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ABSTRACT 
Motivation: The identification of population structure from genome-
wide SNP data is of significant interest in the population and medical 
genetics community. A popular solution is to perform unsupervised 
feature extraction using principal component analysis. Principal 
component analysis, however, relies only on global properties of the 
data.  
Results: The Laplacian linear discriminant takes into consideration 
local properties of the data as well and, as we show in this study, it 
can be extended to the semi-supervised setting. This can then be 
applied to extract features for identifying population structure when 
the ancestry of some individuals in some sub-populations of the 
admixture is known. Using real data we simulate such semi-
supervised scenarios and extract features using the Laplacian linear 
discriminant, kernel principal component analysis, and two recent 
semi-supervised feature extractors. We show that there is a statisti-
cally significant improvement in accuracy when the nearest mean 
classifier or k-means clustering is applied on the Laplacian linear 
discriminant features compared to kernel principal component 
analysis and the other methods. 
Availability: All necessary software and data for reproducibility 
purposes is at http://www.cs.njit.edu/usman/LLDA_pop_structure. 
Contact: usman@cs.njit.edu 

1  INTRODUCTION  
The problem of clustering humans into groups of similar geo-
graphical ancestry arises in the fields of medical and population 
genetics. In medical genetics disease association studies can lead to 
misleading results if the underlying population structure is not 
taken into account (Ziv and Burchard, 2003; Marchini et. al., 2004; 
Xu and Shete, 2005; Devlin and Roeder, 1999). In population ge-
netics this can be used to uncover demographic history and address 
related scientific questions (Cavalli-Sforza and Feldman, 2003). 
Consequently several methods have been developed for identifying 
structure from genome wide single nucleotide polymorphism 
(SNP) data (Tsai et. al., 2005).  

The two prevailing methods are principal component analysis 
(PCA) (Paschou et. al., 2007), which is an unsupervised feature 
extraction method, and the model-based Markov Chain Monte 
Carlo method implemented in STRUCTURE (Pritchard et. al., 
2000), where prior ancestry can be specified if available. PCA is 
very fast and has been shown to separate inter and intra-continental 
admixtures with high accuracy when followed by the simple k-
means clustering algorithm (Paschou et. al., 2007). The model-
  
*To whom correspondence should be addressed.  

based approach of STRUCTURE is also considered accurate. 
However it is very slow and thus prohibitive on admixtures with 
several thousand SNPs or hundreds of individuals. 

In this study consider the following problem. Assume that some 
individuals in the population have known ancestry. In practice this 
can be obtained using current benchmarks such as the HAPMAP 
project (http://www.hapmap.org). How can we then extract fea-
tures for structure identification while taking the prior ancestry into 
consideration? We call this semi-supervised feature extraction 
since the data of individuals with unknown ancestry is also utilized 
for extracting features. We propose a semi-supervised Laplacian 
linear discriminant (LLDA) (Tang et. al., 2006) for solving this 
problem. 

LLDA can be considered to be a more general feature extractor 
than PCA. PCA uses only global properties of the data since it is 
based on the total scatter matrix. LLDA, which is similar to the 
maximum margin criterion discriminant (Li et. al., 2006), uses 
both the total scatter matrix, which captures global properties of 
the data, as well as the within class scatter matrix, which captures 
local properties. Although the within class scatter matrix is nor-
mally defined in a supervised framework, it can also be computed 
in an unsupervised one using Laplacian matrices (Nijima and 
Okuno, 2007). In this study we extend it to a semi-supervised set-
ting and then extract features with it. 

In related work Zhang et. al., 2007, propose a Laplacian based 
approach that uses must-link and cannot-link constraints for ex-
tracting features. Sugiyama et. al., 2007, present a semi-supervised 
local Fisher discriminant for feature extraction. We contrast our 
approach with theirs in the Methods Section. 

Using real benchmarks we simulate different semi-supervised 
scenarios and compare our proposed LLDA approach to kernel 
PCA and the two recent semi-supervised feature extractors. We 
compare the error of the nearest mean classifier and the k-means 
clustering algorithm on all the projections. We show that LLDA 
attains statistically significant higher accuracies than kernel PCA 
even with a small number of individuals with known ancestry. 
These accuracies improve as the percent of individuals with known 
ancestry increases. The two other semi-supervised methods, how-
ever, have higher error than our LLDA approach and also kernel 
PCA on the data considered here. 

