K-means-based Feature Learning for Protein Sequence Classification

Paul Melman and Usman W. Roshan
Department of Computer Science, NJIT
Newark, NJ, 07102, USA
pm462@njit.edu, usman.w.roshan@njit.edu

Abstract

Protein sequence classification has been a major
challenge in bioinformatics and related fields for some
time and remains so today. Due to the complexity
and volume of protein data, algorithmic techniques
such as sequence alignment are often unsuitable due
to time and memory constraints. Heuristic methods
based on machine learning are the dominant technique
for classifying large sets of protein data. In recent years,
unsupervised deep learning techniques have garnered
significant attention in various domains of classification
tasks, but especially for image data. In this study, we
adapt a k-means-based deep learning approach that was
originally developed for image classification to classify
protein sequence data. We use this unsupervised
learning method to preprocess the data and create
new feature vectors to be classified by a traditional
supervised learning algorithm such as SVM. We find
the performance of this technique to be superior to
that of the spectrum kernel and empirical kernel map,
and comparable to that of slower distance matrix-based
approaches.

keywords: Protein classification, Unsupervised learn-
ing, K-means

1 Introduction

Identifying protein functionality is one of the prin-
ciple challenges of modern biological sciences. While
there do exist precise alignment techniques such as
Smith-Waterman [15], due to their highly complex
structures and behaviors, modeling large sets of pro-
teins using deterministic methods is impractical, if
not impossible, with currently available technology.
Therefore, we must rely on heuristic techniques for
analyzing proteins. One way to elucidate the behavior
of a protein is to compare it to proteins with known
properties, via protein classification [14].

Over the course of evolutionary history, genes and
proteins with similar functionality diverge due to the
accumulation of mutations. As a result, analogous

proteins may become difficult to recognize. Through
the use of machine learning techniques, it is possible to
find relationships between protein sequences that would
otherwise be obscured.

2 Related Work

K-means is a clustering algorithm that is used to
partition points into k clusters based on the nearest
cluster mean, or centroid [10]. The use of K-means
clustering in image classification is based upon the
principle of representation learning. An image is broken
up into fragments by a sliding window, and these
fragments, along with fragments of all the other images
in the dataset, are then clustered by similarity. The
centroids of the clusters represent features learned from
the images, such as corners or diagonal lines. A new
feature vector representation of the original image can
then be created based on the presence or absence of
the various features [3] [4]. This technique has been
successfully employed in image classification tasks such
as distinguishing between bacterial colonies of different
species or identifying weeds [6] |17].

3 Methodology

3.1 Data & Materials

The data we use in this study originate from the
SCOP, CATH, COG, and 3PGK protein datasets |2
[11] |18] [13]. The datasets and classification tasks were
obtained from the Protein Classification Benchmark
collection [16]. There are a total of 3242 classification
tasks across all the datasets. For the SVM classifier we
use the Scikit-learn Python library|12].

The 3PGK dataset, which consists of sequences of
3-phosphoglycerate kinase from various species, has 10
tasks that consist of classifying sequences into kingdoms
based on phyla.

The SCOP dataset has three standard classification
task categories: Classification of sequences into super-
families based on families (246 tasks), classification

Table 1: Datasets

Dataset # seqs average # frags tasks task types
seq len (len 14)
3PGK 131 411 52137 10
CATH95 11373 150 1562581 1414
SCOP95 11944 173 1916986 1629
COG 17973 373 6467745 189

N O 00—

into folds based on superfamilies (191 tasks), and
classification into structural classes based on folds (377
tasks). There are also three 5-fold cross validation task
sets. The first consists of 98 superfamilies with five
random splits each of training and test data where the
positive examples come from one superfamily and the
negative examples are taken from all other superfamilies
for 490 total tasks. The same 5-fold split technique was
used for 58 folds for 290 total tasks, and for 7 structural
classes for 35 total tasks.

The CATH dataset has four standard classification
task categories: Classification into homology groups
based on similarity groups, with 165 tasks; classification
into topology groups based on homology groups (199
tasks), classification into architecture groups based on
topology groups (297 tasks), and classification into
structural classes based on architecture groups (33
tasks). There are also four 5-fold cross validation task
sets: By homology (375 tasks), by topology (235 tasks),
by architecture (95 tasks), and by structural class (15
tasks).

