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Abstract 

Machine learning techniques in medical imaging systems are accurate, but minor 

perturbations in the data known as adversarial attacks can fool them. These attacks make the 

systems vulnerable to fraud and deception, and thus a significant challenge has been posed in 

practice. We present the gradient-free trained sign activation networks to detect and deter 

adversarial attacks on medical imaging AI systems. Experimental results show that a higher 

distortion value is required to attack our proposed model than other existing state-of-the-art 

models on MRI, chest X-ray, and histopathology image datasets, where our model outperforms 

the best and even twice superior. The average accuracy of our model in classifying the adversarial 

examples is 88.89%, whereas MLP and LeNet are 81.48%, and ResNet18 is 38.89%. It is 

concluded that the sign network is a solution to defend adversarial attacks due to high distortion 

and high accuracy on transferability. Our work is a significant step towards safe and secure 

medical AI systems. 

 

Keywords: Robust machine learning; adversarial attack; medical AI imaging system; medical 

image classification  
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1. Introduction 

Medical images, such as magnetic resonance imaging (MRI), computational tomography 

(CT), and histopathology, provide detailed information for diagnosing various diseases. With more 

accurate and efficient classification systems on medical images being deployed, the demands on 

robust medical machine learning systems have increased. The systems can help the experts 

diagnose diseases and accelerate treatment processes. 

The classification approaches of human experts and machine learning systems are different. 

The human experts search for abnormal areas which are distinguishable from normal portions 

using their knowledge. While the machine learning techniques use a function to map the healthy 

and unhealthy as the specific labels. They learn the information in a supervised way. Therefore, 

the quality and resolution of medical image datasets could impact the performance of machine 

learning. 

Machine learning algorithms have been proven to achieve high accuracy in the 

classification tasks and more new modules have been proposed to enhance accuracy[1]; however, 

they could misclassify by minor perturbations in such data known as adversarial attacks [2-5]. 

Adversarial examples have been shown to transfer across models, making it possible to perform 

transfer-based (substitute model) black-box attacks. Transfer adversarial attacks and boundary 

attacks are the most lethal as they can be performed effectively without access to the model’s 

parameters [6]. 

The attackers can fool machine learning systems with adversarial images, which are often 

imperceptible to human eyes. In other words, the models could make mistakes by these adversarial 

inputs, which are intentionally crafted. As a result, machine learning systems would generate false 

results, misdiagnosis, or even insurance fraud. 
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Researchers have investigated adversarial attacks on medical images and mainly focused 

on testing the robustness of deep learning models designed for medical image analysis [7, 8]. 

Paschali et al. [9] showed that classification accuracy drops from above 87% on the regular medical 

images to almost 0% on the adversarial examples. Hokuto et al. [10] demonstrated UAPs achieved 

over 80% success rates on DNNs model. Many defense methods have been proposed to defend 

against adversarial attacks, in which adversarial training is most prevalent [11, 12]. However, this 

tends to lower accuracy on clean test data. To overcome this problem, the transfer-based methods 

were developed [13, 14], but they are still vulnerable. Thus, adversarial robustness is still an open 

problem in machine learning. 

Gradient-free trained sign activation networks have been proven to be able to defend 

against adversarial attacks with a higher possibility [15, 16]. These networks are trained with a 

stochastic coordinate descent algorithm [17, 18], and their higher minimum distortions indicate 

that an image must comply with a more distinct modification to fool a model. In this paper we 

adopt the gradient-free stochastic coordinate descent algorithm for training sign activation 

networks on medical image datasets, including MRI, chest X-ray, and histopathology. The rest of 

this paper is organized as follows. Section 2 presents the proposed sign activation networks. 

Section 3 describes the datasets and experimental results. Conclusions are drawn in Section 4. 

 

2. The Proposed Sign Activation Networks 

We propose to train the sign activation networks with a gradient-free stochastic coordinate 

descent algorithm, which is named as the Stochastic Coordinate Descent, abbreviated by SCD. 

