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ABSTRACT 
 
Carotid ultrasound is a screening modality used by 
physicians to direct treatment in the prevention of ischemic 
stroke in high-risk patients.  It is a time intensive process 
that requires highly trained technicians and physicians.  
Evaluation of a carotid ultrasound requires segmentation of 
the vessel wall, lumen, and plaque of the carotid artery. 
Convolutional neural networks are state of the art in image 
segmentation yet there are no previous methods to solve this 
problem on carotid ultrasounds. We evaluate here a U-net 
convolutional neural network for lumen segmentation from 
ultrasound images of the entire carotid system. We obtained 
de-identified images under IRB approval from 226 patients. 
We isolated the internal, external, and common carotid 
artery ultrasound images for these patients giving us a total 
of 2156 images. We manually segmented the vessel lumen 
in each image that we then use as ground truth. With our 
convolutional U-Net we obtained a 10-fold cross-validation 
accuracy of 94.3%. We see that the U-Net correctly 
segments the lumen even in the presence of significant 
plaque, calcified wall, and ultrasound shadowing, all of 
which make it difficult to outline the vessel. We also see 
that the common carotid artery vessels are easiest to 
segment with a 96.6% cross-validation accuracy whereas 
internal and external carotid are harder both with 92.7% and 
91.9% cross-validation accuracies respectively. Our work 
here represents a first successful step towards the automated 
segmentation of the vessel lumen in carotid artery 

ultrasound images and is an important first step in creating a 
system that can independently evaluate carotid ultrasounds. 
 

Index Terms— convolutional neural network, carotid 
ultrasound 
 

1. INTRODUCTION 
 

Stroke is the 5th leading cause of death in the United 
States (1). Annually, it is responsible for billions of dollars 
in lost income and health care costs. For this reason there is 
significant effort and investment in the prevention of stroke. 
Ischemic strokes account for 87% of all strokes. Narrowing 
and deposition of plaque in the carotid arteries due to 
atherosclerosis is the most common cause of ischemic 
stroke. Carotid ultrasound is a safe, low-cost procedure that 
is used as a screening test in patients with risk factors for 
atherosclerosis (2). It allows physicians to stratify the stroke 
risk of a patient and identify those patients that will most 
benefit from medical therapy or surgical intervention.  

 
During a vascular ultrasound high-frequency sound 

waves are transmitted into your body. The sound waves are 
reflected back to the probe when they encounter the 
boundaries between different tissues in the body.  This 
information is then utilized to create a 2D image of the 
vessel and surrounding tissue structures. Physicians utilize 
ultrasound images of the carotid artery in stroke prevention.  
During their evaluation physicians must first identify the 
vessel in the image. They then identify any atherosclerotic 



plaque within the wall and lumen of the vessel and finally 
they evaluate the physiologic impact of those plaques on the 
flow of blood within the vessel. This is a time intensive and 
resource intensive process that requires highly skilled 
technicians and physicians to perform and interpret the 
results. As physician workload has increased and healthcare 
systems investigate ways to streamline processes and cut 
costs automating the interpretation of vascular ultrasounds 
has great potential.  

 
Prior work in automated approaches to evaluating carotid 

ultrasounds is highly limited and there are no prior methods 
for vessel segmentation in carotid ultrasounds. Vessel 
identification in carotid ultrasounds with preprocessing and 
marker-controlled watershed transform has been explored 
previously (3). DeepVesselNet (4) is a deep learning model 
designed for vessel detection but in 3D magnetic resonance 
angiography data unlike the 2D ultrasounds that we consider 
here. A patch-based deep learning solution has also been 
proposed segmenting and measuring plaque for 3D 
ultrasounds (5). Of note, 3D ultrasound is available only in 
research studies and is not commonly utilized clinically.  In 
contrast in our study is a full end-to-end trainable 
convolutional network that allows for the segmentation of 
2D ultrasounds, the most widely utilized modality. 
 

 
2. METHODS 

 
2.1. Data Collection 
We obtained IRB approval from Robert Wood Johnson 
Medical School to use de-identified images from the 
Department of Vascular Surgery for this research. We the 
carotid ultrasound study of 226 patients. We utilized an 
automated script to crop all patient identifies from the 
ultrasound images and manually verified this de-
identification.  
 