2 METHODS 
Throughout we assume that n represents the total number of individuals in 
the population and k represents the number of sub-populations in it. 
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2.1 Background 

2.1.1 Encoding the data 
 
We assume that for each individual in the population biallelic SNPs have 
been assayed. We use the following encoding scheme to convert each indi-
vidual’s set of sequenced SNPs into numerical vectors on which PCA can 
then be performed. Let g be an individual’s set of sequenced SNPs and let 
gi represent the ith SNP. gi can be AA, AB, or BB where A and B are alpha-
betically ordered SNP bases. Following the encoding of smartpca (Patter-
son et. al., 2006) and similar to the one in (Paschou et. al., 2007) we define 
the feature vector x for g by setting xi to 0 if gi is AA, 1 if AB, and 2 if BB. 
Let each such vector x for the ith individual be the ith column of the data 
matrix X, i.e. X = [x1, …, xn]. 

2.1.2 Principal component analysis (PCA)  
 
Let x be a random variable that represents the feature vector of an individ-
ual’s SNP genotype as defined above. Suppose we are interested in com-
puting a projection of x onto one dimension such that the variance (i.e. 
spread) of the projected data is maximized. In other words we want to find 
w such that Variance(wTx) is maximized subject to wTw=1. This yields the 
optimization problem 
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where Σ=E((x-µ)(x-µ)T) is the covariance of x and µ=E(x) is the expected 
value of x. Using Lagrange multipliers one can show that the eigenvector of 
Σ with the largest eigenvalue is the solution to problem (1). The eigenvec-
tor with the next largest eigenvalue yields a projection orthogonal to the 
first one and of maximum variance (Alpaydin, 2004). 
 
In practice we use the sample covariance matrix instead of Σ. Given the 
data matrix X = [x1, …, xn] (as described in the encoding) we define X’ = 
[x1-m, …, xn-m], where xi is the feature vector of the ith individual and 
m=Σxi/n is the mean feature vector of the population. The sample covari-
ance matrix is then defined as X’X’T. This is also called total scatter matrix 
and is equivalent to  
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The eigenvector of St with the largest eigenvalue (also called the first prin-
cipal component vector) gives the projection of maximum variance in the 
sample. The eigenvector with the next largest eigenvalue yields a projec-
tion orthogonal to the first one and also of maximum variance. In unsuper-
vised scenarios PCA can be very helpful in elucidating clusters in the data. 

2.1.3 Maximum margin discriminant analysis (MMC)  
 
In a supervised scenario one can use the standard Fisher discriminant (Al-
paydin, 2004). Another supervised method is the recent maximum margin 
discriminant (MMC) (Li et. al., 2006) that does not suffer from singularity 
problems like its Fisher counterpart. Define the within class scatter matrix 
Si for class i as 
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the overall within class scatter matrix as 
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and the between class scatter matrix as 
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where xj

(i) is the jth feature vector of class i, c is the number of classes, ni is 
the size of class i, m(i) is the mean feature vector of class i, and m is the 
mean feature vector of the entire dataset. The maximum margin criterion 
for feature extraction is defined as (Li et. al., 2006) 
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where pi and pj are class prior probabilities and d(Ci,Cj) is the interclass 
distance. Define the interclass distance d(Ci,Cj) as d(Ci,Cj)=d(mi,mj)-tr(Si)-
tr(Sj) where d(mi,mj) is the Euclidean distance between the mean vectors mi 
and mj and tr(Si) is the overall variance of class Si. Then if pi=ni/n and 
d(Ci,Cj)=d(mi,mj)-tr(Si)-tr(Sj), it can be shown that J=tr(Sb-Sw) (Li et. al., 
2006). The linear MMC discriminant aims to find a matrix W = [w1, w2, …, 
wd] that maximizes 
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Using Lagrange multipliers it can be shown that the d largest eigenvector of 
Sb-Sw are the solution to W. The projection of the data matrix X is then 
given by WTX. Since St=Sw+Sb, Sb-Sw can be rewritten as St-2Sw (Nijima and 
Okuno, 2007). Thus MMC also takes into consideration local properties of 
the data (by considering Sw) whereas PCA only considers St. 