 

2.1 The Stochastic Coordinate Descent (SCD)  
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We denote a given binary class data xi ∈ Rd and yi ∈ {−1, +1}, for i = 0, 1, ..., n−1. A linear 

classifier w ∈ Rd , w0 ∈ R minimizes the empirical risk for a given loss function defined as 

                                                 Lscd=  ∑ L(w, w0, xi, yi)i                                                              (1)                                                                            

We start with a random solution wi ∈ N(0, 1), w0 ∈ N(0, 1), for i = 0, 1, ..., d − 1 and 

iteratively make incremental changes that improve the risk. In each iteration, we select a random 

set of features (coordinates) from w called F. For each feature wi ∈ F, we add/subtract a learning 

rate η and then determine w0 that optimizes the risk. We compute all possible values of w0 defined 

as 

                                                       w0 = 
wi

Txi+wi+1
T xi+1

2
                                                                  (2) 

for i = 0, 1, ..., n − 2 and select the one that minimizes the loss Lscd. A random sample of the 

training data in each iteration is generated to avoid local minima. To train a single hidden layer 

network, we apply SCD to the final node and then a randomly selected hidden node in each 

iteration of the algorithm. We apply parallelism and several heuristics in practice to speed up the 

run time.  

 

2.2 Network Implementation 

We train the following three types of sign activation networks using the proposed algorithm:  

(1) SCD01: 01-loss in the final node 

(2) SCDCE: Cross-entropy loss in the final node 

(3) SCDCEBNN: Cross-entropy in the final node with binary weights throughout the model  

The basic architecture of SCD models is shown in Fig. 1. The training procedure is 

implemented in Python, Numpy, and Pytorch [19]. Since sign activation is non-convex, our 
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training process starts from a different random initialization. We run it 100 times and output the 

majority vote. 

 

(a) 

 

(b) 

Fig. 1. The Architecture of SCD models. (a) The sign activation networks with our algorithm and 

01-loss in the final node, (b) the sign activation networks with our algorithm and cross-entropy 

loss in the final node. 

 

To illustrate the run time and clean test accuracies, we compare our models with the 

convolutional networks LeNet [22], ResNet18 [23], and a single hidden layer of 20 nodes to the 
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equivalent network with sigmoid activation and logistic loss function (denoted as MLP). The MLP 

classifier in scikit-learn is used to implement MLP and the Larq library with the approximation to 

the sign activation. In addition, we use the HopSkipJump implementation in the IBM Adversarial 

Robustness Toolkit [14]. It is a family of algorithms and includes both untargeted and targeted 

attacks optimized for L2 and L∞ similarity metrics respectively. The model is developed based on 

a novel estimate of the gradient direction using binary information at the decision boundary. 

Theoretical analysis and experiments show HopSkipJump requires significantly fewer model 

parameters than several state-of-the-art decision-based adversarial attacks. It also achieves 

competitive performance in attacking several widely-used defense mechanisms. 

In Fig. 2, a predictive model is attacked by HopSkipJump to generate an adversarial image, 

which would fool the model. To obtain as accurate of estimation as possible, we run HopSkipJump 

10 times. In each time, we use an initial pool size of 1,000 random data points and maximum 

iterations of 100 to report the minimum value. For a single data point, this typically takes several 

hours to finish. Thus, we can report the distortion of only five random points.  
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Fig. 2. The procedure of attacking the models with HopSkipJump. 

 

 

 

3. Experimental Results 

3.1 Datasets 

We use three popular medical imaging datasets: BraTs18, Chest X-rays, and Colorectal 

Histopathology, to evaluate the classification accuracy. 

 

3.1.1 BraTs18 

The BratS18 dataset is 210 high-grade glioma (HGG) and 75 low-grade glioma (LGG) 
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MRI with binary masks for the tumor. Each 3D MRI contains 155 slices of size 240 × 240. 

We use the FLAIR modality images for all the experiments because the entire tumor is 

represented well by this modality. In total, we have 17,100 abnormal and 18,500 normal 

images for training. For testing, we have 1,800 abnormal and 1,900 normal images. We show 

more experimental results on other modalities, where ANT-GAN presents impressive 

synthesis quality. A more detailed medical description of the data can be referred to [20]. We 

down-sample two classes to be a balanced dataset, and each class contains 1,462 images, 

which are resized to 96 × 96. We split training and testing datasets by a ratio of 80 : 20. 

