidelity in vivo model: the role of
deliberate practice,” The Journal of thoracic and cardiovascular surgery,
vol. 142, no. 3, pp. 496–503, 2011.

[11] D. Stefanidis, N. Sevdalis, J. Paige, B. Zevin, R. Aggarwal,
T. Grantcharov, D. B. Jones, A. for Surgical Education Simulation Com-
mittee et al., “Simulation in surgery: what’s needed next?” Annals of
surgery, vol. 261, no. 5, pp. 846–853, 2015.

[12] M. B. Nagaraj, B. Namazi, G. Sankaranarayanan, and D. J. Scott, “De-
veloping artificial intelligence models for medical student suturing and
knot-tying video-based assessment and coaching,” Surgical endoscopy,
pp. 1–10, 2022.

[13] W. Wu, D. He, T. Lin, F. Li, C. Gan, and E. Ding, “Mvfnet: Multi-
view fusion network for efficient video recognition,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp.
2943–2951.

[14] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev et al., “The kinetics
human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.

[15] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[16] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[17] D. Picard, “Torch. manual seed (3407) is all you need: On the influence
of random seeds in deep learning architectures for computer vision,”
arXiv preprint arXiv:2109.08203, 2021.

[18] S. Bethard, “We need to talk about random seeds,” arXiv preprint
arXiv:2210.13393, 2022.

[19] S. Godbole and S. Sarawagi, “Discriminative methods for multi-labeled
classification,” in Pacific-Asia conference on knowledge discovery and
data mining. Springer, 2004, pp. 22–30.

[20] M. Zhu, “Recall, precision and average precision,” Department of
Statistics and Actuarial Science, University of Waterloo, Waterloo, vol. 2,
no. 30, p. 6, 2004.

64