2.1.4 Laplacian linear discriminant analysis (LLDA) 
 
In order to describe this discriminant we first define the Laplacian matrix of 
a weighted graph. Suppose we are given a weighted graph G with n nodes 
and its associated weight matrix W = {wij : i,j ∈ [1,n]}. Then the Laplacian 
L of G is defined as (Tang et. al., 2006) 
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Now we describe LLDA. First note that the matrices St and Sw defined 
earlier can also be written as (Nijima and Okuno, 2007) 
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where e is n dimensional  with all entries set to 1 and the ith entry of e(k) is 
set to 1 if xi belongs to class k and 0 otherwise. I-Wg can be viewed as the 
Laplacian Lg of a global graph where all vertices are connected and each 
edge has weight 1/n. Similarly I-Wl is the Laplacian Ll of a local graph such 
that all vertices belonging to the same class are connected with weight 1/nk.   
 
In terms of the graph Laplacians we can represent St-2Sw as (1/n)XT(Lg-
2Ll)X using (3). MMC represented in this form is known as Laplacian lin-
ear discriminant analysis (Nijima and Okuno, 2007). The d leading eigen-
vectors of (1/n)XT(Lg-2Ll)X  form the columns of W and the projection is 
then given by WTX. Note that so far the Laplacian of the local graph is well-
defined only under a supervised scenario. However, it can also be used in 
an unsupervised setting (Nijima and Okuno, 2007) and a semi-supervised 
one as we show below. 

2.1.5 Related work 
 
Zhang et. al., 2007, also use a Laplacian graph based approach for semi 
supervised dimensionality reduction. They specify must-link and cannot-
link pairwise constraints in the weight matrix and then proceed to compute 
its Laplacian. The largest eigenvectors of the Laplacian are then used to 
project the data. Our approach, however, is based on the LLDA, which in 
turn is based on the MMC criterion. The LLDA approach takes both the 
global and local properties into consideration in separate Laplacians. Fur-
thermore, the Laplacians in our case are constructed from nearest neighbor 
graphs that also incorporate prior information (see Subsection 2.2.1). The 
approach of Zhang et. al., 2007, on the other hand, does not use nearest 
neighbor graphs for construction of the weight matrix. 
 
Sugiyama et. al., 2007, propose a semi-supervised local Fisher discriminant 
for dimensionality reduction. They use regularized between-class and 
within-class scatter matrices and define a trade-off parameter to control the 
regularization. Their approach is based on the local Fisher discriminant 
whereas LLDA (and subsequently our method) is closer to the MMC crite-
rion. Li et. al., 2006, have shown MMC to produce lower error than the 
Fisher discriminant on facial recognition benchmarks.  

2.2 Our contribution 

2.2.1 Semi-supervised Laplacian linear discriminant  
 
In this study we describe a semi-supervised extension. Suppose that the 
ancestry of some individuals from some sub-populations in the admixture is 
known. In order to take this into account for feature extraction in an LLDA 
framework we proceed as follows. First we define the weight matrices for 
the local and global graphs as follows. Our definitions of weight matrices 
are similar to the ones in Nijima and Okuno, 2007, except that we incorpo-
rate prior knowledge. 
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where k(i,j) is the similarity of individuals i and j, and cl(i) returns the class 
(ancestry) of individual i. pij is defined as  
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pij = qikq jk
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where qik is the probability that individual i belongs to sub-population k of 
the admixture.  
 
Current benchmarks are obtained from individuals where both parents and 
grandparents of an individual are from the same ancestry (e.g. 
http://www.hapmap.org). Thus qik is usually 1 or 0. However if an individ-
ual has different ancestry from the mother and father then qik will be a 
probability between 0 and 1. 
 