 

3.1.2 Chest X-rays 

The Chest X-ray images (anterior-posterior) are selected from retrospective cohorts of 

pediatric patients of one to five years old from Guangzhou Women and Children’s Medical Center, 

Guangzhou, China. All chest X-ray imaging was performed as part of patients’ routine clinical 

care. The dataset is organized into two folders (train and test) and contains subfolders for each 

image category (pneumonia/normal). There are 5,863 X-ray images and 2 categories 

(pneumonia/normal). All chest radiographs are initially screened for quality control by removing 

all low quality or unreadable scans. Two expert physicians then grade the diagnoses for the images 

before being cleared for training the AI system. To account for any grading errors, the evaluation 

set is checked by a third expert. We resize the images to 96 × 96 and down-sample to 1,584 for 

each category as the balanced dataset. We have 3,168 images in total, which are split into training 

and testing sets by a ratio of 80 : 20. 

 

3.1.3 Colorectal Histopathology 
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This dataset represents a collection of textures in histological images of human colorectal 

cancer [21]. Ten anonymized H&E stained CRC tissue slides are obtained from the pathology 

archive at the University Medical Center Mannheim, Heidelberg University, Mannheim, Germany. 

The low-grade and high-grade tumors are included in this set, and no further selection is applied. 

The slides are first digitized, and then the contiguous tissue areas are manually annotated and 

tessellated to create 625 non-overlapping tissue tiles of size 150 × 150  (74 μm × 74 μm). Thus, the 

texture features of different scales are included, ranging from individual cells (approximate 10 μm) 

to larger structures such as mucosal glands (>50 μm).  

The following eight types of tissue are selected for analysis: tumor epithelium, simple 

stroma, complex stroma, immune cells, debris, normal mucosal gland, adipose tissue, and 

background (no tissue). Together, the resulting 5,000 images represent the training and testing sets. 

We randomly pick 2 classes, immune cells and normal mucosal glands, resize them to 96 × 96, 

and split train and test sets with a ratio of 80 : 20. Aside from the difference in imaging tissue and 

modality of these three data sets, the images are shown in Fig. 3. 

 

(a)                                                                       (b) 
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(c)                                                                       (d) 

 

 

(e)                                                                       (f) 

Fig. 3. The sample images from three datasets. (a) Normal brain MRI, (b) abnormal brain MRI, (c) 

health chest X-ray, (d) pneumonia chest X-ray, (e) and (f) two different classes of human colorectal 

cancer, normal mucosal glands and immune cells. 

 

3.2 Qualitative Analysis 
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3.2.1 Evaluation of the Test Accuracy 

We first conduct experiments to compare the clean test accuracies of all seven models on 

chest X-ray, histopathology, and BraTs18. The results are listed in Table 1. On the Chest X-ray 

dataset, the convolutional networks LeNet [22] and ResNet18 [23] have higher accuracies since 

they have the advantage of convolutions. On the histopathology, the MLP and random forest [24] 

have higher accuracies. On BraTs18, the ResNet18, LeNet and random forest have higher 

accuracies, but other models are not too far behind. 

 

 

Table 1: Average Accuracy of Validation Data on BraTs18, Chest X-ray and Histopathology 

Image Datasets 

 SCD01 SCDCE SCDCE 

BNN 

MLP LeNet ResNet1

8 

Random 

Forest 

BraTs18 98.38% 98.92% 95.31% 98.76% 99.1% 99.64% 99.07% 

Chest X-ray 90.69% 91.32% 89.12% 88.72% 92.59% 94.32% 89.12% 

Histopathology 99.2% 99.6% 99.6% 100% 99.6% 99.6% 100% 

 

 

3.2.2 Evaluation of the Defense Ability by L2 Distance 

We compare the minimum distortion required to make an adversarial image on different 

models to evaluate the defense ability of adversarial attacks. The larger the value, the more robust 

the model since a significant distortion is likely to be detected in advance. Finding the exact 

minimum distortion is an NP-hard problem evaluated in ReLu activated neural networks [25, 26] 

and tree ensemble classifiers [27]. Even the approximation of the minimum distortion in ReLu 

activated neural networks is NP-hard [28]. 
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The distortions reported by HopSkipJump have been shown to be lower (i.e., tighter and 

more accurate) than other boundary attack methods [29]. Therefore, we run the HopSkipJump 

boundary-based black-box attack [14] to determine the adversarial distortion of randomly selected 

images from the BraTs18, chest X-ray, and the colorectal cancer histopathology validation datasets. 

The HopSkipJump is run ten times on each image to report the minimum value.  