The COG dataset has two types of classification task.
In the first task category, the positive training sets
consist of prokaryote protein sequences representing a
particular biological function (COG), and the positive
test sets consist of eukaryote protein sequences rep-
resenting the same COG. The negative training set
consists of sequences representing other COGs. There
are a total of 117 tasks of this type. The second
category involves separating proteins belonging to the
kingdom Archaea from proteins belonging to any other
kingdom. There are 72 of these tasks.

These datasets also came with published benchmarks
that were computed by creating all against all BLAST
and Smith-Waterman distance matrices and an SVM
classifier.

3.2 Empirical and Spectrum Kernels

The first baseline condition we use for this study is
the empirical kernel map. For this we use 3364 reference
protein sequences from the seed pairwise alignments in
PREFAB 4.0 [7]. The feature vector for each protein in
the dataset is created by aligning it to each reference
protein using BLAST [1]. Each dimension of the

final vector is the BLAST score of the alignment to
a different reference protein. Therefore, in the full
reference condition, the feature vector for each protein
has 3364 dimensions.

The second baseline we use is the spectrum kernel,
which creates a feature vector by counting the number
of occurrences of every possible amino acid triplet in
each sequence [9). Both the spectrum kernel and
empirical kernel conditions used an SVM classifier [5].

3.3 String-based K-means Feature
Learning

For this condition, every protein sequence in the
dataset is split into fragments using a sliding window
(Figure 1). The fragments are then clustered using
string-based version of the K-means algorithm. To
compute the centroid of each cluster, we find the mode
of each character position across all the fragments in
that cluster (Figure 2).

To compute the distance from a fragment to a
centroid we examine two different measures. First, we
use Hamming distance, where we compare the fragment
and centroid at each character position and count the
number of mismatches. A larger count represent more
dissimilar strings and therefore a greater distance. The
second distance measure we examine is based on the
BLOSUMG62 matrix, which is derived from empirical
observations of amino acid substitution probabilities
[8]. The distance is represented by the negative of
the BLOSUMG62 alignment score of the two strings.
The negative is used so that this algorithm optimizes
for the minimization of the distances between points
(fragments) and their nearest centroids, just as the
traditional K-means algorithm does.

M A P G|K KV MAPG
M[A P G KKV A PGK
M A|P G K K|V - P G KK
M A P[GKEKV| G KKV

Figure 1: An example of the fragmentation process with
fragment length 4 and a stride of 1.

To create a feature vector from the clusters, we use
a method that is a cross between the triangle encoding
and hard encoding schemes employed by Coates, Ng,
and Lee [4], as described in Equation (1). For each
fragment, we create a vector with k dimensions, where
k is the number of clusters. For the feature f that
corresponds to the index of the nearest centroid, the
value is set to the mean of the distance to that centroid

—> A P K G

i Reh=h=
oo Q g
>R R Q) Y
QOROO

Figure 2: The centroid sequence is created by taking
the mode character at each position.

Algorithm 1: String K-means Pseudocode

choose k random fragments as starting centroids
while ¢ = 0;¢ < maxz_iter;i + + do
for Each fragment do
Find distance to each centroid
L Assign to closest centroid
for Each cluster do
L Calculate new centroid

if No change in centroids then
L Break

plus the mean of the distance to all centroids; for all
other features, the value is set to zero to create a
sparse vector with k dimensions. The vectors for all the
fragments of a protein sequence are then sum-pooled to
create the final feature vector for that sequence (Figure
3).

w(z) + z, if k= arg min;||c¥) — z|3

fr(z) = . ! (1)
0 otherwise

where zj, = ||z — ¢®||s.

We then train a linear support vector machine clas-
sifier on the feature vectors of the training dataset and
evaluate it on the test dataset. This is done for each
task in each task category based on the cast matrices
obtained from the benchmark database.