We use prior knowledge also in the construction of the nearest neighbor 
graph. For a given individual i whose ancestry is specified we calculate its 
m nearest neighbors as follows. Let C be the set of individuals with the 
same specified ancestry as that of i. We consider all individuals in C to be 
closer to i even if they are considered far under a given distance metric. 
Thus, we add them to the nearest neighbors of i sorted by distance to i. If 
|C| < m then we sort the remaining individuals, i.e. the total population 
without C, by their distance to i and add the closest m-|C| ones to the near-
est neighbor set of i. If the prior ancestry of i is not specified we calculate 
its distance to all other individuals in the admixture and include the m near-
est ones in the nearest neighbor set of i. 
 
After computing the matrices Wg and Wl we calculate the global and local 
Laplacians according to (2). We then form the matrix (1/n)XT(Lg-2Ll)X and 
compute the d leading eigenvectors as the solution to W, where d is the 
desired number of reduced dimensions. 
 
Note that the semi-supervised LLDA as well as the unsupervised one in 
Nijima and Okuno, 2007 both include MMC as a special case. If we set 
Wg[i,j]=1/n for all i,j, and Wl[i,j]=1/nk if i and j are both in the same class k 
and 0 otherwise, we then obtain MMC. 

2.2.2 Our implementation: Kernel-PCA + LLDA  
 
The dimensions of (1/n)XT(Lg-2Ll)X can be very large when thousands of 
SNPs are given. This can considerably slow down the eigenvector compu-
tations. To overcome this we follow the spirit of PCA+LDA algorithms for 
image recognition (Yang et. al., 2005). We first compute the full PCA 
projection of the SNP data. This can be done efficiently using kernel PCA 
(Scholkopf and Smola, 2002). Kernel PCA also allows us to model non-
linear relationships in the data. After the kernel PCA transformation each 
individual is now represented by an n dimensional vector (where n is the 
number of individuals). This is a significant reduction in dimension. SNPs 
can be in the order of hundreds of thousands or millions whereas the num-
ber of individuals in the population may be much smaller.  
 
We treat the kernel PCA projection as the new data matrix, i.e. column i of 
the data matrix X is replaced with the kernel PCA projected vector of the ith 
individual. We then apply LLDA on this matrix. Although our method is 
technically kernel-PCA + semi-supervised LLDA we refer it to as LLDA 
hereon.  
 
All software and the datasets (including the kernel PCA projections) are 
available from http://www.cs.njit.edu/usman/LLDA_pop_structure. In 
particular, scripts and data required to reproduce the results shown in this 
study are also provided. 

2.2.3 Parameters  
 
In the computation of Wl we set k(i,j) to 1 everywhere, although note that 
Euclidean, dot product, or Gaussian kernels may also be used (Nijima and 
Okuno, 2007). For the nearest neighbor search we use the Euclidean dis-
tance between the kernel-PCA projected vectors. The number of dimen-
sions in the PCA projected vectors used for the Euclidean distance calcula-
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tion is set to 10 and the parameter m (in the definition of Wl) is also set to 
10. We experimented with fewer dimensions and smaller values of m but 
observed negligible differences in error. 
 
Since we use benchmarks where both maternal and paternal parents and 
grandparents have the same ancestry, qik is set to 1 for the appropriate sub-
population k and 0 for remaining ones if ith’s prior ancestry is available. 
Thus pij is always 1 when both i and j have the same ancestry. 
 
We used the kernel PCA program gist-kpca of the GIST software suite 
(http://bioinformatics.ubc.ca/gist) for computing kernel-PCA projections 
with the polynomial degree two kernel. We experimented with Gaussian 
and higher order polynomials but did not observe a significant difference in 
error. We implemented LLDA using Perl and employed the Perl Math 
Cephes package (http://search.cpan.org/dist/Math-Cephes) for matrix op-
erations. 

3 RESULTS 
In order to study the performance of our proposed approach we 
simulate two different semi-supervised scenarios. In the first sce-
nario we assume that for a given admixture some individuals from 
each sub-population have known ancestry. In the second one some 
individuals from only some sub-populations have known ancestry. 
Note that the semi-supervised scenario does not affect the PCA 
projection since that is an unsupervised method. However, it pro-
duces different LLDA or other semi-supervised projections. 
 