As shown in Fig. 4, we observe that after 90 iterations, the distortions are minimum and 

become stable. Therefore, considering the best results and the computational ability, we pick 100 

as the maximum iteration. 

 

 

Fig. 4. L2 distances on one image change with different max iterations when Hopskipjump 

attack on different models. 

 

We quantitatively measure the robustness of defense by measuring the distance between 

normal and abnormal samples under the L2 metric as most attacks did [30]. The Lp distance is the 
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difference between original examples and adversarial examples, defined as ||d||p=(∑ |vi|p)n
i=0

1/p
. 

Common choices of p include: L0, a measure of the number of pixels changed; L2, the standard 

Euclidean norm; or L∞, a measure of the maximum absolute value change to any pixel. If the 

distortion under any of these three distance metrics is small, the images will likely appear visually 

similar. 

Table 2 shows the average adversarial distortions of random test images from the BraTs18. 

The gradient free trained sign networks have the higher distortions than other state-of-the-art 

models, and the SCDCEBNN has the highest distortion. 

Table 2: Average Minimum Estimated L2 Adversarial Distortion of on BraTs18 Datasets as 

Given by HopSkipJump When Attacking Different Models 

 SCD01 SCDCE SCDCEBNN MLP LeNet ResNet18 Random 

Forest 

Image 1 14.61 19.13 23.47 8.95 12.28 2.00 3.44 

Image 2 10.55 13.44 16.18 4.32 9.06 1.95 4.03 

Image 3 8.17 12.05 15.13 2.75 7.47 1.82 2.12 

Image 4 7.49 13.00 3.33 3.67 7.50 2.50 3.33 

Image 5 8.75 11.66 2.87 3.99 8.75 2.12 3.99 

Average 9.06 12.23 13.7 4.38 8.27 2 2.78 

 

 

We plot the original and adversarial images of “Image 1” from BtaTs18 dataset in Fig. 5 

to get a visual feel for the distortions. The first six adversarial images have a high distortion, where 

(b) - (d) are the adversarial images from SCD models. Note that they have higher distortions than 
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the currently available state-of-the-art models. Clearly, there are more noises than the original, 

while the other images are hard to observe the difference by human eyes.  
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Fig. 5 Visualization of original images and adversarial images among different networks from 

BraTs18 dataset. (a) The original image, (b) the adversarial example which will fool SCD01, (c) 

the adversarial example which will fool SCDCE, (d) the adversarial example which will fool 

SCDCEBNN, (e) the adversarial example which will fool MLP, (f) the adversarial example which 



16 
 

will fool LeNet, (g) the adversarial example which will fool Resnet18, and (h) the adversarial 

example which will fool Random Forest. 

 

Table 3 lists the average adversarial distortions of random test images from the Chest X-

ray dataset, where MLP is the second best after SCDCE. 

 

Table 3: Average Minimum Estimated L2 Adversarial Distortion of on Chest X-ray Datasets as 

Given by HopSkipJump When Attacking Different Models 

 SCD01 SCDCE SCDCEBNN MLP LeNet ResNet18 Random 

Forest 

Image 1 10.59 18.40 17.50 14.78 4.28 1.03 18.53 

Image 2 10.48 16.39 12.64 15.08 2.86 0.45 11.28 

Image 3 9.00 17.55 10.50 14.49 4.19 0.64 9.18 

Image 4 9.26 7.68 11.68 10.71 0.34 0.07 12.01 

Image 5 7.24 14.02 10.16 12.91 4.10 0.43 2.39 

Average 9.31 14.81 12.49 13.60 3.15 0.52 10.68 
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To get a visual feel for the distortions, Fig. 6 shows the original and adversarial images of 

“Image 1” from Chest X-ray dataset. They all have higher distortions, among which SCDCE has 

the highest.  
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Fig. 6. Visualizations of original images and adversarial images among different networks from 

Chest X-ray dataset. (a) The original image, (b) the adversarial example which will fool SCD01, 

(c) the adversarial example which will fool SCDCE, (d) the adversarial example which will fool 

SCDCEBNN (e) the adversarial example which will fool MLP, (f) the adversarial example which 

will fool LeNet, (g) the adversarial example which will fool Resnet18, and (h) the adversarial 

example which will fool Random Forest. 

 

 

Table 4 lists the average adversarial distortions of random test images from the colorectal 

dataset. The average distortion of SCDCEBNN is highest. 