4 Results

4.1 Comparison of Parameters

We ran the deep K-means algorithm with 2000, 4000,
8000, and 16,000 clusters on the CATH dataset (Figure
4) and with 2000 and 8000 clusters on COG (Figure 11).
The results show a trend of improvement as the number
of features increases. We also found that fragment
length had little impact (Figure 5). These effects
mirror those of Coates, Lee, and Ng [4]. However,
unlike in Coates and Ng’s later analysis of the K-means
method for image classification, we did not experience
problems with imbalanced or empty clusters [3]. We

Sequence Fragments Centroids Cluster index
APA AAA 0
APAPA — PAP ;2 GGG 1
APA PPP 2
1 00
w0 01
1 00
Final vector 2 O :I_

Figure 3: An illustration of how the feature vectors are
created. Hamming distance and hard encoding are used
in this example.

found that fragments became well distributed across
clusters without the need for any additional processing
(Figure 12). Additionally, we found that BLOSUM
distance was superior to Hamming distance (Figure
7). Clustering made up most of our run time and, as
expected, run time is longer for larger datasets (Table
2).

CATH - Effect of clusters

Area under ROC curve

000 clusters 2000 clusters 4000 clusters 8000 clusters 16000 clusters

Figure 4: Effect of number of features (centroids) on
CATH data.

4.2 Comparison to other Methods

We found that our K-means feature learning method
outperformed the empirical and spectrum kernels on
nearly every category of tasks. With 16,000 clusters,
the K-means approach outperformed the empirical
kernel map and the spectrum kernel on every task in
CATH, and outperformed the all against all BLAST

CATH - Effect of fragment length
1 Q @ Homology_Similiarity

@ Homology_Sfold

Tapology_Homalogy

00 .——\ @ Topology_Sfold
@ Architecture_Topology
'—‘——‘_‘.\\\\0 Architecture_Sfold
@ Class_Architecture
@ Class_sfold

Area under ROC curve
o

—

0.6
8000 clusters, fraglen 10 8000 clusters, fraglen 14 8000 clusters, fraglen 20

Figure 5: Effect of number of fragment length on CATH
data.

3PGK - Hamming vs. BLOSUM®62 distance

1.0000

0.9500

0.9000
0.8500
0.8000

200 400 600 200 400 600
clusters, clusters, clusters, clusters, clusters, clusters,
hamming hamming hamming blosum blosum blosum

Figure 6: Effect of Hamming distance vs. BLOSUM

distance on 3PGK.

CATH - Hamming vs. BLOSUM®62 distance

1 @ Homology_Similiarity

. . H
. L H @ Homology_5fold
. s]
Tapology_Homology
0.9 8 @ Topology_Sfold
. ° . .
. L] @ Architecture_Topology
L] ¢ L] Architecture_Sfold
] Class_Architecture
08 . . . @ Class.
L] e » @ Class_5fold
L
0 . . ®
) L]

2000 4000 8000 2000 4000 8000
clusters, clusters, clusters, clusters, clusters, clusters,
BLOSUME2 BLOSUME2Z BLOSUMG2 Hamming Hamming Hamming

Figure 7: Effect of Hamming distance vs. BLOSUM
distance on CATH.

Table 2: Runtimes for clustering on Intel Xeon E5-2630-
v4 with 20 cores.

Dataset time (minutes)
3PGK (600 clusters) 4
CATH (16k clusters) 799
SCOP (16k clusters) 1068

COG (8k clusters) 4493

Table 3: Average areas under the ROC curve for various
conditions. BLAST and SW are all vs. all BLAST and
Smith-Waterman distance matrices classified with SVM

Dataset | K-means Empirical Spectrum BLAST SW
3PGK 0.964 0.906 0.887 0.919 0.923
CATH 0.870 0.819 0.847 0.860 0.924
SCOP 0.842 0.810 - 0.841 0.896
COG 0.949 0.910 0.944 0.923 0.931

matrix on all the standard classification task sets,
while under-performing slightly on the cross-validation
sets (Figure 9). Our method also outperformed the
empirical kernel on both COG sets and all but one
SCOP sets (Figure 10), and beat the spectrum kernel
on the Eukaryotes-Prokaryotes COG task set (Figure
11). Overall, our method had a higher average ROC
AUC than all other methods on the 3PGK (Figure 8)
and COG datasets, and beat all methods but all-vs-
all Smith-Waterman alignment on CATH and SCOP
(Table 3).