We cropped each image to obtain just the ultrasound 
removing all text and annotations on the image.  Each 
images was resized to 224x224 pixels. This gave us a total 
of 2156 images that we then manually segmented. Using 
RectLabel software (https://rectlabel.com/) we manually 
segmented the vessel lumen for each image to serve as 
ground truth for training and validation 
 
2.2. Convolutional neural networks 
Convolutional neural networks are the current state of the 
art in machine learning for image recognition (6, 7) 
including for MRI (8). They are typically composed of 
alternating layers for convolution and pooling, followed by 
a final flattened layer. A convolution layer is specified by a 
filter size and the number of filters in the layer. Briefly, the 
convolution layer performs a moving dot product against 
pixels given by a fixed filter of size 𝑘×𝑘 (usually 3x3 or 
5x5). The dot product is made non-linear by passing the 

output to an activation function such as a sigmoid or 
rectified linear unit (also called relu or hinge) function. Both 
are differentiable and thus fit into the standard gradient 
descent framework for optimizing neural networks during 
training. The output of applying a 𝑘×𝑘 convolution against 
a pxp image is an image of size (p-k+1)x(p-k+1). In a CNN, 
the convolution layers just described are typically alternated 
with pooling layers. The pooling layers serve to reduce 
dimensionality, making it easier to train the network. 
 
2.3. Convolutional U-Net 
After applying a series of convolutional filters, the final 
layer dimension is usually much smaller than that of the 
input images. For the current problem of determining 
whether a given pixel in the input image is part of a lesion, 
the output must be of the same dimension as the input. This 
dimensionality problem was initially solved by taking each 
pixel in the input image and a localized region around it as 
input to a convolutional neural network instead of the entire 
image (9).  
 
A more powerful recent solution is the Convolutional U-Net 
(U-Net) (10). This has two main features that separate it 
from traditional CNNs: (a) deconvolution (upsampling) 
layers to increase image dimensionality, and (b) connections 
between convolution and deconvolution layers.  
 
2.4. U-Net for vessel segmentation 
We implemented a U-Net (10) in the Pytorch library (11) as 
shown in Figure 1. The U-Net is a popular choice for 
medical artificial intelligence work and has proven to be a 
successful baseline that can be built upon. The input to the 
model is an ultrasound image and output is an image of the 
same dimensions with 0 and 1 pixel values indicating 
background and vessel lumen. 
 

 
 
Figure 1: U-Net architecture (10) that we use in our 
preliminary work. Shown here are dimensions of our images 
in each layer and the number of convolutional and 
transposed convolutions per layer. 
 



Roughly speaking, in our model we first extract features 
with a series of convolutional kernels and then apply 
transpose convolutions to increase the dimensionality of the 
image up to the original. Thus we have an end-to-end 
network that is much simpler to train than otherwise patch-
based approaches that have previously been used for 
segmentation. 

 
2.4. Dice loss 
The final output from our network is a 2D predicted image 
of dimensions 224x224. We convert each pixel value into 
probabilities with softmax (12) and call the resulting image 
p. The target ground truth r is also of the same dimensions 
as p and contains a 1 if the pixel is within the vessel lumen 
and 0 otherwise. We then use the Dice loss to train our 
model. This is defined to be 1-D where 𝐷 𝑝 = ! !!!!!

!!
!

! ! !!
!

!
 

and pi and ri are the ith pixel values of p and r respectively. 
 
2.5. Model implementation and training 
We implemented our system using Pytorch (11) and ran it 
on NVIDIA Pascal P100 and NVIDIA Titan RTX GPUs. 
We trained our model with 20 epochs of stochastic gradient 
descent (13), a learning rate of 0.03, decay step of 15, and a 
batch size of 4. We did not perform any normalization on 
the input images. 
 
2.6. Post Processing 
We applied a simple post processing procedure to reduce 
potential false positives. In the final predicted segmentation 
we remove all disconnected components except for the 
largest one that is meant to be the vessel lumen. We found 
that this improved accuracy by a moderate margin. 
 
2.7. Measure of accuracy: Dice coefficient 
The Dice coefficient is typically used to measure the 
accuracy of predicted segmentations in medical images (14). 
We convert the output image of our network into a binary 
mask by setting each pixel value to 1 if its softmax output is 
at least 0.5 and 0 otherwise. Thus we use 0.5 as the 
probability threshold that a pixel value is part of the vessel 
lumen or outside it.  
 
Starting with the human binary mask as ground truth, each 
predicted pixel is determined to be either a true positive (TP, 
also one in true mask), false positive (FP, predicted as one 
but zero in the true mask), or false negative (FN, predicted 
as zero but one in the true mask). The Dice coefficient is 
formally defined as 𝐷𝐼𝐶𝐸 = !!"

!!"!!"!!"
. 

 
2.8. 10-fold cross-validation 
We performed 10-fold cross-validation experiments on our 
data. We randomly split our dataset into ten equal parts and 
selected one part for validation while the remaining nine 
parts were used to train the model. We then rotated the 
validation part across the other nine parts giving us a total of 

10 pairs of training validation splits. We trained the model 
on each split and reported the average validation and 
training accuracy below. 
 