 

Table 4: Average Minimum Estimated L2 Adversarial Distortion of on Colorectal Cancer 

Histopathology  Datasets as Given by HopSkipJump When Attacking Different Models 

 SCD01 SCDCE SCDCEBNN MLP LeNet ResNet18 Random 

Forest 

Image 1 28.3 41 41.32 9.9 29 31.6 19.9 

Image 2 4.4 6.3 9.2 2.8 7 6.2 3.9 

Image 3 35.8 36.1 44.71 9.9 36.8 39.8 30.4 

Image 4 30 38.6 43.02 12 24.1 19.1 28.7 

Image 5 17.2 26.5 28.97 7.7 17.1 19 13.4 

Average 24.1 29.7 33.44 8.5 22.8 23.1 19.2 

 

Fig. 7 shows the original image and adversarial images of human colorectal histopathology 

dataset which shows a visual feel for the distortions. All three SCD models have higher distortions 
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than other models. Compared with other adversarial images, SCDCE adversary is full of more 

colorful ditties. The morphology is hard to identify such that it would be potentially abnormal.  

 

 

Fig. 7. Visualizations of original images and adversarial images among different networks from 

colorectal histopathology dataset. (a) The original image, (b) the adversarial example which will 
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fool SCD01, (c) the adversarial example which will fool SCDCE, (d) the adversarial example 

which will fool SCDCEBNN, (e) the adversarial example which will fool MLP, (c) the adversarial 

example which will fool LeNet, (e) the adversarial example which will fool ResNet18, (f) the 

adversarial example which will fool Random Forest. 

 

Table 5 lists the average minimum estimated L2 adversarial distortion on all three datasets. 

The distortions of the SCD models are even higher with SCDCEBNN taking the lead and twice 

better than all other models. 

Table 5 Average Minimum Estimated L2 Adversarial Distortion on All Three Datasets 

 SCD01 SCDCE SCDCEBNN MLP LeNet ResNet18 Random 

Forest 

Average 13.67 18.26 19.12 8.59 10.96 8.43 10.74 

 

 

3.2.3 Evaluation of Defense Ability by Transferability 

Another evaluation is to make use of the transferability property [10]. Given two models, 

F (·) and G(·), an adversarial example trained on F will be an adversarial example on G, even if 

they are trained in completely different manners or on different datasets. There has been a 

significant amount of available methods to construct adversarial examples [3, 10, 31-34] and to 

make networks robust against adversarial examples [35-38]. No defenses have been able to classify 

adversarial examples correctly. Thus, correctly classifying adversarial examples is difficult.  

In the previous section, attackers generate adversarial samples on different models, and we 

test all these adversarial examples on all models. If a model G can detect the adversarial examples 

from another model F and classify them correctly, the model G is more robust against adversarial 
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attack. Table 6 shows the results for classifying one random image and all adversarial examples. 

We can see that a random image can be classified by all models, which is marked as ‘Y.’ The 

targeting adversarial samples are misclassified by their targeting models, respectively. If the model 

can identify the adversarial example correctly, it is marked as ‘Y,’ otherwise; it is marked as ‘N.’ 

Our models 01MLP and SCDCE can detect all adversarial examples and classify them correctly. 

 

Table 6: Results for Classifying One Random Image and All Adversarial Examples  

 SCD01 SCDCE SCDCE

BNN 

MLP LeNet ResNet18 Random 

Forest 

Original Test 

Image 

Y Y Y Y Y Y Y 

Adversarial 

Image from 

SCD01 

- Y Y Y Y N Y 

Adversarial 

Image from 

SCDCE 

Y - Y N Y N Y 

Adversarial 

Image from 

SCDCEBNN 

Y Y - Y N N N 

Adversarial 

Image from 

MLP 

Y Y Y - Y N Y 

Adversarial 

Image from 

LeNet 

Y Y Y Y - N Y 

Adversarial 

Image from 

ResNet18 

Y Y Y Y Y - Y 

Adversarial 

Image from 

Random 

Forest 

Y Y Y Y Y N - 
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Table 7 shows the average accuracy of all models when classifying the adversarial 

examples. We can see that our proposed models have higher accuracies, which are 88.89% and 

85.19%. They can identify fake examples and are hard to be fooled by adversarial attacks. In other 

models like MLP and LeNet are the best but are still lower than our proposed models.  