5 Discussion

Our K-means-based representation learning method
performs on par with state of the art protein classifica-
tion techniques. Overall, our method tends to outper-
form established methods on the standard protein clas-
sification tasks in the CATH and SCOP datasets, which
generally seem to be more difficult by virtue of the
lower performance by all methods, while slightly under-
performing against BLAST similarity matrix methods
on the 5-fold cross validation tasks (Figures 9 and
10). Our method under-performed against Smith-
Waterman similarity matrices on CATH and SCOP, but
outperformed them on COG and 3PGK. This may be

Table 4: Wilcoxon p-values for CATH. K-means
performs significantly better than the spectrum kernel
and empirical kernel map.

CATH 16k clusters Spectrum Empirical
16k clusters - 0.008 <0.0001
Spectrum 0.008 - 0.003
Empirical <0.0001 0.003 -

3PGK - Comparison of methods

1.0000
0.9500
0.9000
0.8500 I
0.8000
600 clusters, empirical spectrum SW distance BLAST
blosum kernel kernel matrix, distance
benchmark matrix,
benchmark

Figure 8: Comparison of K-means to empirical kernal
map, spectrum kernel, and BLAST similarity matrix on
3PGK data.

CATH - Comparison of methods

1o 0 . 'l @ Homology Similiarity
L [] y_5
1 N - l Homology_Sfold
. @ Topology_Homology
.
09 . o -
L
® . “
e x
2 @ Class_Architecture
o 08 * _
g . @ Class_Sfold
< ¢] L] . *
S
g -
< 07 A T
a .
i
6
16000 clusters spactrum ki el BLAST distance SW distance
matrix, matrix,
benchmark benchmark

Figure 9: Comparison of K-means to empirical kernal
map, spectrum kernel, and BLAST similarity matrix on
CATH data.

due to the higher average sequence length of COG and
3PGK (as seen on Table 1).

Our method also shows promise in its ability to
generalize. Despite low similarity between the CATH
and COG sequence data, the features learned from the
COG data were nearly as useful in learning to classify
CATH proteins as features learned from CATH proteins
(Figure 12). This suggests that the features being
learned are generic protein features, though further
testing is required to establish just how general they are.
When applied to image data, K-means-based feature
learning is able to learn generic visual features such
as corners or lines or a particular orientation . In
principle, the same should be possible for proteins.

Furthermore, our method has potential utility for
protein alignment as well. It may be possible to use

SCOP - Comparison of methods

1.0 & Superfamily_family
.
| @ Ssuperfamily_Sfold
° . N *
* [- @ Fold_superfamily
09 2 ® *
* Fold_Sfold
A Class_fold
. .
g o8 - = Class 5fold
B -
8 A
= . . .
4 07 -
5
g .
E
06 4 = L
.
16000 clusters empirical kemel BLAST distance SW distance BLAST distance
3364refseqs matrix, 1nn matrix, 1nn, matrix, SYM,

Figure 10: Comparison of K-means to empirical kernal
map and BLAST and Smith-Waterman similarity
matrices on SCOP data.

Eukaryotes vs. Prokaryotes and Archea vs. Kingdoms

B Eukaryotes-
1.0 Prokaryotes
B Archea-
0.9 Kingdoms
0.8
0.7
0.6
& o & 4
5 & & & Q)\yc'"’
& :,Q"""L
CoG

Figure 11: Results on COG data.

COG to CATH generalization

Homology._ EEE———— W ©000 clsters
Similiarity W 2000 clusters,

Homology_ I COG trained
sfold N centroids
Topology_H I
omology]

Topology_5
fold N

Architecture I
_Topology]

Architecture |
_5fold N

Class_Archi IEEEG—
tecture D

50—
s SO | —

0.6000 0.7000 0.8000 0.9000 1.0000

Figure 12: Comparison of classification performance
on CATH dataset of centroids trained on CATH wvs.
centroids trained on COG.

250

° .

g 200.0'. [° . ° ° L

LgJ .. ° ° ... :.
“ 150 o ;\ ; S . 2 o.o °e° .° o
B L] of
b}

L

7z

100

Figure 13: Distribution of 3PGK fragments across 600
clusters.

it to classify and rank alignments to determine the best
ones.