In order to compare different projections under the first scenario 
we apply the nearest mean classifier (Alpaydin, 2004). Since train-
ing samples are available from each sub-population in this case it 
is straightforward to apply this classifier. The procedure is simple: 
first calculate the training means of each sub-population and then 
assign each individual to the sub-population with the shortest 
Euclidean distance to its mean. In the second scenario we use the 
k-means clustering algorithm (Alpaydin, 2004) on both the projec-
tions. In this situation only some individuals of some sub-
populations have known ancestry and therefore it is not possible to 
apply a classifier.  
 
When applying the nearest means or k-means methods on a projec-
tion we consider only the leading k dimensions, where k is the 
number of sub-populations in the admixture. Note that this number 
is not required to compute the LLDA projection. We only use it in 
order to compare the projections under the nearest means and k-
means algorithms. In practice the number k can be estimated using 
various methods (Sanguinetti et. al., 2005). 
 
Given a true and estimated classification we use the classification 
error rate for determining its error. Let T[i] ∈ [1,k] be the true sub-
population ID of individual i and similarly let C[i] be the estimated 
sub-population ID. The error rate is then 
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If a clustering is given then the above approach is not applicable. 
Instead we first have to make sure that the estimated sub-
population IDs match the true ones by the following method: for 
each estimated sub-population we assign it the ID that is maximum 
among the true population IDs of all individuals in it. We then 

proceed with the same formula. We measure the statistical signifi-
cance of the difference in errors between two methods using the 
Wilcoxon signed rank test (Kanji, 1999). 
 
As shown in earlier studies PCA followed by k-means can separate 
sub-populations of the HAPMAP dataset (such as Chinese and 
Japanese individuals) with high accuracy (Paschou et. al., 2007). 
We focus here on the recent large dataset from Noah Rosenberg’s 
lab (Jakobsson et. al., 2008). This contains 525,9210 genome-wide 
SNPs of 485 individuals from 29 populations. From this large 
dataset we extract individuals from three different regions as speci-
fied in the dataset: 

• East Asia: 10 from Cambodia, 15 from Siberia, 49 from 
China, and 16 from Japan; 459,188 SNPs without missing en-
tries 

• Africa: 32 Biaka Pygmy individuals, 15 Mbuti Pygmy, 24 
Mandenka, 25 Yoruba, 7 San from Namibia, 8 Bantu of South 
Africa, and 12 Bantu of Kenya; 454,732 SNPs without miss-
ing entries. 

• Middle East: 43 Druze from Israel-Carmel, 47 Bedouins 
from Israel-Negev, 26 Palestinians from Israel-Central, and 
30 Mozabite from Algeria-Mzab; 438,596 SNPs without 
missing entries. 

 
We conducted several preliminary studies to determine which 
methods to present in the main results. We first compared kernel-
PCA to the implementation of the smartpca program (Patterson et. 
al., 2006) and found it to have lower error when evaluated under k-
means.  
 
We also compared the SSDR method of Zhang et. al., 2007, and 
the semi-supervised local Fisher discriminant (SSLFDA) of Sugi-
yama et. al., 2007, to LLDA under the first semi-supervised sce-
nario. We implemented both of these methods in Perl and provide 
them in our software distribution at 
http://www.cs.njit.edu/usman/LLDA_pop_structure. In line with 
our semi-supervised LLDA implementation (kernel-PCA + LLDA) 
we apply both SSDR and SSLFDA on the full kernel PCA projec-
tion. We found both SSDR and SSLFDA to have higher errors than 
LLDA and even the original kernel PCA on the data considered 
here. Subsequently we omit them from the remaining results. 

3.1 Random number of individuals with known ances-
try from each sub-population of the admixture 

 
In the first semi-supervised scenario we assume that some indi-
viduals from each sub-population of the admixture have known 
ancestry. In order to apply LLDA here we would need a minimum 
of two individuals from each sub-population with known ancestry. 