 

Table 7. Average Accuracy of All Models When Classifying the Adversarial Examples 

   SCD01    SCDCE  SCDCEBNN    MLP   LeNet ResNet18   Random     

    Forest 

Average 

Accuracy 

88.89% 88.89%  85.19% 81.48% 81.48% 38.89% 57.14% 

 

 

4. Conclusions 

In this paper, we present a model that is robust to adversarial attacks in MRI images, chest 

X-ray and histopathology images. We show that higher distortions are required when adversarial 

attacking is applied on the gradient-free trained sign networks with SCD compared with state-of-

the-art models. Experimental results on classifying the adversarial samples show that our models' 

accuracy is more competitive, and thus, the adversarial attack can easily be detected on our models. 

To develop a robust medical machine learning models which can deter attack in advance, more 

research is required to verify the results on a larger cohort and show the results on the different 

adversarial attack, such as white-box. We plan to develop a medical AI imaging system which can 

detect and deter adversarial attack in advance in the future work. 

  



23 
 

REFERENCES 

[1] C. Yeh, M. Lin, P. Chang and L. Kang, "Enhanced Visual Attention-Guided Deep Neural 

Networks for Image Classification," IEEE Access, vol. 8, pp. 163447-163457, 2020. 

[2] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik, and A. Swami, “The limitations 

of deep learning in adversarial settings,” Proc. IEEE European Symposium on Security and 

Privacy, Saarbrücken, Germany, pp. 372–387, March 2016. 

[3] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” Proc. 

IEEE Symposium on Security and Privacy, San Jose, CA pp. 39–57. March 2017. 

[4] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in machine learning: from 

phenomena to black-box attacks using adversarial samples,” arXiv preprint arXiv:1605.07277, 

2016. 

[5] P. Panda, I. Chakraborty and K. Roy, “Discretization based solutions for secure machine 

learning against adversarial attacks,” IEEE Access, vol. 7, pp. 70157–70168, 2019. 

[6] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: reliable attacks 

against black-box machine learning models,” arXiv preprint arXiv:1712.04248, 2017. 

[7] S.G. Finlayson, J.D. Bowers, J. Ito, J.L. Zittrain, A.L. Beam, and I.S. Kohane, “Adversarial 

attacks on medical machine learning,” Science, vol. 363, no. 6433, pp.1287–1289, March 

2019. 

[8] S. C. Wetstein, et al., “Adversarial attack vulnerability of medical image analysis systems: 

Unexplored factors,” arXiv preprint arXiv:2006.06356, 2020. 

[9] M. Paschali, S. Conjeti, F. Navarro, and N. Navab, “Generalizability vs. robustness: 

investigating medical imaging networks using adversarial examples,” Proc. Conference on 

Medical Image Computing and Computer Assisted Intervention, Granada, Spain, pp. 493–501, 

September 2018. 

[10] H. Hirano, A. Minagi, D. Soudry, and K. Takemoto, “Universal adversarial attacks on deep 

neural networks for medical image classification,” BMC medical imaging, pp.1-13, January 

2021. 



24 
 

[11] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” 

Proc. 3th International Conference on Learning Representations, ICLR, San Diego, CA, May 

2015. 

[12] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “Ensemble 

adversarial training: attacks and defenses,” Proc. 6th Intl. Conf. on Learning Representations, 

Vancouver, BC, Canada, May 2018. 

[13] Y. Dong, T. Pang, H. Su, and J. Zhu, “Evading defenses to transferable adversarial examples 

by translation-invariant attacks,” Proc. IEEE Conference on Computer Vision and Pattern 

Recognition, Long Beach, California, pp. 4312–4321, June 2019. 

[14] J. Chen, M. I. Jordan, M. J. Wainwright, “Hopskipjump attack: a query-efficient decision-

based attack,” Proc. IEEE Symposium on Security and Privacy, San Francisco, CA, pp. 1277-

1294, May 2020.  

[15] M. Xie, Y. Xue, and U. Roshan, “Stochastic coordinate descent for 0/1 loss and its sensitivity 

to adversarial attacks,” Proc. 18th IEEE Intl. Conf. on Machine Learning and Applications, 

pp. 299-304, 2019. 

[16] Y. Xue, M. Xie, and U. Roshan, “Towards adversarial robustness with 01 loss neural 

networks,” Proc. 19th IEEE Intl. Conf. on Machine Learning and Applications, Miami, FL, 

2020. 