Our code for fragmenting, clustering, and
classifying protein sequences is available at
https://web.njit.edu/~usman/feature_learning_
protein_classification

6 Acknowledgment

We thank the NJIT Academic and Research Comput-
ing Systems Group (ARCS) for their support in running
experiments for this study.

References

[1] Stephen F Altschul et al. “Basic local alignment
search tool”. In: Journal of molecular biology
215.3 (1990), pp. 403-410.

[2] Antonina Andreeva et al. “SCOP database
in 2004: refinements integrate structure and
sequence family data”. In: Nucleic acids research
32.suppl_1 (2004), pp. D226-D229.

[3] Adam Coates and Andrew Y Ng. “Learning
feature representations with k-means”. In: (2012),
pp. 561-580.

[4] Adam Coates, Andrew Ng, and Honglak Lee. “An
analysis of single-layer networks in unsupervised
feature learning”. In: (2011), pp. 215-223.

[5] Corinna Cortes and Vladimir Vapnik. “Support-
vector networks”. In: Machine learning 20.3
(1995), pp. 273-297.

[6] Murat Dundar et al. “Simplicity of kmeans versus
deepness of deep learning: A case of unsupervised
feature learning with limited data”. In: (2015),
pp- 883-888.

[12]

[13]

[16]

[17]

[18]

Robert C Edgar. “MUSCLE: multiple sequence
alignment with high accuracy and high through-
put”. In: Nucleic acids research 32.5 (2004),
pp. 1792-1797.

Steven Henikoff and Jorja G Henikoff. “Amino
acid substitution matrices from protein blocks”.
In: Proceedings of the National Academy of Sci-
ences 89.22 (1992), pp. 10915-10919.

Christina Leslie, Eleazar Eskin, and William
Stafford Noble. “The spectrum kernel: A string
kernel for SVM protein classification”. In: (2001),
pp. 564-575.

Stuart Lloyd. “Least squares quantization in
PCM”. In: IEEFE transactions on information
theory 28.2 (1982), pp. 129-137.

Frances Pearl et al. “The CATH Domain Struc-
ture Database and related resources Gene3D and
DHS provide comprehensive domain family infor-
mation for genome analysis”. In: Nucleic acids
research 33.suppl_1 (2005), pp. D247-D251.

F. Pedregosa et al. “Scikit-learn: Machine Learn-
ing in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825-2830.

J Dennis Pollack, Qianqgiu Li, and Dennis K Pearl.
“Taxonomic utility of a phylogenetic analysis
of phosphoglycerate kinase proteins of Archaea,
Bacteria, and Eukaryota: insights by Bayesian
analyses”. In: Molecular phylogenetics and evolu-
tion 35.2 (2005), pp. 420-430.

Rabie Saidi, Mondher Maddouri, and Engelbert
Mephu Nguifo. “Protein sequences classification
by means of feature extraction with substitution
matrices”. In: BMC bioinformatics 11.1 (2010),
p. 175.

Temple F Smith and Michael S Waterman. “Iden-
tification of common molecular subsequences”.
In: Journal of molecular biology 147.1 (1981),
pp- 195-197.

Paolo Sonego et al. “A protein classification
benchmark collection for machine learning”.
In: Nucleic Acids Research 35.suppl-1 (2000),
pp. D232-D236.

Jinglei Tang et al. “Weed identification based
on K-means feature learning combined with con-
volutional neural network”. In: Computers and

Electronics in Agriculture 135 (2017), pp. 63-70.

Roman L Tatusov et al. “The COG database: an
updated version includes eukaryotes”. In: BMC
bioinformatics 4.1 (2003), p. 41.

https://web.njit.edu/~usman/feature_learning_protein_classification
https://web.njit.edu/~usman/feature_learning_protein_classification

	Introduction
	Related Work
	Methodology
	Data & Materials
	Empirical and Spectrum Kernels
	String-based K-means Feature Learning

	Results
	Comparison of Parameters
	Comparison to other Methods

	Discussion
	Acknowledgment