3.1.1 Between 2 and 4 random individuals of each sub-population 
with known ancestry (for Middle Eastern admixture between 2 and 
8) 
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We simulate datasets with known ancestry as follows. Assume that 
the admixture has p sub-populations. For each sub-population j ∈ 
[1,p] we generate a random rj ∈ [2,4] and randomly select rj indi-
viduals from sub-population j to have known ancestry. For the 
Middle Eastern admixture, however, we use the range [2,8]. We 
generate 200 such random datasets. On each such dataset we ex-
tract LLDA features. The kernel-PCA features are unsupervised 
and so independent of the prior ancestry. 
 
The number of random individuals with known ancestry is much 
smaller than the total in the admixture. For the datasets in this sub-
section the mean number of individuals with known ancestries in 
the East Asian, African, and Middle Eastern admixtures are 11.0, 
19.1, and 18.3 respectively. These constitute 12.2%, 15.5%, and 
12.5% of the three admixtures respectively. 
 
Since each sub-population has a minimum of two individuals with 
known ancestry we can apply the simple nearest means classifier 
on the two projections and measure their error. In Table 1 we re-
port the mean error on both the projections (averaged over the 200 
random trials). On all three admixtures the LLDA error is lower by 
a statistically significant margin. 

Table 1. Error of nearest means classifier. * denotes Wilcoxon signed 
rank test p-value < 0.05. 

Admixture Kernel PCA Laplacian linear discriminant 

East Asia 5.3 4.3* 
Africa 9.1 5.3* 
Middle East 23.8 19.4* 

3.1.2 Between 2 and 20% random individuals of each sub-
population with known ancestry 
 
We simulate 200 random datasets with known ancestry in a man-
ner similar to the one described in the previous section. However, 
the range for each rj is [2,0.2nj] where nj is the number of indi-
viduals in sub-population j of the admixture. The mean percent of 
individuals with known ancestry is 13.5%, 15.1%, and 12% for the 
three admixtures respectively. LLDA still performs significantly 
better as Table 2 shows. 

Table 2. Caption as Table 1. 

Admixture Kernel PCA Laplacian linear discriminant 

East Asia 4.7 3.7* 
Africa 8.6 4.3* 
Middle East 23.2 18* 
 

3.2 Random number of individuals with known ances-
try but only from some sub-populations of the 
admixture 

 
In the second semi-supervised scenario we assume that only some 
individuals from some sub-populations have known ancestry. This 
presents a more difficult scenario since now a classification 
method cannot be applied. In order to compare the two projections 
in this scenario we apply the popular k-means clustering method. 
This may not necessarily the best way of comparison but it still 
gives us some idea of how well separated the two projections are. 
We run k-means 100 times on each input and report the error of the 
clustering with the highest objective function value. 

3.2.1 Between 2 and 4 random individuals of some sub-
populations with known ancestry (for Middle Eastern admixture 
between 2 and 8) 
 
Assume that the admixture has p sub-populations. We first select a 
random number p’ ∈ [1,p] and then pick p’ random sub-population 
IDs (from 1 through p) using Fisher-Yates sampling (Knuth, 
1998). For each selected sub-population j we generate a random rj 
∈ [2,4] and randomly select rj individuals from sub-population j to 
have known ancestry (as before). Again for the Middle Eastern 
admixture we use the range [2,8]. We generate 200 such random 
datasets. On each such dataset we extract LLDA features. The 
kernel-PCA features are unsupervised and so independent of the 
prior ancestry. 
 
The number of selected sub-populations p’ and number of indi-
viduals per selected sub-population varies across these datasets. 
For example for the 200 datasets in this subsection the mean values 
of p’ for the East Asian, African, and Middle Eastern admixtures 
are 2.6, 3.9, and 2.5. These values are very similar for the data in 
the proceeding subsections.  
 
The number of individuals with known ancestry is also much 
smaller than the total admixture sizes. For the data in this subsec-
tion the mean number of individuals with known ancestry are 7.1, 
10.8, and 11.8 for the East Asian, African, and Middle Eastern 
admixtures. These constitute 7.8%, 8.8%, and 8.1% of the respec-
tive admixtures. 
 