[17] Y. Xue, M. Xie, and U. Roshan, “On the transferability of adversarial examples between 

convex and 01 loss models,” Proc. IEEE Intl. Conf. on Machine Learning and Applications, 

Miami, FL, 2020. 

[18] Z. Yang, Y. Yang, Y. Xue, F.Y. Shih, J. Ady, and U. Roshan, “Accurate and adversarially 

robust classification of medical images and ECG time-series with gradient-free trained sign 

activation neural networks,” Proc. IEEE Intl. Conf. on Bioinformatics and Biomedicine, Seoul, 

South Korea, pp. 2456-2460, 2020. 

[19] A. Paszke, et al, “PyTorch: an imperative style, high-performance deep learning library,” Proc. 

Advances in Neural Information Processing Systems, Vancouver, Canada, pp: 8024-8035, 

December 2019 



25 
 

[20] S. Bakes, et al., “Identifying the best machine learning algorithms for brain tumor 

segmentation, progression assessment, and overall survival prediction in the BRATS 

challenge,” arXiv preprint arXiv:1811.02629, 2018. 

[21] J. N. Kather, et al., “Multi-class texture analysis in colorectal cancer histology,” Scientific 

Reports, Rep. 6, 27988, March 2016. 

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to 

document recognition,” Proc. of the IEEE, vol. 86, no.11, pp. 2278–2324, 1998. 

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. 

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, pp. 770–778, 

June 2016. 

[24] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 2001. 

[25] G. Katz, C. Barrett, D. L. Dill, K. Julian, M. and J. Kochenderfer, “Reluplex: an efficient smt 

solver for verifying deep neural networks,” Proc. Intl. Conf. on Computer Aided Verification, 

Heidelberg, Germany, pp. 97–117, July 2017. 

[26] A. Sinha, H. Namkoong, and J. Duchi, “Certifiable distributional robustness with principled 

adversarial training,” arXiv preprint arXiv:1710.10571, 2017. 

[27] A. Kantchelian, J. D. Tygar, and A. Joseph, “Evasion and hardening of tree ensemble 

classifiers,” Proc. Intl. Conf. on Machine Learning, New York City, New York, vol. 48, pp. 

2387–2396, June 2016. 

[28] T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, D. Boning, I. S. Dhillon, and L. Daniel. 

“Towards fast computation of certified robustness for relu networks,” arXiv preprint 

arXiv:1804.09699, 2018. 

[29] M. Nicolae, et al., “Adversarial robustness toolbox” v1.0.0. arXiv preprint arXiv:1807.01069, 

2018. 

[30] F. Tramer and D. Boneh, “Adversarial training and robustness for multiple perturbations,” 

Proc. Advances in Neural Information Processing Systems, Vancouver, Canada, pp. 5858-

5868, December 2019. 



26 
 

[31] B. Biggio, et al., “Evasion attacks against machine learning at test time,” Proc. Joint European 

Conference on Machine Learning and Knowledge Discovery in Databases, Würzburg, 

Germany, pp. 387-402, September 2013. 

[32] S.M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate method 

to fool deep neural networks,” Proc. IEEE Conference on Computer Vision and Pattern 

Recognition, Las Vegas, NV, pp. 2574-2582, June 2016. 

[33] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The limitations 

of deep learning in adversarial settings,” Proc. IEEE European Symposium on Security and 

Privacy, Saarbrücken, Germany, pp. 372-387, March 2016. 

[34] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, 

“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013. 

[35] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense to 

adversarial perturbations against deep neural networks,” Proc. IEEE Symposium on Security 

and Privacy, San Jose, CA, pp. 582-597, May 2016. 

[36] A. Rozsa, E. M. Rudd, and T. E. Boult, “Adversarial diversity and hard positive generation,” 

Proc. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, pp. 

410-417, June 2016. 

[37] U. Shaham, Y. Yamada, and S. Negahban, “Understanding adversarial training: increasing 

local stability of supervised models through robust optimization,” Neurocomputing, vol. 307, 

pp. 195-204, September 2018. 

[38] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the robustness of deep neural 

networks via stability training,” Proc. IEEE Conference on Computer Vision and Pattern 

Recognition, Las Vegas, NV, pp. 4480-4488, June 2016. 

 

 