3. RESULTS 
 
We first perform a 10-fold cross-validation on the entire set 
of images. In Table 1 below we see that we achieve a high 
training and validation accuracy of 95.1% and 94.3% 
respectively. The small difference between our training and 
validation accuracies indicates our model is not overfitting 
and instead is generalizing well.  
 
When we train and test on internal (ICA), external (ECA), 
and the common (CCA) carotid artery ultrasounds alone we 
see varying degrees of accuracy. Both ICA and ECA images 
achieve similar and lower train and validation accuracies 
than CCA which alone has a 96.6% accuracy (Table 1).  
 
 Training  Validation  
All 95.1 % 94.3% 
ICA 94.9% 92.7% 
ECA 96.2% 91.9% 
CCA 97.9% 96.6% 
Table 1: Average accuracy of training and validation splits 
in our 10-fold experiment. 
 
In Figure 2 we see that adding more samples increases both 
the training and validation accuracy of our model. This is 
overall encouraging, however the increase in accuracy is by 
small margins and is plateauing at 95% as we add more 
samples. 

 

 
Figure 2: Training and validation accuracy of our training 
and validation folds as a function of sample size. 
 
In Figure 3 we see examples of some images with their true 
and predicted segmentations (also known as masks). Both 
(a) and (b) show examples with significant plaque and 
shadowing that could obfuscate the untrained eye but our 
model gives a highly correct segmentation. In (c) and (d) we 
have examples of bifurcated and gray shaded vessels that 
that are also correctly segmented by our model.  



 

 
  (a) Shadow and plaque I 

 
  (b) Shadow and plaque II 

 
  (c) Bifurcation 

 
  (d) Gray shading 
Figure 3: Non-trivial examples of vessels in ultrasound 
images 

 
4. DISCUSSION 

 
Medical imaging has become an essential component in 
modern medicine.  It aids in diagnosis, tracks progression of 
disease and can be utilized to screen individuals for cancer 
and for the prevention of stroke. Numerous studies are 
looking at using deep learning methods to increase accuracy 
of diagnosis and aid in the interpretation of these studies 
(15).  As of yet there are few studies that look at utilizing 
deep learning for vessel identification and evaluation with 
ultrasound images specifically in the carotid artery system.   
 
Ultrasound images provide a distinct challenge that is 
different than other medical imaging modalities. Computed 
tomography and magnetic resonance imaging (MRI) have 
set protocols that control formatting and orientation. For 
example, MRI images are typically aligned to a standard 
reference brain template such as the Montreal Neurological 

Institute reference space (16) that makes it easier to compare 
different MRI images.     
 
A convolutional neural network was previously proposed 
for vessel detection in ultrasounds of femoral regions and 
also applied to carotid artery ultrasounds (17). There are 
several key differences between our study and this previous 
one. In the previous study authors evaluate their method on 
transverse images of the common carotid artery. 
Specifically, they identify the center of the vessel and 
outline the vessel with an ellipse that approximates the 
vessel. To do this they are using a simplified version of the 
AlexNet (7) convolutional neural network. They reduced it 
to two convolutional layers, one normalization, two max 
pooling, and three fully connected. Their modified network 
outputs the center and two radii of the ellipse enclosing the 
circular vessel. In contrast, the U-Net that we use outputs a 
full segmentation of the vessel that can segment both 
transverse and longitudinal images of the vessel (Figure 4). 
Their study also only evaluates the common carotid artery, 
whereas our model can also be used to evaluate the internal 
and external carotid arteries, which is important because 
assessment of the carotid bifurcation and internal carotid 

artery has the most clinical 
relevance to stroke prevention.   The 
previous study purely helps to 
identify that a vessel is present, it 
provides little additional input to aid 
in the interpretation of the 
ultrasound.  

(a) Vessel identification  
from a previous study 

 
 (b) Our model performs circular segmentation that includes 
longitudinal images 
Figure 4: Comparison of vessel identification from previous 
work to vessel segmentation in our work. 
 

The work that we present above is entirely novel in 
scope. It is the first step in attempting to create and 
implement a neural network that can independently and 
accurately identify and segment the lumen of the carotid 
artery in a vascular ultrasound. Further studies will be 
required to advance this model so that it can handle 
segmentation of the vessel wall, atherosclerotic plaque and 
evaluate direction of flow and flow velocity within the 
lumen before it can provide clinically relevant 
interpretations.  But it has the potential to be the first step in 
creating a complete end-to-end solution for the evaluation of 
vascular ultrasound images.  
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