We apply the k-means clustering algorithm on both the kernel-
PCA and LLDA projections. K-means on the kernel-PCA projec-
tion has the same error across the different datasets because the 
prior ancestry does not affect the projection. In Table 3 we report 
the k-means error averaged over the 200 random trials. Except for 
the East Asian admixture LLDA has statistically significant lower 
errors. 

Table 3. Error of k-means. * denotes Wilcoxon signed rank test p-value < 
0.05. 

Admixture Kernel PCA Laplacian linear discriminant 

East Asia 8.9 7.1 
Africa 16.3 14.4* 
Middle East 29.5 23.0* 
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3.2.2  Between 2 and 20% random individuals of some sub-
populations with known ancestry 
 
We proceed as in the previous subsection. We first select p’ ran-
dom population IDs. However, this time we select rj randomly 
from [2,0.2nj] where nj is the number of individuals in the selected 
sub-population j of the admixture. The mean percent of individuals 
with known ancestry is 9%, 9.1%, and 7.4% for the three admix-
tures respectively. As Table 4 shows LLDA performs significantly 
better than kernel-PCA. 

Table 4. Caption as Table 3. 

Admixture Kernel PCA Laplacian linear discriminant 

East Asia 8.9 5.9* 
Africa 16.3 13.7* 
Middle East 29.5 22.7* 

3.2.3  Between 2 and 35% random individuals of some sub-
populations with known ancestry 
 
We proceed as previously but select rj randomly from [2,0.35nj]. 
The mean percent of individuals with known ancestry is 12.2%, 
11.9%, and 12% for the three admixtures respectively. Table 5 
shows the improvements gained from LLDA.  

Table 5. Caption as Table 3. 

Admixture Kernel PCA Laplacian linear discriminant 

East Asia 8.9 5.5* 
Africa 16.3 14.0* 
Middle East 29.5 21.8* 

3.2.4  Between 2 and 50% random individuals of some sub-
populations with known ancestry  
 
Finally we select rj randomly from [2,0.5nj]. The mean number of 
individuals with known ancestry (over the 200 trials) is still small 
for the data in this subsection: 15.5 for East Asian admixture, 19.3 
for African, and 24.6 for the Middle Eastern. These constitute 
17.2%, 15.7%, and 16.8% of the three admixtures respectively. We 
summarize the results in Table 6.  

Table 6. Caption as Table 3. 

Admixture Kernel PCA Laplacian linear discriminant 

East Asia 8.9 4.5* 
Africa 16.3 12.2* 
Middle East 29.5 19.8* 

3.3 Discussion 

On the HAPMAP dataset PCA followed by k-means separates the 
Japanese and Chinese sub-populations with 1% error (Paschou et. 
al., 2007). We observed the same error with kernel PCA. On the 
admixtures considered here however, PCA error is considerably 
higher. For example, on the Middle Eastern admixture kernel PCA 
followed by k-means reaches an error of 29.5%. This admixture is 
particularly hard because of the closely related Bedouin and Pales-
tinian sub-populations. LLDA gives an improvement of almost 
10% when mean percent of known ancestry is 16.8% over ran-
domly selected sub-populations of this admixture (see Table 6). 
 
The percent of individuals with known ancestry is intentionally 
kept small throughout our experiments in order to simulate hard 
scenarios. In practice prior ancestry of many individuals may be 
available which in turn will provide a greater advantage with 
LLDA. This trend can be observed from Tables 4 through 6: as the 
mean number of individuals with known ancestry increases the 
LLDA error drops. Our LLDA implementation is also very fast: 
for any of the three given admixtures it finishes in a few seconds.  

4 CONCLUSIONS 
We proposed a semi-supervised Laplacian linear discriminant for 
extracting features for identifying population structure when the 
ancestry of some individuals is known in advance. Using real 
benchmarks we simulate various semi-supervised scenarios and 
show that LLDA outperforms kernel PCA by a statistically signifi-
cant margin. In comparison to two recent semi-supervised feature 
extractors, LLDA and kernel PCA have lower error on the data 
considered here. The proposed LLDA method is fast, can be easily 
implemented, and accommodates mixed prior ancestries.  
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